
Preface

Objective

This handbook aims at providing a broad survey of the field of graph drawing. It cov-
ers topological and geometric foundations, algorithms, software systems, and visualization
applications in business, education, science, and engineering.

The intended readership of this handbook includes:

• Practitioners and researchers in traditional and emerging disciplines of the phys-
ical, life, and social sciences interested in understanding and using graph drawing
methods and graph visualization systems in their field.

• Information technology practitioners and software developers aiming to incorpo-
rate graph drawing solutions into their products.

• Researchers and students in graph drawing and information visualization seeking
an up-to-date survey of the field.

• Researchers and students in related fields of mathematics and computer science
(including graph theory, computational geometry, information visualization, soft-
ware engineering, user interfaces, social networks, and data management) inter-
ested in using graph-drawing techniques in support of their research.

Organization

The chapters of this handbook are organized into four parts, as follows.

Topological and Geometric Foundations of Graph Drawing The first part
(Chapters 1–4) deals with fundamental topological and geometric concepts and
techniques used in graph drawing: planarity testing and embedding, crossings
and planarization, symmetric drawings, and proximity drawings.

Graph Drawing Algorithms The second part (Chapters 5–14) presents an exten-
sive collection of algorithms for constructing drawings of graphs. Some methods
are designed to draw special classes of graphs (e.g., trees, planar graphs, or
directed acyclic graphs) while other methods work for general graphs. Topics
covered in this part include tree drawing algorithms, planar straight-line drawing
algorithms, planar orthogonal and polyline drawing algorithms, spine and radial
drawings, circular drawing algorithms, rectangular drawing algorithms, simul-
taneous embeddings, force-directed methods, hierarchical drawing algorithms,
three-dimensional drawing algoritms, and labeling algorithms.

Graph Drawing Systems The third part begins by introducing the GraphML lan-
guage for representing graphs and their drawings (Chapter 16). Next, it overviews
three software systems for constructing drawings of graphs: OGDF, GDToolkit,
and PIGALE (Chapters 17–19).

Applications of Graph Drawing The fourth part (Chapters 20–26) gives examples
of the use of graph drawing methods for the visualization of networks in vari-
ous important application domains: biological networks, computer security, data
analytics, education, computer networks, and social networks.

Each chapter is intended to be self-contained and has its own bibliography.

vii

viii PREFACE

Acknowledgments

I would like to thank all the authors of the chapters in this handbook and all the reviewers
who have provided expert feedback on the initial drafts and revised versions of the chapters.

This handbook is a collective effort of the graph drawing research community, which has
developed around the annual Symposium on Graph Drawing. I am grateful to the people
who have founded with me this conference and have continued providing leadership for
it: Franz Brandenburg, Giuseppe Di Battista, Peter Eades, Hubert de Fraysseix, Takao
Nishizeki, Pierre Rosenstiehl, and Ioannis Tollis.

A huge thanks goes to Sunil Nair for proposing this handbook project and supporting its
development. I truly appreciate his constant encouragement and patience. Help received
from the entire CRC Press production team, and especially from Andre Barnett, Kari
Budyk, Rachel Holt, Jim McGovern, and Shashi Kumar, is gratefully acknowledged. I
would like to thank also my executive assistant Angel Murakami for her expert proofreading
of the chapters.

I am indebted to Carlo Batini for introducing me to the problem of drawing graphs and
inspiring me to pursue an academic path. A special thanks also goes to Franco Preparata,
whose guidance and support, first as PhD advisor and then as colleague, have shaped by
career.

Finally, warm thanks go to Isabel Cruz, Giuseppe Di Battista, Michael Goodrich, and
Ioannis Tollis for their encouragement and support throughout this project.

Roberto Tamassia

About the Editor

Roberto Tamassia is the Plastech Professor of Computer Science and the Chair of the De-
partment of Computer Science at Brown University. He is also the Director of Brown’s
Center for Geometric Computing. His research interests include analysis, design, and im-
plementation of algorithms, applied cryptography, cloud computing, computational geom-
etry data security, and graph drawing. He has published six textbooks and more than
250 research articles and books in the above areas and has given more than 70 invited
lectures worldwide. He is a Fellow of the American Association for the Advancement of
Science (AAAS), the Association for Computing Machinery (ACM), and the Institute of
Electrical and Electronics Engineers (IEEE). He is the recipient of a Technical Achieve-
ment Award from the IEEE Computer Society for pioneering the field of graph drawing.
He is listed among the 360 most cited computer science authors by Thomson Scientific,
Institute for Scientific Information (ISI). He serves regularly on program committees of in-
ternational conferences. His research has been funded by ARO, DARPA, NATO, NSF, and
several industrial sponsors. He co-founded the Journal of Graph Algorithms and Applica-
tions (JGAA) and the Symposium on Graph Drawing. He serves as Co-Editor-in-Chief of
JGAA. He received the PhD degree in electrical and computer engineering from the Uni-
versity of Illinois at Urbana-Champaign and the “Laurea” in Electrical Engineering from
the “Sapienza” University of Rome.

ix

Contents

1 Planarity Testing and Embedding . 1

Maurizio Patrignani , Roma Tre University

2 Crossings and Planarization . 43

Christoph Buchheim, TU Dortmund
Markus Chimani , Friedrich-Schiller-Universität Jena
Carsten Gutwenger , TU Dortmund
Michael Jünger , University of Cologne
Petra Mutzel , TU Dortmund

3 Symmetric Graph Drawing . 87

Peter Eades, University of Sydney
Seok-Hee Hong , University of Sydney

4 Proximity Drawings . 115

Giuseppe Liotta, University of Perugia

5 Tree Drawing Algorithms . 155

Adrian Rusu, Rowan University

6 Planar Straight-Line Drawing Algorithms 193

Luca Vismara

7 Planar Orthogonal and Polyline Drawing Algorithms . . . 223

Christian A. Duncan, Quinnipiac University
Michael T. Goodrich, University of California, Irvine

8 Spine and Radial Drawings . 247

Emilio Di Giacomo, University of Perugia
Walter Didimo, University of Perugia
Giuseppe Liotta, University of Perugia

9 Circular Drawing Algorithms . 285

Janet M. Six , Lone Star Interaction Design
Ioannis G. Tollis, University of Crete and Technology Hellas-FORTH

10 Rectangular Drawing Algorithms . 317

Takao Nishizeki , Kwansei Gakuin University, Japan
Md. Saidur Rahman, BUET, Bangladesh

xi

xii CONTENTS

11 Simultaneous Embedding of Planar Graphs 349

Thomas Bläsius, Karlsruhe Institute of Technology
Stephen G. Kobourov , University of Arizona
Ignaz Rutter , Karlsruhe Institute of Technology

12 Force-Directed Drawing Algorithms . 383

Stephen G. Kobourov , University of Arizona

13 Hierarchical Drawing Algorithms . 409

Patrick Healy , University of Limerick
Nikola S. Nikolov , University of Limerick

14 Three-Dimensional Drawings . 455

Vida Dujmović, Carleton University
Sue Whitesides, University of Victoria

15 Labeling Algorithms . 489

Konstantinos G. Kakoulis, T.E.I. of West Macedonia, Greece
Ioannis G. Tollis, University of Crete, Greece

16 Graph Markup Language (GraphML) . 517

Ulrik Brandes, University of Konstanz
Markus Eiglsperger
Jürgen Lerner , University of Konstanz
Christian Pich, Swiss Re

17 The Open Graph Drawing Framework (OGDF) 543

Markus Chimani , Friedrich-Schiller-Universität Jena
Carsten Gutwenger , TU Dortmund
Michael Jünger , University of Cologne
Gunnar W. Klau, Centrum Wiskunde & Informatica
Karsten Klein, TU Dortmund
Petra Mutzel , TU Dortmund

18 GDToolkit . 571

Giuseppe Di Battista, University “Roma Tre”
Walter Didimo, University of Perugia

19 PIGALE . 599

Hubert de Fraysseix , CNRS UMR 8557. Paris
Patrice Ossona de Mendez , CNRS UMR 8557. Paris

20 Biological Networks . 621

Christian Bachmaier , University of Passau
Ulrik Brandes, University of Konstanz
Falk Schreiber , IPK Gatersleben and University of Halle-Wittenberg

CONTENTS xiii

21 Computer Security . 653

Olga Ohrimenko, Brown University
Charalampos Papamanthou, University of California, Berkeley
Bernardo Palazzi , Brown University and Italian National Institute of
Statistics

22 Graph Drawing for Data Analytics . 681

Stephen G. Eick , VisTracks and U. Illinois at Chicago

23 Graph Drawing and Cartography . 697

Alexander Wolff , University of Würzburg

24 Graph Drawing in Education . 737

Stina Bridgeman, Hobart and William Smith Colleges

25 Computer Networks . 763

Giuseppe Di Battista, Roma Tre University
Massimo Rimondini , Roma Tre University

26 Social Networks . 805

Ulrik Brandes, University of Konstanz
Linton C. Freeman, University of California, Irvine
Dorothea Wagner , Karlsruhe Institute of Technology

Index . 841

1
Planarity Testing and Embedding

Maurizio Patrignani
Roma Tre University

1.1 Introduction . 1
1.2 Properties and Characterizations of Planar Graphs . . . 2

Basic Definitions • Properties • Characterizations

1.3 Planarity Problems . 7
Constrained Planarity • Deletion and Partition Problems •

Upward Planarity • Outerplanarity

1.4 History of Planarity Algorithms. 10
1.5 Common Algorithmic Techniques and Tools 10
1.6 Cycle-Based Algorithms . 11

Adding Segments: The Auslander-Parter Algorithm •

Adding Paths: The Hopcroft-Tarjan Algorithm • Adding
Edges: The de Fraysseix-Ossona de Mendez-Rosenstiehl

Algorithm

1.7 Vertex Addition Algorithms . 17
The Lempel-Even-Cederbaum Algorithm • The Shih-Hsu

Algorithm • The Boyer-Myrvold Algorithm

1.8 Frontiers in Planarity . 31
Simultaneous Planarity • Clustered Planarity •

Decomposition-Based Planarity

References . 34

1.1 Introduction

Testing the planarity of a graph and possibly drawing it without intersections is one of the
most fascinating and intriguing algorithmic problems of the graph drawing and graph theory
areas. Although the problem per se can be easily stated, and a complete characterization
of planar graphs has been known since 1930, the first linear-time solution to this problem
was found only in the 1970s.

Planar graphs play an important role both in the graph theory and in the graph drawing
areas. In fact, planar graphs have several interesting properties: for example, they are
sparse and 4-colorable, they allow a number of operations to be performed more efficiently
than for general graphs, and their inner structure can be described more succinctly and
elegantly (see Section 1.2.2). From the information visualization perspective, instead, as
edge crossings turn out to be the main reason for reducing readability, planar drawings of
graphs are considered clear and comprehensible.

In this chapter, we review a number of different algorithms from the literature for ef-
ficiently testing planarity and computing planar embeddings. Our main thesis is that all
known linear-time planarity algorithms fall into two categories: cycle based algorithms and
vertex addition algorithms. The first family of algorithms is based on the simple obser-

1

2 CHAPTER 1. PLANARITY TESTING AND EMBEDDING

vation that in a planar drawing of a graph any cycle necessarily partitions the graph into
the inside and outside portion, and this partition can be suitably used to split the em-
bedding problem. Vertex addition algorithms are based on the incremental construction of
the final planar drawing starting from planar drawings of smaller graphs. The fact that
some algorithms were based on the same paradigm was already envisaged by several re-
searchers [Tho99, HT08]. However, the evidence that all known algorithms boil down to
two simple approaches is a relatively new concept.

The chapter is organized as follows: Section 1.2 introduces basic definitions, properties,
and characterizations for planar graphs; Section 1.3 formally defines the planarity testing
and embedding problems; Section 1.4 follows a historic perspective to introduce the main
algorithms and a conventional classification for them. Some algorithmic techniques are
common to more than one algorithm and sometimes to all of them. These are collected
in Section 1.5. Finally, Sections 1.6 and 1.7 are devoted to the two approaches to the
planarity testing problem, namely, the “cycle based” and the “vertex addition” approaches,
respectively.

Algorithms for constructing planar drawings of graphs are discussed in Chapters 6 (straight-
line drawings), 7 (orthogonal and polyline drawings), and 10 (rectangular drawings). Meth-
ods for reducing crossings in nonplanar drawings of graphs are discussed in Chapter 2.

1.2 Properties and Characterizations of Planar Graphs

1.2.1 Basic Definitions

A graph G(V,E) is an ordered pair consisting of a finite set V of vertices and a finite set
E of edges, that is, pairs (u, v) of vertices. If each edge is an unordered (ordered) pair of
vertices, then the graph is undirected (directed). An edge (u, v) is a self-loop if u = v. A
graph G(V,E) is simple if E is not a multiple set and it does not contain self-loops. For the
purposes of this chapter, we can restrict us to simple graphs.
The sets of edges and vertices of G can be also denoted E(G) and V (G), respectively. If

edge (u, v) ∈ E, vertices u and v are said to be adjacent and (u, v) is said to be incident
to u and v. Two edges are adjacent if they have a vertex in common.

A (rooted) tree T is a connected acyclic graph with one distinguished vertex, called the
root r. A spanning tree of a graph G is a tree T such that V (T) = V (G) and E(T) ⊆ E(G).

Given two graphs G1(V1, E1) and G2(V2, E2), their union G1 ∪ G2 is the graph G(V1 ∪
V2, E1 ∪ E2). Analogously, their intersection G1 ∩G2 is the graph G(V1 ∩ V2, E1 ∩ E2). A
graph G2 is a subgraph of G1 if G1 ∪G2 = G1.

Given a graph G(V,E) and a subset V ′ of V , the subgraph induced by V ′ is the graph
G′(V ′, E′), where E′ is the set of edges of E that have both endvertices in V ′. Given a
graph G(V,E) and a subset E′ of E, the subgraph induced by E′ is the graph G′(V ′, E′),
where V ′ is the set of vertices incident to E′. A subdivision of an edge (u, v) consists of the
insertion of a new node w and the replacement of (u, v) with edges (u,w) and (w, v). A
graph G2 is a subdivision of G1 if it can be obtained from G1 through a sequence of edge
subdivisions.

A drawing Γ of a graph G maps each vertex v to a distinct point Γ(v) of the plane and
each edge (u, v) to a simple open Jordan curve Γ(u, v) with endpoints Γ(u) and Γ(v). A
drawing is planar if no two distinct edges intersect except, possibly, at common endpoints.
A graph is planar if it admits a planar drawing. A planar drawing partitions the plane
into connected regions called faces . The unbounded face is usually called external face
or outer face. If all the vertices are incident to the outer face, the planar drawing is called
outerplanar and the graph admitting it is an outerplanar graph. Given a planar drawing,

1.2. PROPERTIES AND CHARACTERIZATIONS OF PLANAR GRAPHS 3

the (clockwise) circular order of the edges incident to each vertex is fixed. Two planar
drawings are equivalent if they determine the same circular orderings of the edges incident
to each vertex (sometimes called rotation scheme). A (planar) embedding is an equivalence
class of planar drawings and is described by the clockwise circular order of the edges incident
to each vertex. A graph together with one of its planar embedding is sometimes referred to
as a plane graph.

A path is a sequence of distinct vertices v1, v2, . . . , vk, with k ≥ 2, together with the edges
(v1, v2), . . . , (vk−1, vk). The length of the path is the number of its edges.

A cycle is a sequence of distinct vertices v1, v2, . . . , vk, with k ≥ 2, together with the
edges (v1, v2), . . . , (vk−1, vk), (vk, v1). The length of a cycle is the number of its vertices or
the number of its edges.

An undirected graph G is connected if, for each pair of nodes u and v, G contains a path
from u to v. A graph G with at least k + 1 vertices is k-connected if removing any k − 1
vertices leaves G connected. Equivalently, by Menger’s theorem, a graph is k-connected
if there are k independent paths between each pair of vertices [Men27]. 3-connected, 2-
connected, and 1-connected graphs are also called triconnected , biconnected , and simply
connected graphs, respectively. It is usual in the planarity literature to relax the definition
of biconnected graph so to include bridges , i.e., graphs composed by a single edge between
two vertices. A separating k-set is a set of k vertices whose removal disconnects the graph.
Separating 1- and 2-sets are called cutvertices and separation pairs , respectively. Hence, a
connected graph is biconnected if it has no cutvertices and it is triconnected if it has no
separation pairs.

If a graph G is not connected, its maximal connected subgraphs are called the connected
components of G. If G is connected, its maximal biconnected subgraphs (including bridges)
are called the biconnected components , or blocks of G. Note that a cutvertex belongs to
several blocks and that a biconnected graph has only one block. The graph whose vertices
are the blocks and the cutvertices of G and whose edges link cutvertices to the blocks they
belong to is a tree and is called the block-cutvertex tree (or BC-tree) of G (see Figure 1.1
for an example).

Given a biconnected graph G, its triconnected components are obtained by a complex
splitting and merging process. The first linear-time algorithm to compute them was intro-
duced in [HT73], while an implementation of it is described in [GM01]. The computation
has two phases: first, G is recursively split into its split components ; second, some split
components are merged together to obtain triconnected components. The split operation
is performed with respect to a pair of vertices {v1, v2} of the biconnected (multi)graph G.
Suppose the edges of G are divided into the equivalence classes E1, E2, . . . , Ek such that two
edges are in the same class if both lie in a common path not containing a vertex in {v1, v2}
except, possibly, as an end point. If there are at least two such classes, then {v1, v2} is a
split pair. Let G1 be the graph induced by E1 and G2 be the graph induced by E/E1. A
split operation consists of replacing G with G′

1 and G′
2, where G

′
1 and G′

2 are obtained from
G1 and G2 by adding the same virtual edge (v1, v2). The two copies of the virtual edge
added to G1 and G2 are called twin virtual edges. Figure 1.2(b) shows the result of a split
operation performed on the graph of Figure 1.2(a) with respect to split pair {2, 4}. The
split components of a graph G are obtained by recursively splitting G until no split pair can
be found in the obtained graphs. Figure 1.2(c) shows the split components of the graph of
Figure 1.2(a). Split components are not unique and, hence, are not suitable for describing
the structure of G.

Two split components sharing the same twin virtual edges (v1, v2) can be merged by
identifying the two copies of v1 and v2 and by removing the twin virtual edges. Split
components consisting of cycles are called series split components, while split components

4 CHAPTER 1. PLANARITY TESTING AND EMBEDDING

2 3

1
4

5

6

7

8

9

10

11

12

13
14

(a)

10
8

8

10

9

2

8 1

3 6

4

7

3

3

5

12

11

10 13

10

14

(b)

Figure 1.1 A connected graph (a) and its BC-tree (b). Different line styles are used for
edges of different blocks.

that have only two vertices are called parallel split components. By recursively merging
together series split components that share twin virtual edges we obtain series triconnected
components, while by recursively merging together parallel split components that share twin
virtual edges we obtain parallel triconnected components. Split components that are not
affected by the merging operations described above are called rigid triconnected components.
Figure 1.3(a) shows the triconnected components of the graph of Figure 1.2(a).

Triconnected components are unique and are used to describe the inner structure of a
graph. In fact, a graph G can be succinctly described by its SPQR-tree T , which provides
a high-level view of the unique decomposition of the graph into its triconnected compo-
nents [DT96a, DT96b, GM01]. Namely, each triconnected component corresponds to a
node of T . The triconnected component corresponding to a node µ of T is called the
skeleton of µ. As there are parallel, series, and rigid triconnected components, their corre-
sponding tree nodes are called P-, S-, and R-nodes, respectively. Triconnected components
sharing a virtual edge are adjacent in T . Usually, a fourth type of node, called Q-node,
is used to represent an edge (u, v) of G. Q-nodes are the leaves of T and they don’t have
skeletons. Tree T is unrooted, but for some applications, it could be thought as rooted at
an arbitrary Q-node. See Figure 1.3 for an example of SPQR-tree.

The connectivity properties of a graph have a strict relationship with its embedding
properties. Triconnected planar graphs (and triconnected planar components) have a single

1.2. PROPERTIES AND CHARACTERIZATIONS OF PLANAR GRAPHS 5

1

4

3

8

5

2

7

6

9

4

3

8

5

2

7

64

2

1

9

2
1

4

3
3

5 4

3

4 7

3
8

8

9

8

3

7

6

4

2

3

4 3

4
3

(a) (b) (c)

Figure 1.2 (a) A biconnected graph. (b) A split operation performed with respect to
split pair {2, 4}. (c) The split components of the graph. Virtual edges are drawn dashed.
Twin virtual edges are joined with dotted lines.

S1

S2

P1

S3

S4

R1

P2

3
8

7

6

4 7

3

3

4

2

4
3

1
3

9

8

3

5 4

83

S2

P1

S3

S4

P2

S1

R1

5 4

3

3

4

3

4 7

3

9

8

3 8

4
3

2
1

8

6

3

7

(a) (b)

Figure 1.3 (a) The triconnected components of the same graph of Figure 1.2. (b) The
corresponding SPQR-tree. Q-nodes are represented by empty circles.

embedding up to a flip (that is, up to a reversal of all their incidence lists) [Whi32]. The
same holds for biconnected outerplanar graphs and their unique outerplanar embedding
(adding a star on the outer face yields a triconnected plane graph).

A non-connected graph is planar if and only if all its connected components are planar.
Thus, in the following, without loss of generality, we only consider the planarity of connected
graphs. Also, a planar embedding of a graph implies a planar embedding for each one of
its blocks, while, starting from a planar embedding of the blocks, a planar embedding for
the whole graph can be found [Whi32]. Thus, since the blocks can be identified in linear
time [Tar72], a common strategy, both to test planarity and to compute a planar embedding,
is to divide the graph into its blocks and to tackle each block separately.

Finally, a graph is planar if and only if its triconnected components are planar [Mac37b].
More precisely, as parallel and series triconnected components are always planar, a graph is
planar if and only if all its rigid triconnected components are planar. However, since dividing
a graph into its triconnected components is a linear but rather laborious process [HT73,
GM01], usually planarity algorithms do not assume that the input graph is triconnected.

Also, from a planar embedding of the triconnected components of a graph, a planar
embedding of the whole graph can be obtained. This property can be exploited to explore

6 CHAPTER 1. PLANARITY TESTING AND EMBEDDING

the planar embeddings of a given graph when searching for some embedding with a specific
property (see, for example, [MW99, MW00, BDBD00, GMW01, ADF+10]).
Given a plane (multi)graph G, its plane dual (or simply its dual) is the multigraph G∗

such that G∗ has one vertex for each face of G and two vertices of G∗ are linked by one edge
e∗ if the corresponding faces in G share one edge e. Observe that the planar embedding of
G induces a planar embedding of its dual and that the dual of the dual of G is G itself.
Also, different embeddings of a planar graph G correspond to different dual graphs. Finally,
a cycle in G corresponds to a minimal cut in G∗ (anytime this property holds G and G∗

are called abstract dual).
A graph G(V,E) is k colorable if its vertices can be partitioned into k sets V1, V2, . . . , Vk

in such a way that no edge is incident to two vertices of the same set. A graph G(V,E)
is complete if each vertex in V is adjacent to each other.
A graph G(V,E) is bipartite if it is 2-colorable. A bipartite graph G(V1, V2, E) is complete

if each vertex in V1 is adjacent to all vertices in V2.

1.2.2 Properties

Planar graphs have a variety of properties whose exploitation allows us to efficiently perform
a number of operations on them.

Perhaps the most renown property is the one stated by Euler’s Theorem, which shows
that planar graphs are sparse. Namely, given a plane graph with n vertices, m edges and f
faces, we have n−m+ f = 2. A simple corollary is that for a maximal planar graph with
at least three vertices, where each face is a triangle (2m = 3f), we have m = 3n − 6, and,
therefore, for any planar graph we have m ≤ 3n − 6. This number reduces to m = 2n − 3
for maximal outerplanar graphs with at least three vertices (and m ≤ 2n − 3 for general
outerplanar graphs). Also, if n ≥ 3 and the graph has no cycle of length 3, then m ≤ 2n−4.
Finally, if the graph is a tree, then m = n− 1.
These considerations allow us to replace m with n in any asymptotic calculation involving

planar graphs, while for general graphs only m ∈ O(n2) can be assumed. From a more
practical perspective, they allow us to decide the non-planarity of denser graphs without
reading all the edges (which would yield a quadratic algorithm).
The Four Color Theorem [AH77, AHK77, RSST97] asserts that any planar graph is

4-colorable and settles a conjecture that was for more than a century the most famous
unsolved problem in graph theory and perhaps in all of mathematics [Har69]. To stress
how important this property is, it suffices to observe that, apart from being considered
an important property of planar graphs, it has also been mentioned as the most notable
property of the number 4.

While 3-colorability is NP-hard even on maximum degree four planar graphs [GJS76],
every triangle-free planar graph is 3-colorable [Grö59] and such a 3-coloring can be found
in linear-time [DKT09].

Determining whether the graph contains a k-clique, i.e., a set of k pairwise adjacent
vertices, is polynomial for planar graphs, as no clique can have more than four vertices.
This problem is polynomial even in the weighted case, where each vertex is associated with
a weight and the sum of the weights of the pairwise adjacent vertices is requested to be at
least k. Observe that both these problems are NP-complete on non-planar graphs.

Graph isomorphism is linear for planar graphs [HW74], while it is of unknown complexity
for general graphs [GJ79].

The planar separator theorem [LT79] states that every planar graph G = (V,E) admits a
partition of its n vertices into three sets, A,B, and C, such that the size of C is O(

√
n), the

size of A and B is at most 2

3
n, and there is no edge with one endpoint in A and the other

1.3. PLANARITY PROBLEMS 7

endpoint in B. Such a partition can be found in linear time and is the starting point of a
hierarchical decomposition of the graph that may lead to efficient approaches to compute
properties of the graph.

1.2.3 Characterizations

The first complete characterization of planar graphs is due to Kuratowski [Kur30] and states
that a graph is planar if and only if it contains no subgraph that is a subdivision of K5 or
K3,3, where K5 is the complete graph of order 5 and K3,3 is the complete bipartite graph
with 3 vertices in each of the sets of the partition. An equivalent later result, recasted in
terms of graph minors, is Wagner’s theorem that states that a graph G is planar if and
only if it has no K5 or K3,3 as minor, that is, K5 or K3,3 cannot be obtained from G by
contracting some edges, deleting some edges, and deleting some isolated vertices [Wag37a,
HT65]. Observe that the two characterizations are different since a graph may admit K5

as minor without having a subgraph that is a subdivision of K5 (consider, for example, a
graph of maximum degree 3).

Similarly, it can be proved that a graph is outerplanar if and only if it contains no
subgraph that is a subdivision of K4 or K2,3. Trivially, a graph is a tree if it does not
contain a subdivision (or a minor) of K3.

If the graph is triconnected, a less renown but much simpler characterization can be
formulated. Namely, a triconnected graph distinct from K5 is planar if and only if it
contains no subgraph that is a subdivision of K3,3 [Wag37b, Hal43, Kel93, Lie01].

Given a graph G with no isolated vertices, the associated height-two vertex-edge poset
<G has V ∪ E as elements, and v <G e if and only if v ∈ V , e ∈ E, and v is an endpoint
of edge e. The smallest number of total orders the intersection of which yields the poset
is called the dimension of the poset. Graph G is planar if and only if its corresponding
vertex-edge poset has dimension at most three [Sch89]. Unfortunately, checking if a poset
has dimension at most t is proved to be NP-complete for t ≥ 3 and for t ≥ 4 if the poset
has height two [Yan82].

Edges traversing a bipartition of the vertices of G are called a cocycle. Observe that
while a cycle is a collection of edges that covers each vertex an even (possibly zero) number
of times, a cocycle is a collection of edges that intersects each cycle in an even number
of edges. A bicycle is a collection of edges that is both a cycle and a cocycle. Planarity
can be characterized in terms of the properties of the vector spaces of cycles [Mac37a],
cocycles [APBL95, LS10], and bicycles [APBL95].

A further planarity characterization is expressed via Colin de Verdiére’s graph invariant
µ(G), which in turn is based on the maximum multiplicity of the second eigenvalue of
certain Schrödinger operators defined by the graph [Col90, Col91], and states that a graph
G is planar if and only if µ(G) ≤ 3.

Alternative characterizations can be found in the literature based on the existence of
an abstract dual graph [Whi32], on the edge poset dimension [dO96], on the relationship
among theta-graph minors [AŠ98], on the orientability of circuits [LH77, Che81], on the
arrangements of pseudo-lines [TT97], or on DFS traversals of the graph [dR82, dR85, SH93,
SH99, BM99, BM04].

1.3 Planarity Problems

The main planarity problem is the decision problem of recognizing planar graphs, that is, of
deciding the planarity of the input graph. Both with the purpose of exhibiting a planarity

8 CHAPTER 1. PLANARITY TESTING AND EMBEDDING

certificate and of producing a planar embedding for information-visualization applications,
planarity testing algorithms are usually coupled with planar embedding procedures, that
sometimes, depending on the algorithmic approach, required a considerable research effort
to be devised.

On the opposite, if the graph is not planar, the search for a non-planarity certificate is
called Kuratowski subgraph isolation [CMS08], and the research concentrated on planariza-
tion algorithms that allow us to produce a planar graph where some degree-four vertices
have been added to replace crossings [Lie01]. Since crossing number minimization is NP-
complete [GJ79] planarization algorithms use heuristics to introduce a reduced number of
dummy vertices.

Dynamic algorithms have also been devised for efficiently determining planarity and com-
puting a planar embedding of graphs where edges and vertices are added or deleted one at
a time [DT89, DT96b, GIS99, DBTV01].

Efficient algorithms for planarity testing in parallel have been investigated in [KR88,
RR89, RR94].

1.3.1 Constrained Planarity

The problem of determining the planarity of a graph and of computing a possible embed-
ding of it can be combined with additional constraints on the desired drawing that result
in restrictions on the set of admissible planar embeddings [Tam98, GKM08]. Typical con-
straints ask for some vertices to be on the same face (usually the outer face), some vertex
to have a specified circular ordering of its incident edges, some path to be drawn along a
straight line, etc. In the easier cases, such constraints can be enforced by replacing sets
of nodes and edges of the input graph with suitable gadgets, by launching an ordinary
planarity algorithm, and by transferring the results back on the original graph. More com-
plex cases require to efficiently explore the possible embeddings of the graph by considering
their inner structures described by their BC-trees and SPQR-trees. In [GKM08], embed-
ding constraints that restrict the admissible order of incident edges around a vertex are
considered.

A very restrictive constraint is when the input graph G is partially embedded, i.e., when a
subgraph H of G is provided with an embedding H. In this case, the problem of determining
a planar embedding of the whole graph that extends the embedding H, if one exists, is
linear [ADF+10]. Also, if the answer is negative, an obstruction taken from a collection of
minimal non-planar instances can be produced in polynomial time [JKR11].
A constrained planarization is implied anytime an embedding that minimizes some qual-

ity measure is desired. As pointed out in [BM90, PT00, Piz05], the quality of a planar
embedding can be measured in terms of the maximum distance of its vertices from the
external face. Such a distance can be given in terms of different incidence relationships
between vertices and faces. For example, if two faces are considered adjacent when they
share a vertex, then the maximum distance to the external face is called radius [RS84]. If
two vertices are adjacent when they are endpoints of an edge, then the maximum distance
to the external face is called width [DLT84]. If two vertices are adjacent when they are
on the same face and the external face is adjacent to all its vertices, then the maximum
distance to the external face is called outerplanarity [Bak94]. If two faces are adjacent when
they share an edge, then the maximum distance to the external face is called depth [BM88].
In [PT00, GM04], algorithms are proposed to minimize the maximum distance of the bicon-
nected components of the graph from the external face, where two biconnected components
are adjacent if they share a cutvertex. This measure, which is also called “depth,” is a
rougher indicator of the quality of the embedding but can be computed in linear time.

1.3. PLANARITY PROBLEMS 9

In [BM90], Bienstock and Monma present an algorithm to compute the planar embed-
ding of an n-vertex planar graph with minimum maximum distance to the external face in
O(n5 log n) time, which is improved to O(n4) time in [ADP11]. The considered distance
is the depth. However, it is possible to compute the radius, the width, and the outerpla-
narity of a graph by modifying and simplifying the algorithm for the minimum depth, since
such distance measures are intrinsically simpler to compute than the depth [BM90]. The
complexity bounds for computing such simpler distance measures is improved in [Kam07],
where an algorithm that computes the outerplanarity of an n-vertex planar graph in O(n2)
time is described. Simple variations of this algorithm can lead to compute the radius in
O(n2) time and the width in O(n3) time [Kam07].

1.3.2 Deletion and Partition Problems

Deleting the minimum number of edges in order to obtain a planar graph is called maximum
planar subgraph and proved to be NP-hard in [GJ79]. Analogously, deleting the minimum
number of vertices in order to obtain a planar graph is called maximum induced planar
subgraph and proved to be NP-hard in [Yan78].

The problem of partitioning the edges of a graph G = (V,E) into k sets E1, . . . , Ek in
such a way that each graph Gi = (V,Ei), with i = 1, 2, . . . , k is planar is called graph
thickness and is shown to be NP-hard for k = 2 in [Man83].

1.3.3 Upward Planarity

If the input graph G is directed, adding the requirement that the drawing of G is upward,
that is, that each edge is a curve of increasing y-coordinates, transforms the planarity
problem into the upward planarity one, which was shown to be NP-complete in [GT01].
However, upward planarity testing turns out to be polynomial for several families of

directed graphs:

1. If the digraph G is outerplanar. This problem was shown to be O(n2) in [Pap95].

2. If the digraph G is triconnected [BD91, BDLM94].

3. If the digraph G has a fixed embedding. An O(n2)-time algorithm was introduced
in [BDLM94], and the problem is linear in the case of embedded outerplanar
graphs ([Pap95]).

4. If the digraph G is single-source. The O(n2)-time algorithm described in [HL96]
was improved to linear in [BDMT98].

1.3.4 Outerplanarity

Determining whether a graph is outerplanar and producing an outerplanar drawing of it is a
problem that can be solved independently or by using a planarity algorithm as a subroutine.
In fact, a graph G = (V,E) is outerplanar if and only if the graph G′(V ′, E′) is planar,
where V ′ = V ∪ {v} and E′ is obtained from E by adding an edge (vi, v) for each vertex
vi ∈ V .

Deleting the minimum number of vertices from a graph in order to make it outerplanar
is NP-complete [Yan78].

10 CHAPTER 1. PLANARITY TESTING AND EMBEDDING

1.4 History of Planarity Algorithms

Directly applying Kuratowski’s characterization of planar graphs based on subdivisions
would yield an exponential-time algorithm while Wagner’s characterization based on minors
would give a factorial-time algorithm. The first polynomial-time algorithms for planarity are
due to Auslander and Parter [AP61], Goldstein [Gol63], and, independently, Bader [Bad64].
In 1974, Hopcroft and Tarjan [HT74] proposed the first linear-time planarity testing

algorithm. This algorithm, also called “path-addition algorithm,” starts from a cycle and
adds to it one path at a time. However, the algorithm is so complex and difficult to
implement that several other contributions followed their breakthrough. For example, about
20 years after [HT74], Mehlhorn and Mutzel [MM96] contributed a paper to clarify how to
construct the embedding of a graph that is found to be planar by the original Hopcroft and
Tarjan algorithm.

A different approach has its starting point in the algorithm presented by Lempel, Even,
and Cederbaum [LEC67]. This algorithm, also called “vertex addition algorithm,” is based
on considering the vertices one-by-one, following an st-numbering; it has been shown to be
implementable in linear time by Booth and Lueker [BL76], while a linear-time algorithm
for computing the needed st-numbering was provided in [ET76]. Also in this case, a further
contribution by Chiba, Nishizeki, Abe, and Ozawa [CNAO85] has been needed for showing
how to construct an embedding of a graph that is found planar.

A further interesting algorithm [dOR06, dF08a, Bra09] is based on a characterization
given by de Fraysseix and Rosenstiehl [dR82, dR85] in turn based on intuitions of Liu and
Wu [Wu74, Ros80, Liu88, Liu89, Xu89]. For a long time, the algorithm has not been fully
described in the literature but had a very efficient implementation in the Pigale software
library [dO02].

However, although the planarity problem has been carefully studied in the above cited
literature, the story of the planarity testing algorithms enumerates several more recent
contributions. The motivations behind such relatively new papers are twofold. On one
side, even if the known algorithms are combinatorially elegant, they are quite difficult to
understand and to implement. On the other side, the researchers are interested in deepening
the relationships between planarity and Depth First Search (DFS). Such relationships are
clearly strong but, probably, up to now, not completely understood.

Two recent DFS-based planarity testing algorithms, whose similarities were stressed
in [Tho99], are those presented by Shih and Hsu [SH93, SH99, Hsu03] and by Boyer and
Myrvold [BM99, BM04].

The Shih-Hsu algorithm replaces biconnected portions of the graph with single nodes,
called C-nodes, whose embedding is fixed.

The Boyer and Myrvold algorithm represents embedded biconnected portions of the graph
with a data structure that allows the embeddings to be “flipped” in constant time.

1.5 Common Algorithmic Techniques and Tools

In this section, we introduce some definitions and common techniques used by the planarity
testing algorithms. The most important technique, common to almost all the algorithms,
is Depth First Search, or DFS. DFS is a method for visiting all the vertices of a graph G. It
starts from an arbitrarily chosen vertex of G and continues moving from the current vertex
to an adjacent one, as long as unexplored neighbors are found. When the current vertex
has no unexplored neighbors, the traversal backtracks to the first vertex with an unexplored
adjacent vertex.

1.6. CYCLE-BASED ALGORITHMS 11

9

6 7 10 11

1

2

3 8

4 5

Figure 1.4 A DFS traversal of a graph. Thick lines represent the tree edges, while the
back edges are drawn with dashed lines. Each vertex is identified with its DFS index.

The edges by which DFS discovers new vertices of G form a spanning tree T of G, called
Palm Tree, or DFS Tree. The root of T is the vertex at which the traversal started. The
edges of T are called tree edges, while the remaining edges of G are called back edges (or
co-tree edges).

After performing a DFS traversal, each vertex v of G can be associated with a DFS index ,
DFS(v), that is, the order in which v was reached during the DFS visit. The root of T
has index one. For a tree edge (u, v), we have that DFS(u) < DFS(v). On the contrary,
a back edge is oriented from the end vertex with higher DFS index to the end vertex with
lower DFS index. An example DFS is shown in Figure 1.4.

For each vertex v of G, we can also define two sets of edges, called Bin(v) and Bout(v).
These sets contain, respectively, the back edges entering and exiting v. Note that each back
edge in Bin(v) connects v to a descendant in the DFS tree, while each back edge in Bout(v)
connects v to an ancestor. Given a tree edge e = (u, v), its returning edges are those back
edges that from a descendant of v (included v itself) go to an ancestor of u different from u
itself. At last, the lowpoint of a vertex v, denoted by lowpt(v), is the lowest DFS index of
an ancestor of v reachable through a back edge from a descendant of v. Analogously, the
highpoint of a vertex v, denoted by highpt(v), is the highest DFS index of an ancestor of v
reachable through a back edge from a descendant of v.

1.6 Cycle-Based Algorithms

The shared foundation of all algorithms in this section is an intuitive observation formalized
in the Jordan curve theorem: every simple closed curve divides the plane into two connected
regions, and hence there is no way to connect two points in both regions without crossing
that curve.

Acyclic (undirected) graphs are forests and therefore planar. If a graph does contain a
cycle, that cycle yields a simple closed curve in any planar drawing of it. Consequently,
each of the remaining connected parts of the graph needs to be drawn entirely in one of the
two connected regions bounded by the cycle. Deciding whether this is possible, and which
region to choose, is the essence of planarity testing and embedding, respectively.

It will take three major steps to arrive at simple linear-time algorithms based on this
observation. The first step consists in formalizing the approach in a recursive algorithm,
the second step yields a linear-time realization of the algorithm, and the third step simplifies
the second while adding a corresponding combinatorial characterization.

12 CHAPTER 1. PLANARITY TESTING AND EMBEDDING

C

3

1

4

5

6
8

9

7

2

Figure 1.5 A biconnected graph G and a cycle C. The edges of C are drawn dashed.

C

1
S

3

1

4

5

6

2

S2

C

3

1

4

5

6
7

2

S3

C

3

1

4

5

6
8

2

S4

C

3

1

4

5

6

2

9

(a) (b) (c) (d)

Figure 1.6 The four segments of graph G of Figure 1.5 separated by cycle C.

1.6.1 Adding Segments: The Auslander-Parter Algorithm

Algorithms based on the above cycle criterion were first proposed in [AP61] (see also [Gol63,
Bad64, DETT99]).

To introduce the approach formally, consider a simple cycle C in a biconnected graph G.
Recall that a graph is planar if and only if its biconnected components are, and that every
edge of a biconnected graph is contained in at least one cycle. Each such cycle C yields a
collection of connected, edge-induced subgraphs Si, i = 1, . . . , k as follows. Either Si is an
edge that connects two vertices of C that are not consecutive (i.e., a chord), or Si is induced
by the edges of a connected component of G \ C together with the edges connecting that
component to C. Each Si is called a segment and, because of biconnectivity, contains at
least two vertices of C, referred to as the attachments of Si. Note that vertices of C may
be attachments of any number of segments. Figure 1.5 shows a biconnected graph G and a
cycle C. The segments separated by C are depicted in Figure 1.6

A cycle C of G is said to be separating if it has at least two segments, while it is called
non-separating otherwise. Of course, if G is a cycle, then C has no segments and is non-
separating. In order to recur on subgraphs, the Auslander-Parter algorithm needs to
pick a separating cycle.

LEMMA 1.1 [DETT99] Let G be a biconnected graph, let C be a non-separating cycle
of G, and let S be its only segment. If S is not a path, then G has a separating cycle C ′

consisting of a subpath of C plus a path γ of S between two attachments.

Proof: Let u and v be two attachments of S that are consecutive in the circular ordering
of C, let α be a subpath of C between u and v that does not contain any other attachment
of S to C, and let β be the subpath of C between u and v different from α (see Figure 1.7
for an example). Since S is connected, there is a path γ in S between u and v. Let C ′

be the cycle obtained from C by replacing α with γ. We have that α is a segment of G
with respect to C ′. If S is not a path, let e be an edge of S not in γ. There is a segment

1.6. CYCLE-BASED ALGORITHMS 13

C

u

v
α

γ

S
3

1

4

5

6

2

97

8

S1

S2

u

v

C’

3

1

4

5

6

2

97

8

(a) (b)

Figure 1.7 (a) A non-separating cycle C whose single segment S is not a path. Replacing
subpath α with subpath γ as described in the proof of Lemma 1.1 yields a separating
cycle C ′.

S1 S2

S3 S4

S2

3

1S

S S4

S3

S1

S2

S4

C

3

1

4

5

27

6

9
8

(a) (b) (c)

Figure 1.8 (a) The interlacement graph for the segments induced on graph G by the
cycle C of Figure 1.5. (b) A possible bi-coloring of the interlacement graph. (c) The
corresponding embedding choices for the segments of G, where segments colored black are
placed inside C.

of C ′ distinct from α containing e. Therefore, if S is not a path, then C ′ has at least two
segments and is thus a separating cycle of G. ✷

We have already argued that segments must be drawn entirely in one of the two regions
created by the drawing of C. Two segments are said to be compatible, if they can be
drawn in the same region of C, and conflicting otherwise. The following lemma shows that
compatibility has a simple characterization.

LEMMA 1.2 Two segments are compatible, if and only if their attachments do not in-
terleave.

The interlacement graph of the segments ofG with respect to C is the graph whose vertices
are the segments of G and whose edges are the pairs of interlacing segments. Figure 1.8(a)
shows the interlacement graph for graph G and cycle C of Figure 1.5. If there are more
than two pairwise incompatible segments, the graph is not planar, because there are only
two regions in which they can be drawn. If G is planar, then the interlacement graph is
bipartite and two-colorable, each color corresponding to one side of C (see Figures 1.8(b)
and 1.8(c)). We can recursively check the planarity of all subgraphs obtained from the
union of a segment Si and C.

14 CHAPTER 1. PLANARITY TESTING AND EMBEDDING

The Auslander-Parter algorithm is based on the following intuitive recursive charac-
terization of planarity for biconnected graphs.

Theorem 1.1 [DETT99] A biconnected graph G with a cycle C is planar if and only if
the following two conditions hold:

• The interlacement graph of the segments of G with respect to C is bipartite.

• For each segment S of G with respect to C, the graph obtained by adding S to C
is planar.

Proof: If the graph is planar, it is easy to see that the two conditions hold by considering
a planar drawing of it. If the two conditions hold, the proof is by construction and is based
on the fact that compatible segments do not interleave (Lemma 1.2) and, hence, can be
planarly arranged on the same side of C. ✷

The algorithm has three cases:

Trivial case. Graph G is a single cycle C. This case can only occur at the beginning
of the computation and terminates it.

Base case. Cycle C separates a single segment, which is a path. This terminates the
current branch of the computation (there will be no recursion).

Recursive case. A separating cycle C can be found in G. If the interlacement graph
is not bipartite, the algorithm terminates with a non-planarity. Otherwise, re-
cursion is needed on the subgraphs composed by C and each segment.

Here it is not necessary to describe this algorithm in more detail, because, in fact, the
subsequent ones are instantiations of this rather generic approach.

It can be shown that the number of recursions is O(n) and that the interlacement graph
has size O(n2), yielding an O(n3) time algorithm. Also, it is worth mentioning that for
a graph that turns out to be planar, the embedding is constructed bottom-up, where pla-
nar embeddings may have to be flipped, depending on which region they are placed in.
There is an interesting alternative approach presented by Demoucron, Malgrange, and Per-
tuiset [DMP64]. Instead of recursively testing segments for planarity, they start from a fixed
embedding of one cycle, and incrementally add only a path connecting two attachments of
a segment into a face of the current embedding. This approach requires a careful selection
of (facial) cycles and paths and yields a quadratic-time algorithm but is the only algorithm
known to us that does not require alterations of preliminary embeddings.

1.6.2 Adding Paths: The Hopcroft-Tarjan Algorithm

The relative inefficiency of recursively testing augmented segments for planarity is caused
by a lack of control over the instances obtained when selecting a cycle.
By exploiting the special structure of DFS trees, Hopcroft and Tarjan [HT74] (see also [Deo76,

RND77, Eve79, Wil80]) were able to serialize the combination of trivially planar segments
(namely, paths) in a bottom-up fashion.

Let us start from a spine cycle, i.e., a fundamental cycle consisting of a path of tree
edges that start at the root of the DFS tree together with a single back edge returning
to the root. Call the subgraph consisting of only the spine cycle G0. Next, segments are
added recursively, one path at a time, which is why the algorithm is often referred to as the
path-addition approach.

To explain the order in which paths are selected, consider the subgraph Gi consisting of
the spine cycle and the first i paths, and an edge e that is incident to but not contained in Gi.

1.6. CYCLE-BASED ALGORITHMS 15

Define the segment S(e) of e to be the inclusion-maximal connected subgraph containing
e, in which no vertex of Gi has degree larger than one. Moreover, define the vertex with
the lowest DFS number in S(e) to be the lowpoint of the segment. Since G is biconnected,
S(e) contains at least two vertices of Gi, which we call attachments as well. By the order
in which paths are inserted, the lowpoint of S(e) will always be an attachment.

Now assume that the DFS tree was re-built to determine lowpoints and biconnected
components. When exploring the tree once again, but this time by traversing edges with
lower lowpoints first, we are effectively performing a recursive traversal of segments in
which segments with lower lowpoints are traversed first. This order is crucially important
for our ability to test efficiently whether segments are conflicting, because it ensures that the
attachments of a segment are visited in order of non-decreasing lowpoints. We can therefore
place lowpoints on a stack and remove them from the top of the stack during backtracking,
thus maintaining in the stack all attachments in the order in which they appear in the lower
part of the segment-defining cycle not yet backtracked over. Recall that two segments are
compatible if their attachments do not interleave.

Again, we do not go into further details, because the approach is further simplified below.
We just note that the algorithm can actually be implemented to run in linear time, but
that this is quite difficult and that it took many years until this test was complemented by
an embedding phase [MM96] (which runs in linear time).

Part of the difficulty is in the absence of a characterization of planarity that is closely
tied to the workings of the algorithm.

1.6.3 Adding Edges: The de Fraysseix-Ossona de Mendez-Rosenstiehl Al-
gorithm

While we have argued that the test of Hopcroft and Tarjan implements that of Auslander
and Parter by recursively building up segments one path at a time, it turns out that the
original approach can be further simplified by interpreting it on an even more detailed level,
adding one edge at a time.

This does not only simplify the algorithm, it also yields a characterization of planarity that
provides a less procedural proof of correctness and a straightforward embedding. Therefore,
following the approach of [Bra09], we first recall the characterization and then revisit the
algorithm.

Consider a connected undirected graph which needs not to be biconnected, and let G =
(V, T ⊎ B) be the directed graph obtained from a DFS, where T is the set of tree edges
and B the set of back edges. We say that G is a DFS-orientation of the original graph.
Note that this is not a procedural definition, since such an orientation is characterized by
consisting of a rooted spanning tree such that each non-tree edge defines a directed cycle.
As each back edge returns to an ancestor of its source, it implicitly defines a cycle, which
is called fundamental cycle. A back edge (u, v) is a return edge for each tree edge of its
fundamental cycle, with the exception of the first tree edge exiting v.

DEFINITION 1.1 [dOR06] Let G = (V, T ⊎ B) be a DFS-oriented graph. A partition
B = L⊎R of its back edges into two classes, referred to as left and right, is called left-right
partition, or LR partition for short, if for every vertex v with incoming tree edge e and
outgoing edges e1, e2

• all return edges of e1 ending strictly higher than lowpt(e2) belong to one class
and

16 CHAPTER 1. PLANARITY TESTING AND EMBEDDING

• all return edges of e2 ending strictly higher than lowpt(e1) belong to the other
class.

Intuitively, the partition of the back edges into classes L and R corresponds to orienting
the fundamental cycles in such a way that those closed by back edges in L are counterclock-
wise while those closed by back edges in R are clockwise.

Theorem 1.2 A graph is planar if and only if it admits an LR partition.

Necessity of the condition of Theorem 1.2 is straightforward: given a DFS tree and a
planar embedding of the graph it suffices to assign each back edge to the classes L or
R, depending on whether the fundamental cycle it closes is counterclockwise or clockwise,
respectively. Sufficiency is shown by constructing a planar embedding from a given LR
partition. First, observe that in an LR partition it can be assumed that all return edges
from a tree edge e that return to lowpt(e) are on the same side. Such a LR partition is
called aligned . If a partition is not aligned, an equivalent aligned partition can be found.
In order to obtain a planar embedding, the LR partition is extended to cover also outgoing

tree edges and, for each vertex v, a linear nesting order is defined on its exiting tree edges.
This order contains both right and left outgoing edges of v mixed together: restricted to
the right outgoing tree edges it gives their clockwise order around v and restricted to the
left outgoing tree edges it gives their counterclockwise order around v. The final embedding
for each vertex v is obtained by suitably interleaving outgoing tree edges with back edges
entering v.

The extension of the LR partition to tree edges is straightforward. If a tree edge has
some return edges (i.e., its source is neither the root nor a cut vertex), it is assigned to the
same side as one of its return edges ending at the highest return point. Otherwise, the side
is arbitrary.

To determine the linear nesting order for tree edges outgoing v, suppose first that all back
edges belong to R and consider a fork consisting of tree edge e = (u, v) and outgoing tree
edges e1 and e2 exiting v. If both e1 and e2 have some return edges, v is a branching point
of at least two overlapping fundamental cycles sharing e. Since both cycles are clockwise
(all edges belong to R), they must be properly nested in order to avoid edge crossings. As
the root of the DFS tree is assumed to be on the outer face, we have to put e2 clockwise
after e1 (i.e., inside the cycle defined by it) if and only if the lowpoint of e1 is strictly lower
than that of e2. The same holds if both have the same lowpoint but only e2 is chordal, i.e.,
has another return point above it. On the contrary, if both L and R are not empty, it can
happen that both e1 and e2 are chordal. In this case the tie is broken arbitrarily, because
in any planar embedding these two edges must be on different sides.

Let e = (v, w) be a tree edge. We denote by L(e) (R(e), respectively) the sequence
of incoming back edges entering v from descendants of w ordered in such a way that if
b1 = (x1, v) and b2 = (x2, v) are two such back edges, and if (z, x), (x, y1), and (x, y2) is the
fork of the two cycles closed by b1 and b2, then b1 comes before b2 in L(e) (R(e), respectively)
if and only if (x, y1) comes before (x, y2) ((x, y1) comes after (x, y2), respectively) in the
adjacency list of x.

DEFINITION 1.2 Given an LR partition and a vertex v, let eL1 , . . . , e
L
l be the left

outgoing tree edges of v, and eR1 , . . . , e
R
r its right outgoing tree edges. If v is not the root,

let u be its parent. The clockwise left-right ordering, or LR ordering for short, of the edges
around v is defined as follows:

(u, v), L(eLl), e
L
l , R(e

L
l), . . . , L(e

L
1), e

L
1 , R(e

L
1), L(e

R
1), e

R
1 , R(e

R
1), . . . , L(e

R
r), e

R
r , R(e

R
r),

1.7. VERTEX ADDITION ALGORITHMS 17

where (u, v) is absent if v is the root.

The following lemma shows the sufficiency of the left-right planarity criterion of Theo-
rem 1.2 (the proof by contradiction can be found in [Bra09]).

LEMMA 1.3 Given an LR partition, its LR ordering yields a planar embedding.

Hence, the search for a planar embedding of the input graph boils down to the search
for an LR partition of its back edges. Fortunately, from the definition of LR partition
directly come two constraints that have to be satisfied by back edges in L and R classes.
Let b1 = (u1, v1) and b2 = (u2, v2) be two back edges with overlapping fundamental cycles
and let (u, v), (v, w1), (v, w2) be their fork.

1. b1 and b2 belong to different classes if lowpt(w2) < v1 and lowpt(w1) < v2.

2. b1 and b2 belong to the same class if there is an edge e′ = (x, y), with x ∈
C(b1) ∩ C(b2) and y 6∈ C(b1) ∩ C(b2) such that lowpt(y) < min{v1, v2}.

Of course, if a pair of back edges is subject to both the constraints above, no LR partition
can exist and hence the graph is non-planar. By exploiting the constraints a quadratic pla-
narity test and embedding algorithm can be found immediately. Namely, build a constraint
graph, analogous to the interlacement graph of the Auslander-Parter algorithm, where
each back edge is a vertex and each constraint is an edge, labeled “−1” if the two back
edges have to belong to different classes and labeled “+1” if they have to belong to the
same class. After contracting “+1” edges, test if the constraint graph is bipartite.
In order to transform this quadratic-time algorithm into a linear one, the constraint

graph cannot be explicitly built and the tentative assignment of back edges to the L and
R classes may be changed several times during the computation, which is structured as
a further traversal of the DFS tree. Details of the linear-time algorithm can be found
in [dOR06, dF08a, Bra09].

1.7 Vertex Addition Algorithms

Given a planar drawing Γ of a graph G(V,E), we could delete one vertex at a time from Γ
to obtain a sequence of smaller planar drawings ending with a single isolated vertex. The
intuition that this process could be suitably reversed yields the so-called “vertex addition”
algorithms.

We classify in this family the Lempel-Even-Cederbaum, the Shih-Hsu, and theBoyer-

Myrvold algorithms, although we know that some authors proposed a different classifica-
tion for their approach. The similarities between the Shih-Hsu and the Boyer-Myrvold

algorithms were already pointed out in [Tho99], while a common view encompassing all the
three algorithms was envisaged by Haeupler and Tarjan in [HT08].
Vertex addition algorithms start from an initial graph G1 composed by one isolated

vertex v1. At each step i = 2, . . . n, a new vertex vi is added to the graph and the subgraph
Gi(Vi, Ei), induced by the current vertices Vi = {v1, . . . , vi} ⊆ V , is considered. Two kinds
of operations are performed: first, Gi is checked for planarity; second, some data structures
are updated in order to allow analogous checks to be efficiently performed at step i+ 1.

A key feature, common to this family of algorithms, is that the order in which the vertices
are added is not arbitrary. Let Gi(V i, Ei) be the subgraph of G induced by the vertices
V i = V − Vi that have still to be added to the graph. All the algorithms based on vertex

18 CHAPTER 1. PLANARITY TESTING AND EMBEDDING

v1 v3

v4
v5

v6

v7

v8

v2

Gb

Ga

f
1

f
2

f
3

f
4 f

5

f
6

f
7

v1 v3

v4
v5

v2

f
1

f
2

Ga

f
*

(a) (b)

Figure 1.9 Properties of Lemma 1.4. (a) The embedding Γ where the connected subgraph
Gb is highlighted. (b) The embedding Γa of Ga. By Property (α), v6, v7, and v8 fall into
f∗. By Property (β), f1 and f2 are also faces of Γ. By Property (γ), the cutvertex v2 is
on f∗.

addition require that Gi is connected for i = 1, . . . , n, that is, the vertex addition order is
a leaf-to-root order for some spanning tree of G. Lempel-Even-Cederbaum’s algorithm,
for example, requires that the vertices are added in the order given by an st-numbering;
in the Shih-Hsu and in the Boyer-Myrvold algorithms, the order is that of a reverse
DFS traversal of the graph. The importance of this requirement is stated by the following
lemma.

LEMMA 1.4 Let G(V,E) be a planar, connected graph and let {Va, Vb} be a bipartition
of the vertices in V such that the graph Gb(Vb, Eb) induced by Vb is connected. Consider
any planar embedding Γ of G and denote by Γa the planar embedding Γ restricted to Ga.
The following properties hold:

(α) Vertices of Vb are on the same face f∗ of Γa.

(β) Each face f of Γa, with f 6= f∗, is also a face of Γ.

(γ) If G is biconnected, cutvertices of Ga are also incident to face f∗ of Γa.

Proof: Property (α) trivially descends from the fact that Gb is connected and Γ is a
planar embedding of G. Property (β) is also trivial. Suppose for a contradiction that
f 6= f∗ is a face of Γa but not a face of Γ. Observe that f is a cycle of Γ and, since it
is not a face of Γ, it contains at least one edge e = (u, v) of Γ that is not an edge of Γa.
If both u and v belong to Va, we have a contradiction as e belongs to the graph induced
by Va but it is not in Γa. Otherwise, if one among u and v is not in Va, we have again a
contradiction since Property (α) ensures that f = f∗. This proves Property (β). Suppose
that G is biconnected. If v is a cutvertex of Ga, then there is a face f of Γa that is incident
at least two times on v. Since v is not a cutvertex of Γ, face f is a face of Γa but is not a
face of Γ, and Property (β) ensures that f∗ is the only face of Γa that has this property. ✷

An example that shows the three properties of Lemma 1.4 is depicted in Figure 1.9.
Property (α) was also proved in [Eve79, Lemma 8.10] for the special case of connected
subgraphs induced by an st-numbering.

Let ψ be a function ψ : V → {1, . . . , n} that assigns a different index to each vertex
of G. We say that ψ is a proper numbering of G if for each i we have that the subgraph
Gi(V i, Ei) induced by V i = {v | ψ(v) > i} is connected. In order to simplify the notation

1.7. VERTEX ADDITION ALGORITHMS 19

in the remaining part of this chapter, we denote by vi the vertex for which ψ(vi) = i.
Vertex addition algorithms require that vertices are considered in the order imposed by a
proper numbering, hence exploiting at each step the properties of Lemma 1.4. Namely,
Property (α) guarantees that vertices and edges can be added to a single face f∗ of Γi,
which can be assumed to be the outer face. Property (β) implies that once a vertex or edge
is closed inside an internal face of Γi it does not need to be considered again (this is a key
point to ensure linearity). Finally, Property (γ) justifies the usual assumption, common to
most vertex addition algorithms, that G is biconnected.

Properties (α) and (β) lead to the following lemma.

LEMMA 1.5 Let ψ be any proper numbering of a planar, connected graph G. Denote by
Gi the subgraph of G induced by vertices in Vi = {v | ψ(v) ≤ i}. There exists a sequence
of planar embeddings Γi of Gi, with i = 1, . . . , n, such that, for i = 1, . . . , n− 1, all internal
faces of Γi are also internal faces of Γi+1.

Proof: Let Γn be a planar drawing of G with vn on the external face and let Γi, with
i = 1, . . . , n − 1, be the embedding of Gi obtained from Γn by removing the vertices vj ,
with j = i + 1, . . . , n. Vertex vn is on the external face of Γn by definition. Since Gi is
connected, vertex vi is also on the external face of Γi for any i = n− 1, n− 2, . . . , 1. Also,
Va = {v1, . . . , vi−1} and Vb = {vi} is a bipartition of the vertices of Gi of which Γi is a planar
embedding and Gb(Vb, ∅) is trivially connected. Lemma 1.4 applies and by Property (β)
we have that all the faces of Γi−1 with the exception of f∗ are also faces of Γi. Since the
external face of Γi−1 is not a face of Γi, any other internal face f of Γi−1 is also a face of
Γi. Finally, as the external face of Γi contains vi, which does not belong to Gi−1, face f is
an internal face of Γi. ✷

Provided that G is planar, Lemma 1.5 can be exploited for devising an incremental
planarity algorithm that, starting from Γ1, i.e., the trivial embedding of the isolated vertex
v1, computes Γi, with i = 2, . . . , n, by adding at each step a vertex vi on the outer face of
Γi−1, until an embedding Γn of the whole graph is produced. Also, Lemma 1.4 provides
an indication of what are the properties that these Γi should have. Namely, call outer
vertices of Gi the cutvertices of Gi and the vertices of Gi adjacent to vi+1, vi+2, . . . , vn.
Properties (α) and (γ) of Lemma 1.4 state that if G is biconnected, which can be assumed,
each Γi necessarily has its outer vertices on the outer face.

Still, computing the sequence of Γi, with i = 1, . . . , n, is not an easy task. First, Gi may
be not connected. Second, it is easy to see that not any embedding of Gi with its outer
vertices on the external face is equivalent to any other. In fact, given a planar graph G,
there may exist a planar embedding Γi of Gi that has the outer vertices of Gi on the external
face but is not obtainable from some planar embedding of G by vertex deletion (Figure 1.10
provides an example).

Hence, although we know that, starting from any proper numbering ψ of G, the planarity
of G implies the existence of a sequence of planar embeddings Γi satisfying the conditions of
Lemma 1.5, we do not know how to find such a sequence, and choosing a wrong embedding
Γi along the way would lead to a failure of the whole process even if G is planar. The
following lemma comes in help.

LEMMA 1.6 In any planar embedding of a biconnected graphG where vertices v1, v2, . . . , vk
share the same face, they appear in the same circular order up to a reversal.

20 CHAPTER 1. PLANARITY TESTING AND EMBEDDING

v1 v2

v3

v4

v8

v7

v5

v6

G6 G6

v1 v2

v5 v4

v3

v6

v

v

7

8

(a) (b)

Figure 1.10 A planar graph G with subgraph G6 highlighted. (a) and (b) show two
planar embeddings of G6, both with the outer vertices of G6 on the external face. The
embedding in (a) is compatible with a planar drawing of G while the embedding in (b) is
not.

v7

v5 v1

v6

v9

v8

v2

v3

v4

v
f’

v1

v9

v4

v8 v2

v7

v3

v

v5

v6

f"

v5

v6

v

v1

v2

v3

v4

(a) (b) (c)

Figure 1.11 (a), (b) Two planar embeddings of a biconnected graph where vertices
v1, v2, v3, and v4 (highlighted in the figure) share the same face. Vertex v is added as
in the proof of Lemma 1.6.

Proof: The statement is trivial for k = 2, 3, since any circular sequence of 2 or 3 labels is
equal to any other up to a reversal. Consider two planar embeddings Γ′ and Γ′′ of G such
that vertices v1, v2, . . . , vk, with k ≥ 4, share the face f ′ in Γ′ and f ′′ in Γ′′ (see Figure 1.11(a)
and 1.11(b) for an example). The proof is based on the trivial observation that a dummy
vertex v can be inserted into both f ′ and f ′′ and planarly connected to v1, v2, . . . , vk. Since
G is biconnected, the cycle face f ′ is simple (see Figure 1.11(a)). Hence, the subgraph
composed by the edges and vertices of f ′ and v is a wheel (dashed lines in Figs. 1.11(a),
1.11(b), and 1.11(c)) and admits a unique planar embedding up to a reversal. It follows
that the circular order of the edges around v is the same in Γ′ and in Γ′′ up to a reversal.
✷

Lemma 1.6 applied to each block ofGi is stated in [Eve79, Lemma 8.12] for the special case
of subgraphs induced by st-numberings. When iteratively computing a planar embedding
for G, the practical use of Lemma 1.6 is that, although in general no definitive choice can
be made on the embedding of Gi, something can be said about the embedding of its blocks.
Namely, apart from a possible flip, an embedding for them can be computed that is always
compatible with a planar embedding of the whole graph, provided it exists. Surprisingly,
this is the only thing that can be safely computed for the embedding of Gi. All the more
so, this little amount of information suffices for computing analogous embeddings for the
blocks of Gi+1, and, since Gn = G is biconnected, at the last step a planar embedding Γn of

1.7. VERTEX ADDITION ALGORITHMS 21

the whole graph is obtained. Finally, the following lemma shows that if the process stops,
the graph is not planar.

LEMMA 1.7 Let G be a graph and let ψ be any proper numbering of G. Denote by Gi,
with i = 1, . . . , n the subgraph of G induced by vertices in Vi = {v | ψ(v) ≤ i} and by
B1

i , B
2
i , . . . , B

bi
i the bi blocks of Gi. For a given k, 1 ≤ k ≤ n− 1, let Γ(Bj

k), 1 ≤ j ≤ bk, be

arbitrary embeddings of Bj
k with the outer vertices of Gk on their outer faces. If the blocks

of Gk+1 cannot be embedded such that the outer vertices of Gk+1 are on the outer face and
Γ(Bj

k), 1 ≤ j ≤ bk, are preserved up to a flip, then G is not planar.

Proof: Suppose for a contradiction that G is planar and that there is no planar embedding
for all its blocks Bj

k+1
, 1 ≤ j ≤ bk, such that the outer vertices of Gk+1 are on the outer

face and the blocks of Gk are embedded, up to a flip, as in Γ(Bj
k), 1 ≤ j ≤ bk. Since G

is planar, by Lemma 1.5, there is a pair of planar drawings Γ∗

k of Gk and Γ∗

k+1
of Gk+1,

both with their outer vertices on the outer face. By Lemma 1.6 the outer vertices of each
block of Gk appear in the same order, up to a reversal, both in Γ(Bj

k), 1 ≤ j ≤ bk, and in

Γ∗

k+1
. Hence, all embeddings Γ(Bj

k) can be inserted into Γ∗

k+1
yielding a planar embedding

for the blocks Bj
k+1

, 1 ≤ j ≤ bk, such that the outer vertices of Gk+1 are on the outer face:
a contradiction. ✷

Lemma 1.7 proves the soundness of the vertex addition approach. In fact, it shows that
iteratively building a planar embedding of the input graphG is not only a sufficient condition
for the planarity of G, which is obvious, but also a necessary condition, as G is not planar
if one step of the iterative process cannot be accomplished. Usually, in the vertex addition
literature, the non-planarity of the input graph in case of failure of the proposed algorithms
is proved by a complex case analysis, spread all over the description of the algorithm steps,
aimed at identifying a subgraph isomorphic to K5 or K3,3 for each possible cause of failure.
Instead, Lemma 1.7 provides a direct proof of the correctness of the approach that avoids
the use of Kuratowski’s theorem, as claimed in [HT08].

Observe that, since the internal faces of the blocks are preserved in the final embedding
of G, at each iterative step of the vertex addition algorithms the embedded blocks may be
flipped and composed together, but they are never inserted one into the other. Hence, all
vertex addition algorithms make use of suitable data structures to describe the subgraph
Gi that has been explored so far and in particular the embedding of its blocks. These
data structures allow for permuting the blocks around the cutvertices and for flipping the
blocks in constant time. In the Lempel-Even-Cederbaum algorithm, the data structure
is Booth and Lueker’s PQ-tree. The Shih-Hsu algorithm uses PC-trees. The Boyer-

Myrvold algorithm uses the bicomp data structure. The purpose of these data structures
is analogous: they allow us to flip a portion of the graph (a block) in constant time; they
allow us to permute (or to leave undecided) the order of the blocks around a cutvertex until
the blocks are merged together.

1.7.1 The Lempel-Even-Cederbaum Algorithm

The Lempel-Even-Cederbaum algorithm was the first one to exploit the vertex addition
paradigm [LEC67] (see also [Eve79, BFNd04]). It is no surprise, therefore, that in order
to ease the computation several simplifying assumptions are made. First, but this is usual,
the input graph is assumed to be biconnected. Second, the description of the algorithm
in [LEC67] only checks the planarity of the input graph, without actually computing a planar

22 CHAPTER 1. PLANARITY TESTING AND EMBEDDING

embedding if it exists. This gap was closed by Chiba, Nishizeki, Abe, and Ozawa [CNAO85]
some decades later. Third, a proper numbering of the vertices of G is required that also
ensures that Gi, the graph induced by Vi, is connected. Namely, given any edge (s, t) of
a biconnected graph G(V,E) with n vertices an st-numbering of G is a function ψ : V →
{1, . . . , n} that assigns to each vertex a different index, such that: (i) ψ(s) = 1; (ii) ψ(t) = n;
and (iii) any vertex except s and t is adjacent both to a lower-numbered and to a higher-
numbered vertex. This strong constraint, which implies that both the st-numbering and its
reversal are proper numberings, fostered the search for a linear-time algorithm to actually
compute an st-numbering of a biconnected graph. Such an algorithm was not known when
the approach was introduced (the time complexity of the algorithm used in [LEC67] is
O(nm) [ET76]), and was finally found in [ET76].

Working of the algorithm

A bush is a single-source connected planar directed graph that admits a planar embedding,
called a bush form, where all vertices of degree one are on the outer face.

Let G be a biconnected graph, let ψ be an st-numbering of G, and let Gi be the graph
induced by vertices {v1, . . . , vi}. Graph G can be assumed to be directed, where each edge
is oriented from the vertex with the lower value to the vertex with higher value of ψ (see
Figure 1.12(a) for an example). Denote by Bi the graph Gi augmented with the edges of G
incident to the outer vertices ofGi. These edges are called virtual edges , while the leaves that
they introduce in Bi are virtual vertices . Virtual vertices are labeled with the same indexes
they have in G, and multiple instances of the same vertex are kept separate in Bi. Since
Gi is determined by an st-numbering, Bi is connected. Observe that a planar embedding
of Bi with the virtual vertices on the outer face corresponds to a planar embedding of Gi

with the outer vertices on the outer face. Hence, if G is planar, by Lemma 1.5 Bi is a bush.
See Figure 1.12 for an example of a graph Gi and the corresponding bush Bi. A bush form
ΓBi

is usually represented by drawing all the virtual vertices on the same horizontal line
(dashed line of Figure 1.12(b)).

v1

v2

v4

v5

v3

v6 v1

v2

v3

v6 v5 v5 v4v4 v6

v4 v6v6 v5 v5 v4()])()(+[

(a) (b)

Figure 1.12 (a) A directed planar graph. Labels correspond to an st-numbering of the
vertices. The highlighted area is the subgraph G3 induced by {v1, v2, v3}. Observe that,
due to the st-numbering, both G3 and G−G3 are connected. (b) The bush form B3.

Bush form ΓBi
contains a planar embedding of all biconnected components of Gi, and

Lemma 1.7 ensures that such embeddings can be kept fixed up to a flip when searching for
a planar drawing of G.

1.7. VERTEX ADDITION ALGORITHMS 23

The strategy of the algorithm is that of focusing on the virtual vertices of Bi and of
encoding the linear order that they have in ΓBi

into a suitable algebraic expression ε(ΓBi
)

that implicitly represents all their permutations compatible with a planar embedding of Bi

with virtual vertices on the outer face.

The definition of ε(ΓBi
) can be inductively provided as follows. Let v be the source of ΓB.

If ΓB is a trivial bush form consisting of a single directed edge (v, u) then ε(ΓB) = u. Other-
wise, if v is a cutvertex splitting ΓB into bush forms b1, b2, . . . , bk, let ε(b1), ε(b2), . . . , ε(bk)
be the corresponding expressions for b1, b2, . . . , bk. The algebraic expression associated with
ΓB is ε(ΓB) = (ε(b1) ◦ ε(b2) ◦ . . . ◦ ε(bk)). Observe that any permutation of b1, b2, . . . , bk is
compatible with a planar embedding of B. Finally, if v is not a cut vertex of ΓB, consider
the biconnected component b of ΓB including v and let u1, u2, . . . , uk be the cut vertices of
B belonging to b. Observe that each subgraph of ΓB routed at ui, with i = 1, . . . , k, is a
bush form bi. Let ε(b1), ε(b2), . . . , ε(bk) be the corresponding expressions for b1, b2, . . . , bk.
The algebraic expression associated with ΓB is ε(ΓB) = [ε(b1) + ε(b2) + . . . + ε(bk)]. Ob-
serve that flipping the biconnected component b corresponds to flipping the expression
[ε(bk) + ε(bk−1) + . . .+ ε(b1)].

Figure 1.13 illustrates an example of permutations and flipping in a bush form.

v1

v2

v3

v6 v5 v5 v4 v4 v6

v6v4v6 v5 v5 v4])()((+[)

v1

v5

v2

v3

v4 v5 v6 v6v4

v6v4 v5 v5v4 v6()])()(+[

(a) (b)

Figure 1.13 (a) A permutation of the bush form of Figure 1.12(b). (b) A flip of the bush
form of Figure 1.12(b).

Given a bush form ΓBi
, the reduction operation changes the embedding of Bi, by per-

muting bush forms attached to cut vertices and by flipping biconnected components, and
produces a bush form Γ′

Bi
where all virtual vertices labeled vi+1 are consecutively disposed.

If this is not possible, then there is no way of adding vertex vi+1 to the embedding while
keeping all outer vertices of Gi−1 on the outer face, and by Lemma 1.7 the graph is not
planar. If this is possible, then a substitution operation is performed on ΓBi

, obtaining a
drawing ΓBi+1

. Namely, the virtual vertices labeled vi+1 are merged together, and for each
edge (vi+1, vj) exiting vi+1 a new virtual vertex vj is introduced and connected to vi+1.

In the original description of the Lempel-Even-Cederbaum algorithm, these opera-
tions are not actually performed. Instead, it is shown that the reduction operation on
ΓBi

corresponds to an equivalent transformation on ε(ΓBi
) that produces an algebraic ex-

pression ε(Γ′

Bi
) where all the variables vi+1 are consecutive. Analogously, the substitution

operation corresponds to the removal of the sequence of variables vi+1 which are replaced
by (vj1 ◦ vj2 ◦ . . . ◦ vjk), where vj1 , . . . , vjk are the vertices directly attached to vi+1.

24 CHAPTER 1. PLANARITY TESTING AND EMBEDDING

Data structures

The problem of efficiently identifying the flips and the permutations needed to reduce ΓBi

(or, equivalently, needed to normalize ε(ΓBi
)) is solved in [BL76], where the PQ-tree data

structure is introduced. Intuitively, a PQ-tree is a data structure corresponding to the
syntax tree of the expression ε(ΓBi

). Namely, a PQ-tree is a rooted, directed, ordered tree
with three types of nodes: P-nodes, Q-nodes, and leaves. For each ◦ operation (ǫ1◦ǫ2◦. . .◦ǫk)
in ε, the corresponding PQ-tree has a P-node with children PQ(ǫ1), . . . , PQ(ǫk). Also, for
each + operation (ǫ1 ◦ ǫ2 ◦ . . . ◦ ǫk) in ε, the corresponding PQ-tree has a Q-node with
children PQ(ǫ1), . . . , PQ(ǫk). The children of a P-node can be arbitrarily permuted, while
the order of the children of a Q-node can be reversed. In [BL76], it is shown how a bottom-
up computation starting from all leaves labeled vi+1 is sufficient to compute a sequence of
permutations and flips that consecutively disposes all vi+1 leaves. Only the smallest subtree
that contains the vi+1 leaves is traversed.

1.7.2 The Shih-Hsu Algorithm

The Shih-Hsu algorithm either constructs a planar embedding of the input graph G or fails
and outputs the information that G is not planar [SH93, SH99] (see also [Hsu01, Boy05]).
The proper numbering ψ of the vertices of G used by the Shih-Hsu algorithm is obtained
by a DFS traversal of G. Namely, vertices are considered in reverse DFS order, where
the root r of the DFS tree has ψ(r) = n. Therefore, differently from the Lempel-Even-

Cederbaum algorithm, although the graph Gi(V i, Ei) induced by V i = {v | ψ(v) > i}
is always connected, the graph Gi(Vi, Ei) induced by vertices in Vi = {v | ψ(v) ≤ i} is
not guaranteed to be connected. At step 1, graph G1 has vertex v1 only. At a generic
step i, with i = 2, . . . , n, an embedding ΓGi

is obtained from the embedding of ΓGi−1
by

adding vertex vi together with all edges connecting it to vertices with lower values of ψ.
The strategy used by the Shih-Hsu algorithm is that of characterizing those configurations
that determine a non-planarity, and by giving a recipe to build ΓGi

otherwise.

As Gi is not necessarily connected, at each step i a planar embedding of each connected
component of Gi is encoded into a data structure called PC-tree. A PC-tree T is a rooted,
ordered tree with two types of nodes: P-nodes and C-nodes. While the neighbors of a
P-node can be arbitrarily permuted, C-nodes come with a cyclic ordering of their adjacency
list, which can only be reversed. Intuitively, P-nodes represent regular nodes of an em-
bedded partial graph, while C-nodes represent biconnected components. Consider a planar
embedding of a connected component C of graph Gi such that the outer vertices of C are on
its outer face. The PC-tree T associated with C can be easily obtained from C by replacing
each biconnected component of C with a C-node connected to the outer vertices of it in the
same circular order as they appear on the border of the biconnected component. In order
to simplify the tree, each C-node representing a trivial biconnected component composed of
a single edge connecting two cutvertices vj and vk is replaced with a single edge attached to
the two P-nodes corresponding to vj and vk. Let r be the root of the connected component
C, i.e., the vertex of C with higher value of ψ. Observe that r is an outer vertex of C and
always corresponds to a P-node of its PC-tree.

The PC-trees associated with Gi represent all the planar embeddings of Gi such that each
connected component of Gi has its outer vertices on the outer face. In particular, if Gi is
connected, the correspondence between its single PC-tree T and the PQ-tree of Gi used by
the Lempel-Even-Cederbaum algorithm is apparent, since the former is obtained from
the latter by removing leaves and replacing Q-nodes with C-nodes.

1.7. VERTEX ADDITION ALGORITHMS 25

Working of the algorithm

At step 1, graph G1 only has one isolated vertex labeled v1 and its PQ-tree is a single
P-node associated with vertex v1.

At a generic step i, graph Gi−1 has been already processed and its PC-trees have been
computed. When the new vertex vi is added, all tree edges and back edges connecting vi
to Gi−1 are considered. Suppose that only a tree edge (vi, u) exits from vi. In this case,
only the PC-tree corresponding to the connected component of Gi−1 needs to be updated.
Otherwise, if vi has more than one child u1, u2, . . . , uk, then vi is a cutvertex of Gi; a new P-
node is introduced for it and suitably attached to the PC-trees of the connected components
C1, C2, . . . , Ck of Gi−1 containing u1, u2, . . . , uk, respectively, producing a single PC-tree for
the new connected component of Gi. Consider a child u of vi. The PC-tree T corresponding
to the connected component containing u can be attached to vi in a way that is independent
of the PC-trees corresponding to the other children of vi. Hence, for simplicity of description,
we will assume that vi has a single child u.
Let C be the connected component of Gi−1 containing u. If no back edge from C attaches

to vi, then the P-node introduced for vi is attached to the P-node representing r in Ti, and
step i concludes. Otherwise, suppose some vertex of C has some back edge to vi. Since
the input graph is biconnected, nodes of Ti−1 either have highpt = i or have lowpt > i, or
both. Call relevant node each node w of Ti−1 such that highpt(w) = i and lowpt(w) > i.
It is easy to see that the parent of w either is r or is a relevant node in its turn. Hence,
relevant nodes form a subtree of the PC-tree rooted at r. By leveraging the relevant nodes
subtree, it is possible to efficiently check the planarity of Gi and to compute the PC-tree
updated with the P-node for u.

Namely, call terminal nodes the leaves of the subtree of the PC-tree composed by relevant
nodes. We have the following lemma.

LEMMA 1.8 If T has more than two terminal nodes, then Gi (and hence G) is not
planar.

Therefore, if G is planar, Ti−1 has one or two terminal nodes and the relevant nodes
subtree of Ti−1 is either a path or a Y-shaped tree, respectively (see Figure 1.14).

Also, observe that an edge exiting a relevant node may be of five different types:

(i) a tree edge to another relevant node;

(ii) a back edge to vi;

(iii) a tree edge to a subtree whose back edges are all type-(ii) edges; or

(iv) a back edge to a node vj with j > i;

(v) a tree edge to a subtree whose back edges are all type-(iv) edges.

Subtrees attached to edges of type (iii) are called i-subtrees, while subtrees attached to
edges of type (v) are called i∗-subtrees. In Figure 1.14, i-subtrees are represented with black
triangles and i∗-subtrees with white triangles.

The Shih-Hsu algorithm either identifies a non-planarity or finds a planar arrangement
of the back edges to vi and the i-subtrees to produce a new C-node that represents the block
determined by the additions of the back edges to vi. The algorithm considers four main
cases, depending on whether some relevant node is a C-node, and depending on whether
Ti−1 has one or two terminal nodes.

The easiest case is when Ti−1 has exactly one terminal and all the relevant nodes are
P-nodes. In fact, in this case all i-subtrees and back edges to i can always be embedded

26 CHAPTER 1. PLANARITY TESTING AND EMBEDDING

vi

u

vi

u’

u’’

m

(a) (b)

Figure 1.14 (a) Relevant nodes of Ti−1 have one terminal. (b) Relevant nodes of Ti−1

have two terminals.

u

vi vi

u’

u’’

(a) (b)

Figure 1.15 (a) The example of Figure 1.14(a) after contraction. The double border
identifies C-nodes. (b) The example of Figure 1.14(b) after contraction.

on one side of Ti−1, and the embedded part can be replaced with a C-node, as shown in
Figure 1.15(a).

The case when Ti−1 has exactly one terminal and some relevant node is a C-node, is
analogous, with the difference that the constraints enforced by C-nodes (whose adjacency
list can only be flipped) have to be taken into account and may cause a non-planarity
whenever, no matter how they are flipped, they force one i-subtree (or back edge to vi) to
be outside the new block or one i∗-subtree (or back edge to vj , with j > i) to be inside it.

The most difficult case is when Ti−1 has two terminal nodes u′ and u′′. Let m be their
common ancestor, P be the unique path in Ti−1 from u′ to u′′, and P ′ be the path from r
to m. If all relevant nodes are P-nodes, then we have the following planarity criterion:

LEMMA 1.9 Graph Gi is planar if and only if any node internal to P ′ has edges of type
(i), (ii), or (iii).

In fact, it is easy to see that if the conditions of Lemma 1.9 are satisfied a new block can
be planarly embedded, its border being composed by path P and two paths from the two
terminal nodes to vi and containing all i-subtrees and back edges to vi. Such a block is
replaced by a C-node as shown in Figure 1.15(b). Again, if some relevant node is a C-node,

1.7. VERTEX ADDITION ALGORITHMS 27

its constraints on the embedding need to be taken into account and yield a more intricate,
although not difficult, case.

Data Structures

A tricky point of the Shih-Hsu algorithm is when a newly identified block has to be replaced
with a C-node. To understand why this operation is critical, consider that, in order to have
a linear-time algorithm, each node of the PC-tree should have a pointer to the parent node.
Such a pointer is used, for example, when, starting from the current vertex vi, its incoming
back edges are considered and i-subtrees are traversed moving from child to parent. This
operation is needed to identify the relevant node subtree and its terminals. Observe that
i∗-subtrees cannot be traversed without losing linearity. Also, even identifying them by
browsing the adjacency list of a relevant node would have the same result. If the block was
naively replaced by a C-node structure as shown in Figure 1.15 the pointers to the parent
of a possibly linear number of children would have to be updated.

Perhaps the easiest way to address this problem is that of encoding the neighborhood of C-
nodes with a strategy analogous to that used in [BM99, BM04], which allows us to efficiently
traverse the boundary of a block in parallel and flip it when needed [Hsu01, Hsu03, BFNd04].
A second approach, inspired by the analogous operation on Q-nodes of PQ-trees [LEC67],
is that of borrowing the parent pointer from sibling to sibling. The two approaches turn
out to be similar, since browsing siblings of a C-node in search for the parent pointer is
equivalent to traversing the corresponding block border [Hsu01, Hsu03].

1.7.3 The Boyer-Myrvold Algorithm

The Boyer-Myrvold algorithm [BM99, BM04] (see also [Tho99, BCPD04, HT08]) has
several features in common with the Shih-Hsu algorithm, so much so that the two have
been sometimes identified [Tho99, HT08]. The proper numbering ψ of the vertices of G used
by the Boyer-Myrvold algorithm is again a reverse DFS order. The general strategy is
that of explicitly maintaining a “flexible” planar embedding of each connected component
of Gi with the outer vertices on the outer face. This embedding is “flexible” in the sense
that each block can be flipped in constant time, whatever its size, while the permutation of
the blocks around cutvertices is left undecided. In order to achieve this, each block of Gi

is maintained separately from the others in a special structure, and the cutvertex that has
higher value of ψ in one block B, called the root of B, has a pointer to the corresponding
cutvertex in the parent block.

Working of the algorithm

The algorithm described in [BM99] was simplified in [BM04]. First, we describe the primitive
version in [BM99], which, in our opinion, is more intuitive. Second, we sketch the differences
with [BM04].

The computation starts with an initial set of blocks corresponding to the tree edges of the
DFS tree of G (see Figure 1.16). Hence, it could be argued that this is not a vertex addition
algorithm, since all vertices are in place from the first iteration. Actually, a vertex vj with
index higher than the current iteration i is ignored until iteration j is reached. Vertices are
considered in reverse DFS order, starting from v1 and ending with the root vn of the DFS
tree (see Figure 1.16(a)). If vertex vi has no incoming back edges, no operation is needed
at iteration i.

So, for example, running the algorithm on the example of Figure 1.16(b) would not
perform any operation at steps 1, 2, . . . , 8, as vertices v1, v2, . . . , v8 don’t have incoming

28 CHAPTER 1. PLANARITY TESTING AND EMBEDDING

5

9 4

8 7

6 12

3

10

11

3

4

3 3

12

10

11

4

10

9

8

9

10

7

9

7 7

6 5

(a) (b)

Figure 1.16 (a) The same DFS tree of Figure 1.4, where vertices are labeled with their
reverse DFS index. (b) The Boyer-Myrvold algorithm starts by creating a block for each
edge of the tree.

6(v ,v)10

7

9 4

3
8

7

6

5

99

10 10

4

3 3

12

10

11

4

4

3

3

9

8

6

7

5

11

10

10 10

2 1

3

9

(a) (b)

Figure 1.17 The Boyer-Myrvold algorithm on the DFS tree of Figure 1.16(a). (a)
When vertex v10 is considered the back edge (v6, v10) needs to be embedded. (b) The
embedding of back edge (v6, v10) corresponding to the choice of the red path from v6 to v10
along the borders of blocks shown in (a).

back edges. Otherwise, if vi has some incoming back edges, the strategy of the algorithm
is that of deciding how to embed them by exploring the borders of the current blocks of
Gi−1. To give an intuitive example Figure 1.17(a) represents G9. At iteration 10 vertex
v10 is considered by the algorithm and the back edge (v6, v10) needs to be embedded. In
the embedding choice shown in Figure 1.17(b), the red path inside the closed face of the
new block can be identified in Figure 1.17(a) as the red path going from v6 to v10 along
the borders of the blocks. The approach of the Boyer-Myrvold algorithm is that of first
choosing suitable paths for the back edges returning to vi and then using such paths to
close a new block and update the data structures. Hence, each iteration has two phases:
Path searching and Block embedding (in [BM99, BM04] these phases are called Walkup and
Walkdown, respectively, but the tree is drawn upside down with respect to the convention
used here).

1.7. VERTEX ADDITION ALGORITHMS 29

Figure 1.18 Properties of the admissible path to vi. The lower vertex is the currently
processed one while outer vertices of Gi are drawn black. The red path is not admissible,
as it traverses an outer vertex of Gi (a cut vertex of Gi in this example).

Let’s start from the Path searching phase. Suppose that some back edges enter vi from
vertices u1, u2, . . . , uk. For each j, with j = 1, . . . , k, the algorithm searches for a path pj
from uj to vi with the following properties:

1. Vertices and edges of pj are on the boundary of the blocks of Gi−1.

2. Each vertex of pj that is the root of a block is followed by the corresponding
cutvertex in the parent block, until vi is reached.

3. Each vertex of pj that is different from the entry point and the root of the current
block is not an outer vertex of Gi (see Figure 1.18(a)).

Also, two paths (i.e., two embedding choices) may be incompatible with each other.
Namely, let pl and pm be two paths to vi and let b be a block b traversed by them. The
following compatibility properties are enforced:

1. If pl and pm don’t share edges of b, they do not share edges in any other block
(see Figure 1.19(a)).

2. Paths pl and pm do not share edges of b if they traverse two other distinct
outer blocks, where an outer block is one containing an outer vertex of Gi (see
Figure 1.19(b)).

3. If pl and pm don’t share edges of b and the root rb of b is different from vi, then
rb is not an outer vertex of Gi (see Figure 1.19(c)).

The above properties guarantee that when the new block is closed, no outer vertex of Gi

falls inside a face of the block.

In order to be linear, the algorithm does not explicitly compute all the paths pj , for
j = 1, . . . , k. In fact, if two paths share one edge, the second path can follow the same route
toward v1 used by the first one without the need of checking the above properties. Also,
whenever a path enters a block b, it searches both sides of b in parallel, searching for the
root rb of b. In this way, the shorter admissible path to rb is found by exploring at most
twice the number of its edges. Since the edges used by the paths will be closed inside some
face of the new block, they are never explored again in a subsequent iteration, and the total
number of steps required by the algorithm for the computation of such paths is linear.

30 CHAPTER 1. PLANARITY TESTING AND EMBEDDING

(a) (b) (c)

Figure 1.19 Compatibility properties of the paths to vi. The lower vertex is the currently
processed one while outer vertices of Gi are drawn black. (a) Two compatible paths not
sharing edges in any block they traverse. (b) Two admissible paths coming from two distinct
outer blocks. (c) Two non-admissible paths.

If the Path searching phase does not detect a non-planarity, the Block embedding phase
starts. This is a simpler phase in which, starting from vi and moving along the boundary
of Gi−1, the blocks traversed by the paths are merged together and the back edges are
embedded based on their corresponding paths to produce a planar embedding for Gi.

The simplified version of the algorithm described in [BM04] is based on the same two
phases, Path searching and Block embedding. However, the check for the paths’ compat-
ibility, which in the primitive version were demanded to the first phase are moved to the
second phase, which may, therefore, also detect a non-planarity.

Data Structures

The tricky point of the Boyer-Myrvold algorithm is when two blocks, traversed by a
path, are merged together. It may happen that a path traverses the child block clockwise
and the parent block counterclockwise, or viceversa. Fortunately, it can be shown that the
properties of the paths guarantee that if one path does so all other paths comply with this
embedding choice. However, in order to merge the two blocks, one of them needs to be
flipped, and reversing the adjacency lists of all the vertices of the block may result in a
linear-time operation that would yield a quadratic planarity algorithm. In order to solve
this problem, the authors introduced a suitable data structure, called bicomp, that allows
us to flip a block in O(1)-time, whatever its size. Such a data structure is based on circular
lists that do not have a predefined orientation.

Namely, suppose that the list items of a circular list instead of having the usual next
and prev pointers have two generic pointers ref1 and ref2 which could be used arbitrarily
to store a reference to the next or previous list item. Suppose, also, that you maintain a
reference to the last element encountered while traversing the list. If you want a reference
to the next element you compare this reference with ref1 and ref2 and choose the one
that is different from it. Hence, the circular list is traversed in the direction that is decided
by the first step. If the circular order of the list has to be reversed, it suffices to begin the
traversal in the opposite way.

1.8. FRONTIERS IN PLANARITY 31

Of course, if the clockwise direction of the adjacency list of each vertex of a block is
independently chosen, this would not necessarily produce a planar embedding. However, it
is not difficult to devise some convention to transfer the orientation of the adjacency list
of one vertex to the adjacency lists of the neighboring vertices. For example, it may be
prescribed that if in the adjacency list of vertex vi the list item of vertex vj uses ref1 as
next and ref2 as prev, the same choice is made for the list item of vi in the adjacency list
of vj (in [BM99, BM04] a less intuitive, but more practical, convention is adopted).

Hence, when two blocks are merged and their common cutvertex is identified, the two
adjacency lists of the cutvertex can be suitably joined in such a way to implicitly reverse
all the adjacency lists of one of the two blocks.

1.8 Frontiers in Planarity

1.8.1 Simultaneous Planarity

A recent variant of the planarity problem asks for the simultaneous embedding of two
graphs on the same set of vertices V . Namely, a simultaneous embedding of G1 = (V,E1)
and G2 = (V,E2) consists of two planar drawings Γ1 and Γ2 of G1 and G2, respectively,
such that any vertex v ∈ V is mapped to the same point in each of the two drawings.
When Γ1 and Γ2 are required to be straight-line drawings, this problem is called geometric
simultaneous embedding . When edges common to E1 and E2 are required to be represented
by the same Jordan curve in Γ1 and Γ2 this problem is called simultaneous embedding with
fixed edges (or SEFE, for short). The above definition can be easily generalized to k graphs
Gi = (V,Ei), with i = 1, 2, . . . , k.
Geometric simultaneous embedding turns out to have limited usability, since testing

whether two planar graphs admit such an embedding is NP-hard [EBGJ+07] and since a geo-
metric simultaneous embedding does not always exist for two outerplanar graphs [BCD+07],
for two trees [GKV09], and even for a tree and a path [AGKN12].

Conversely, for several classes of graphs the computation of a simultaneous embedding
with fixed edges, if any, can be performed in polynomial time [EK05, DL07, Fra06, FGJ+08,
JS09, ADF+10, HJL10, ADF+11], although the general problem is of unknown complex-
ity. Refer to Chapter 11, “Simultaneous Embedding of Planar Graphs,” for an in-depth
exploration of this research area.

1.8.2 Clustered Planarity

The user’s need of drawing some set of vertices near one to the other naturally leads to the
requirement of drawing them inside the same simple closed region of the plane. This target
is pursued by clustered planarity where the containment relationship among regions and
vertices is described by an arbitrary hierarchy. More formally, a clustered graph C(G,T)
is a graph G and a rooted tree T whose leaves are the vertices of G. A c-planar drawing
of C(G,T) is such that G is planarly drawn and each internal node ν of T is drawn as a
simple closed region R(ν) such that:

• R(ν) contains the drawing of the graph G(ν) induced by the vertices that are
leaves of the subtree rooted at ν;

• R(ν) contains a region R(µ) if and only if µ is a descendant of ν in T ;

• any two regions R(ν1) and R(ν2) do not intersect if ν1 is not an ancestor or a
descendant of ν2; and

• an edge e does not cross the boundary of a region R(ν) more than once.

32 CHAPTER 1. PLANARITY TESTING AND EMBEDDING

Restrictions on the c-planarity testing problem studied in the literature include: (i) as-
suming that each cluster induces a small number of connected components [FCE95b,
FCE95a, Dah98, GJL+02, GLS05, CW06, CDF+08, JJKL08]; (ii) considering only flat
hierarchies, where all clusters different from the root of T are children of the root [CDPP04,
DF08b]; (iii) focusing on particular families of underlying graphs [CDPP04, CDPP05,
JKK+08]; and (iv) fixing the embedding of the underlying graph [DF08b, JKK+08].

Although the general problem is of unknown complexity, it has been shown to be
polynomial-time solvable in the following cases:

• If the subgraph G(ν) induced by each cluster ν is connected the clustered graph
is called c-connected. The algorithm proposed in [FCE95b, FCE95a] is quadratic.
Linear-time algorithms are described in [Dah98, CDF+08]. The case when
each cluster induces at most two connected components has been investigated
in [JJKL08].

• The results [BKM98, Bie98] on “partitioned drawings” of graphs can be inter-
preted as linear-time c-planarity tests for non-connected flat clustered graphs
with exactly two clusters. The same result (flat clustered planarity for non-
connected graphs with exactly two clusters) is shown in [HN09] where the prob-
lem is modeled as a two-page book embedding.

• Gutwenger et al. presented a polynomial-time algorithm for c-planarity testing
for almost connected clustered graphs [GJL+02], i.e., graphs for which all nodes
corresponding to the non-connected clusters lie on the same path in T starting
at the root of T , or graphs in which for each non-connected cluster its parent
cluster and all its siblings in T are connected.

• Cortese et al. studied the class of non-connected clustered graphs such that the
underlying graph is a cycle and the clusters at the same level of T also form a
cycle, where two clusters are considered adjacent if they are incident to the same
edge [CDPP04, CDPP05]. The c-planarity testing and embedding problem is
linear for this class of graphs.

• Goodrich et al. introduced a polynomial-time algorithm for producing planar
drawings of extrovert clustered graphs [GLS05], i.e., graphs for which all clusters
are connected or extrovert. A cluster µ with parent ν is extrovert if and only if ν
is connected and each connected component of µ has a vertex with an edge that
is incident to a cluster which is external to ν.

• Jeĺınková et al. presented a polynomial-time algorithm for testing the c-planarity
of “k-rib-Eulerian” graphs [JKK+08]. A graph is k-rib-Eulerian if it is Eulerian
and it can be obtained from a 3-connected planar graph with k vertices, for some
constant k, by replacing some edges with one or more paths in parallel.

1.8.3 Decomposition-Based Planarity

Since a graph is planar if and only if its triconnected components are planar, it is somehow
surprising that all known linear-time planarity algorithms require at most the biconnectivity
of the input graph. It could be asked whether the triconnectivity of the graph could be
leveraged in order to obtain planarity algorithms that are easier to understand and to
implement. A triconnected graph has several helpful properties with this respect: if it is
planar, it admits a single planar embedding up to a flip (in contrast, a biconnected graph
admits an exponential number of embeddings); if it is not planar and it is different from
K5, it contains a subdivision of K3,3.

1.8. FRONTIERS IN PLANARITY 33

An intriguing research line in this direction is that of exploiting construction sequences:
it is well known that a triconnected graph can be reduced by means of sequences of
planarity-preserving transformations to graphs as simple as a wheel [Tut61] or as a
K4 [Tut66, BG69]. Such transformations, if reversed, yield construction sequences that
could be possibly exploited to find a planar embedding of the input graph starting from a
planar embedding of the reduced graph. The polynomial-time planarity algorithm described
in [BSW70] uses the reduction sequences described in [Tut61]. The reduction sequences
described in [Tut66, BG69] have been used to give a short proof of Kuratowski’s theo-
rem [Kel81, Tho81], while their application to planarity algorithms has been only recently
investigated in [Sch12].

34 CHAPTER 1. PLANARITY TESTING AND EMBEDDING

References

[ADF+10] P. Angelini, G. Di Battista, F. Frati, V. Jelinek, J. Kratochvil, M. Pa-
trignani, and I. Rutter. Testing planarity of partially embedded graphs.
In M. Charikar, editor, Symposium on Discrete Algorithms (SODA ’10),
pages 202–221, 2010.

[ADF+11] P. Angelini, G. Di Battista, F. Frati, M. Patrignani, and I. Rutter. Test-
ing the simultaneous embeddability of two graphs whose intersection is a
biconnected graph or a tree. In Workshop on Combinatorial Algorithms
(IWOCA ’10), volume 6460 of LNCS, pages 212–225, 2011.

[ADP11] P. Angelini, G. Di Battista, and M. Patrignani. Finding a minimum-depth
embedding of a planar graph in o(n4) time. Algorithmica, 60(4):890–937,
2011.

[AGKN12] P. Angelini, M. Geyer, M. Kaufmann, and D. Neuwirth. On a tree and
a path with no geometric simultaneous embedding. Journal of Graph
Algorithms and Applications, 16(1):37–83, 2012. Special Issue on Selected
Papers from GD ’10.

[AH77] K. Appel and W. Haken. Every planar map is four colourable, part I:
discharging. Illinois J. Math., 21:429–490, 1977.

[AHK77] K. Appel, W. Haken, and J. Koch. Every planar map is four colourable,
part II: Reducibility. Illinois Journal of Mathematics, 21:491–567, 1977.

[AP61] L. Auslander and S. V. Parter. On imbedding graphs in the sphere. Journal
of Mathematics and Mechanics, 10(3):517–523, 1961.

[APBL95] D. Archdeacon, C. Paul Bonnington, and C. H. C. Little. An algebraic
characterization of planar graphs. Journal of Graph Theory, 19(2):237–
250, 1995.

[AŠ98] D. Archdeacon and J. Šráň. Characterizing planarity using theta graphs.
Journal of Graph Theory, 27(1):17–20, 1998.

[Bad64] W. Bader. Das topologische Problem der gedruckten Schaltung und seine
Lösung. Electrical Engineering (Archiv für Elektrotechnik), 49(1):2–12,
1964.

[Bak94] B. S. Baker. Approximation algorithms for NP-complete problems on
planar graphs. J. ACM, 41:153–180, 1994.

[BCD+07] P. Braß, E. Cenek, C. A. Duncan, A. Efrat, C. Erten, D. Ismailescu, S. G.
Kobourov, A. Lubiw, and J. S. B. Mitchell. On simultaneous planar graph
embeddings. Computational Geometry, 36(2):117–130, 2007.

[BCPD04] J. M. Boyer, P. F. Cortese, M. Patrignani, and G. Di Battista. Stop
minding your P’s and Q’s: Implementing a fast and simple DFS-based
planarity testing and embedding algorithm. In Giuseppe Liotta, editor,
Graph Drawing (Proc. GD ’03), volume 2912 of LNCS, pages 25–36, 2004.

[BD91] P. Bertolazzi and G. Di Battista. On upward drawing testing of tricon-
nected digraphs. In Proc. 7th Annu. ACM Sympos. Comput. Geom., pages
272–280, 1991.

[BDBD00] P. Bertolazzi, G. Di Battista, and W. Didimo. Computing orthogonal
drawings with the minimum number of bends. IEEE Transaction on Com-
puters, 49:826–840, August 2000.

REFERENCES 35

[BDLM94] P. Bertolazzi, G. Di Battista, G. Liotta, and C. Mannino. Upward drawings
of triconnected digraphs. Algorithmica, 6(12):476–497, 1994.

[BDMT98] P. Bertolazzi, G. Di Battista, C. Mannino, and R. Tamassia. Optimal
upward planarity testing of single-source digraphs. SIAM J. Comput.,
27(1):132–169, 1998.

[BFNd04] J. Boyer, C. Fernandes, A. Noma, and J. de Pina. Lempel, Even, and
Cederbaum planarity method. In Celso Ribeiro and Simone Martins, edi-
tors, Experimental and Efficient Algorithms, volume 3059 of LNCS, pages
129–144. Springer, 2004.

[BG69] D. W. Barnette and B. Grünbaum. On Steinitz’s theorem concerning
convex 3-polytopes and on some properties of 3-connected graphs. In
Many Facets of Graph Theory, pages 27–40, 1969.

[Bie98] T. C. Biedl. Drawing planar partitions III: Two constrained embedding
problems. Technical Report RRR 13-98, RUTCOR Rutgen University,
1998.

[BKM98] T. C. Biedl, M. Kaufmann, and P. Mutzel. Drawing planar partitions
II: HH-Drawings. In J. Hromkovic and O. Sýkora, editors, Workshop on
Graph-Theoretic Concepts in Computer Science (WG ’98), volume 1517,
pages 124–136. Springer, 1998.

[BL76] K. Booth and G. Lueker. Testing for the consecutive ones property interval
graphs and graph planarity using PQ-tree algorithms. J. Comput. Syst.
Sci., 13:335–379, 1976.

[BM88] D. Bienstock and C. L. Monma. On the complexity of covering vertices
by faces in a planar graph. SIAM Journal on Computing, 17:53–76, 1988.

[BM90] D. Bienstock and C. L. Monma. On the complexity of embedding planar
graphs to minimize certain distance measures. Algorithmica, 5(1):93–109,
1990.

[BM99] J. Boyer and W. Myrvold. Stop minding your P’s and Q’s: A simpli-
fied O(n) planar embedding algorithm. In 10th Annual ACM-SIAM Sym-
posium on Discrete Algorithms, volume 1027 of LNCS, pages 140–146.
Springer-Verlag, 1999.

[BM04] J. Boyer and W. Myrvold. On the cutting edge: Simplified O(n) planarity
by edge addition. Journal of Graph Algorithms and Applications, 8(3):241–
273, 2004.

[Boy05] J. Boyer. Additional PC-tree planarity conditions. In J. Pach, editor,
Graph Drawing, volume 3383 of LNCS, pages 82–88. Springer, 2005.

[Bra09] U. Brandes. The left-right planarity test. Manuscript submitted for pub-
lication, 2009.

[BSW70] J. Bruno, K. Steiglitz, and L. Weinberg. A new planarity test based on 3-
connectivity. IEEE Transactions on Circuit Theory, 17(2):197–206, 1970.

[CDF+08] P. F. Cortese, G. Di Battista, F. Frati, M. Patrignani, and M. Pizzonia.
C-planarity of c-connected clustered graphs. Journal of Graph Algorithms
and Applications, 12(2):225–262, Nov 2008.

[CDPP04] P. F. Cortese, G. Di Battista, M. Patrignani, and M. Pizzonia. Clustering
cycles into cycles of clusters. In János Pach, editor, Proc. Graph Drawing
2004 (GD ’04), volume 3383 of LNCS, pages 100–110. Springer, 2004.

36 CHAPTER 1. PLANARITY TESTING AND EMBEDDING

[CDPP05] P. F. Cortese, G. Di Battista, M. Patrignani, and M. Pizzonia. Clustering
cycles into cycles of clusters. Journal of Graph Algorithms and Applica-
tions, Special Issue on the 2004 Symposium on Graph Drawing, GD ’04,
9(3):391–413, 2005.

[Che81] C. C. Chen. On a characterization of planar graphs. Bulletin of the
Australian Mathematical Society, 24:289–294, 1981.

[CMS08] M. Chimani, P. Mutzel, and J. M. Schmidt. Efficient extraction of mul-
tiple Kuratowski subdivisions. In Seok-Hee Hong, Takao Nishizeki, and
Wu Quan, editors, Graph Drawing (GD 2007), volume 4875 of LNCS,
pages 159–170. Springer, 2008.

[CNAO85] N. Chiba, T. Nishizeki, S. Abe, and T. Ozawa. A linear algorithm for
embedding planar graphs using PQ-trees. J. Comput. Syst. Sci., 30(1):54–
76, 1985.

[Col90] Y. Colin de Verdière. Sur un nouvel invariant des graphes et un critère de
planarité. Journal of Combinatorial Theory, Series B, 50(1):11–21, 1990.

[Col91] Y. Colin de Verdière. On a new graph invariant and a criterion for pla-
narity. In Neil Robertson and Paul D. Seymour, editors, Graph Structure
Theory, volume 147 of Contemporary Mathematics, pages 137–148. Amer-
ican Mathematical Society, 1991.

[CW06] S. Cornelsen and D. Wagner. Completely connected clustered graphs.
Journal of Discrete Algorithms, 4(2):313–323, 2006.

[Dah98] E. Dahlhaus. Linear time algorithm to recognize clustered planar graphs
and its parallelization. In Claudio L. Lucchesi and Arnaldo V. Moura, ed-
itors, Proc. Latin American Theoretical INformatics (LATIN ’98), volume
1380 of LNCS, pages 239–248. Springer, 1998.

[DBTV01] G. Di Battista, R. Tamassia, and L. Vismara. Incremental convex planarity
testing. Information Computation, 169:94–126, August 2001.

[Deo76] N. Deo. Note on Hopcroft and Tarjan planarity algorithm. Journal of the
Association for Computing Machinery, 23:74–75, 1976.

[DETT99] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing.
Prentice Hall, Upper Saddle River, NJ, 1999.

[dF08a] H. de Fraysseix. Trémaux trees and planarity. Electronic Notes in Discrete
Mathematics, 31:169–180, 2008.

[DF08b] G. Di Battista and F. Frati. Efficient c-planarity testing for embedded flat
clustered graphs with small faces. In Seok-Hee Hong, Takao Nishizeki, and
Wu Quan, editors, Proc. Graph Drawing 2007 (GD ’07), volume 4875 of
LNCS, pages 291–302. Springer, 2008.

[DKT09] Z. Dvorak, K. Kawarabayashi, and R. Thomas. Three-coloring triangle-
free planar graphs in linear time. In Claire Mathieu, editor, SODA, pages
1176–1182. SIAM, 2009.

[DL07] E. Di Giacomo and G. Liotta. Simultaneous embedding of outerplanar
graphs, paths, and cycles. Int. J. Computational Geometry and Applica-
tions, 17(2):139–160, 2007.

[DLT84] D. Dolev, F. T. Leighton, and H. Trickey. Planar embedding of planar
graphs. In Franco P. Preparata, editor, VLSI Theory, volume 2 of Adv.
Comput. Res., pages 147–161. JAI Press, Greenwich, Conn., 1984.

REFERENCES 37

[DMP64] G. Demoucron, Y. Malgrange, and R. Pertuiset. Graphes planaires: Re-
connaissance et construction des représentations planaires topologiques.
Revue Fran cais de Recherche Opérationelle, 8:33–47, 1964.

[dO96] H. de Fraysseix and P. Ossona de Mendez. Planarity and edge poset
dimension. European Journal of Combinatorics, 17(8):731–740, 1996.

[dO02] H. de Fraysseix and P. Ossona de Mendez. P.I.G.A.L.E — Public Imple-
mentation of a Graph Algorithm Library and Editor, 2002. SourceForge
project page http://pigale.sourceforge.net/ (GPL License).

[dOR06] H. de Fraysseix, P. Ossona de Mendez, and P. Rosenstiehl. Trémaux trees
and planarity. International Journal of Foundations of Computer Science,
17(5):1017–1029, 2006.

[dR82] H. de Fraysseix and P. Rosenstiehl. A depth-first characterization of pla-
narity. Annals of Discrete Mathematics, 13:75–80, 1982.

[dR85] H. de Fraysseix and P. Rosenstiehl. A characterization of planar graphs
by Trémaux orders. Combinatorica, 5(2):127–135, 1985.

[DT89] G. Di Battista and R. Tamassia. Incremental planarity testing. In Proc.
30th Annu. IEEE Sympos. Found. Comput. Sci., pages 436–441, 1989.

[DT96a] G. Di Battista and R. Tamassia. On-line maintenance of triconnected
components with SPQR-trees. Algorithmica, 15:302–318, 1996.

[DT96b] G. Di Battista and R. Tamassia. On-line planarity testing. SIAM J.
Comput., 25:956–997, 1996.

[EBGJ+07] A. Estrella-Balderrama, E. Gassner, M. Jünger, M. Percan, M. Schaefer,
and M. Schulz. Simultaneous geometric graph embeddings. In S. H. Hong,
T. Nishizeki, and W. Quan, editors, Graph Drawing (GD ’07), volume
4875 of LNCS, pages 280–290, 2007.

[EK05] C. Erten and S. G. Kobourov. Simultaneous embedding of planar graphs
with few bends. Journal of Graph Algorithms and Applications, 9(3):347–
364, 2005.

[ET76] S. Even and R. E. Tarjan. Computing an st-numbering. Theoret. Comput.
Sci., 2:339–344, 1976.

[Eve79] S. Even. Graph Algorithms. Computer Science Press, Potomac, Maryland,
1979.

[FCE95a] Q. W. Feng, R. F. Cohen, and P. Eades. How to draw a planar clustered
graph. In Ding-Zhu Du and Ming Li, editors, Proc. Computing and Com-
binatorics (COCOON ’95), volume 959 of LNCS, pages 21–30. Springer,
1995.

[FCE95b] Q. W. Feng, R. F. Cohen, and P. Eades. Planarity for clustered graphs.
In Proc. European Symposium on Algorithms (ESA ’95), volume 979 of
LNCS, pages 213–226. Springer, 1995.

[FGJ+08] J. J. Fowler, C. Gutwenger, M. Jünger, P. Mutzel, and M. Schulz. An
SPQR-tree approach to decide special cases of simultaneous embedding
with fixed edges. In I. G. Tollis and M. Patrignani, editors, Graph Drawing
(GD ’08), volume 5417 of LNCS, pages 157–168, 2008.

[Fra06] F. Frati. Embedding graphs simultaneously with fixed edges. In M. Kauf-
mann and D. Wagner, editors, Graph Drawing (GD ’06), volume 4372 of
LNCS, pages 108–113, 2006.

38 CHAPTER 1. PLANARITY TESTING AND EMBEDDING

[GIS99] Z. Galil, G. F. Italiano, and N. Sarnak. Fully dynamic planarity testing
with applications. Journal of the Association for Computing Machinery,
46:28–91, January 1999.

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman, New York, NY, 1979.

[GJL+02] C. Gutwenger, M. Jünger, S. Leipert, P. Mutzel, M. Percan, and
R. Weiskircher. Advances in C-planarity testing of clustered graphs. In
Stephen G. Kobourov and Michael T. Goodrich, editors, Proc. Graph
Drawing 2002 (GD ’02), volume 2528 of LNCS, pages 220–235. Springer,
2002.

[GJS76] M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simplified NP-
complete graph problems. Theoretical Computer Science, 1(3):237–267,
1976.

[GKM08] C. Gutwenger, K. Klein, and P. Mutzel. Planarity testing and optimal
edge insertion with embedding constraints. Journal of Graph Algorithms
and Applications, 12(1):73–95, 2008.

[GKV09] M. Geyer, M. Kaufmann, and I. Vrt’o. Two trees which are self-intersecting
when drawn simultaneously. Discrete Mathematics, 307(4):1909–1916,
2009.

[GLS05] M. T. Goodrich, G. S. Lueker, and J. Z. Sun. C-planarity of extrovert
clustered graphs. In P. Healy and N. S. Nikolov, editors, Proc. Graph
Drawing 2005 (GD ’05), volume 3843 of LNCS, pages 211–222. Springer,
2005.

[GM01] C. Gutwenger and P. Mutzel. A linear time implementation of SPQR-
trees. In Joe Marks, editor, Graph Drawing (GD 2000), volume 1984 of
LNCS, pages 77–90. Springer, 2001.

[GM04] C. Gutwenger and P. Mutzel. Graph embedding with minimum depth
and maximum external face. In Giuseppe Liotta, editor, Graph Drawing,
volume 2912 of LNCS, pages 259–272. Springer, 2004.

[GMW01] C. Gutwenger, P. Mutzel, and R. Weiskircher. Inserting an edge into a
planar graph. In Proceedings of the Twelfth Annual ACM-SIAM Sympo-
sium on Discrete algorithms, SODA ’01, pages 246–255, Philadelphia, PA,
USA, 2001. Society for Industrial and Applied Mathematics.

[Gol63] A. J. Goldstein. An efficient and constructive algorithm for testing whether
a graph can be embedded in the plane. In John R. Edmonds, Jr., editor,
Graphs and Combinatorics Conference, Technical Report, page 2 unn. pp.
Princeton University, 1963.

[Grö59] H. Grötzsch. Ein dreifarbensatz fü dreikreisfreie netze auf der kugel. Wiss.
Z. Martin-Luther-Univ. Halle-Wittenberg Math.-Natur. Reihe 8, 1959.

[GT01] A. Garg and R. Tamassia. On the computational complexity of upward
and rectilinear planarity testing. SIAM J. Comput., 31(2):601–625, 2001.

[Hal43] D. W. Hall. A note on primitive skew curves. Bulletin of the American
Mathematical Society, 49(2):935–936, 1943.

[Har69] F. Harary. Graph Theory. Addison-Wesley, Reading, Mass., 1969.

[HJL10] B. Haeupler, K. R. Jampani, and A. Lubiw. Testing simultaneous pla-
narity when the common graph is 2-connected. In Proceedings of the 21st

REFERENCES 39

Symposium on Algorithms and Computation (ISAAC’10), volume 6507 of
LNCS, pages 410–421. Springer Heidelberg/Berlin, 2010.

[HL96] M. D. Hutton and A. Lubiw. Upward planar drawing of single-source
acyclic digraphs. SIAM J. Comput., 25(2):291–311, 1996.

[HN09] S. H. Hong and H. Nagamochi. Two-page book embedding and clustered
graph planarity. Technical Report 2009-004, Department of Applied Math-
ematics & Physics, Kyoto University, 2009.

[Hsu01] W. L. Hsu. PC-trees vs. PQ-trees. In Proceedings of the 7th Annual
International Conference on Computing and Combinatorics, COCOON
’01, pages 207–217, London, UK, 2001. Springer-Verlag.

[Hsu03] W. L. Hsu. An efficient implementation fo the PC-Tree algorithm of Shih
and Hsu’s planarity test. Technical Report TR-IIS-03-015, Inst. of Inf.
Science, Academia Sinica, 2003.

[HT65] F. Haray and W. T. Tutte. A dual form of Kuratowski’s theorem. Canad.
Math. Bull., 8:17–20, 1965.

[HT73] J. Hopcroft and R. E. Tarjan. Dividing a graph into triconnected compo-
nents. SIAM J. Comput., 2(3):135–158, 1973.

[HT74] J. Hopcroft and R. E. Tarjan. Efficient planarity testing. J. ACM,
21(4):549–568, 1974.

[HT08] B. Haeupler and R. E. Tarjan. Planarity algorithms via PQ-trees (extended
abstract). Electronic Notes in Discrete Mathematics, 31:143–149, 2008.

[HW74] J. E. Hopcroft and J. K. Wong. Linear time algorithm for isomorphism
of planar graphs (preliminary report). In Proceedings of the Sixth Annual
ACM Symposium on Theory of Computing, STOC ’74, pages 172–184,
New York, NY, USA, 1974. ACM.

[JJKL08] V. Jelinek, E. Jelinkova, J. Kratochvil, and B. Lidicky. Clustered planarity:
Embedded clustered graphs with two-component clusters. In GD ’08,
volume 5417 of LNCS, pages 121–132, 2008.

[JKK+08] E. Jeĺınková, J. Kára, J. Kratochv́ıl, M. Pergel, O. Suchý, and T. Vyskocil.
Clustered planarity: Small clusters in Eulerian graphs. In Seok-Hee Hong,
Takao Nishizeki, and Wu Quan, editors, Proc. Graph Drawing 2007 (GD
’07), volume 4875 of LNCS, pages 303–314. Springer, 2008.

[JKR11] V. Jeĺınek, J. Kratochv́ıl, and I. Rutter. A Kuratowski-type theorem for
planarity of partially embedded graphs. In Proceedings of the 27th Annual
ACM symposium on Computational Geometry, SoCG ’11, pages 107–116,
New York, NY, USA, 2011. ACM.

[JS09] M. Jünger and M. Schulz. Intersection graphs in simultaneous embed-
ding with fixed edges. Journal of Graph Algorithms and Applications,
13(2):205–218, 2009.

[Kam07] F. Kammer. Determining the smallest k such that g is k -outerplanar. In
L. Arge, M. Hoffmann, and E. Welzl, editors, ESA ’07, volume 4698 of
LNCS, pages 359–370, 2007.

[Kel81] A. K. Kelmans. A new planarity criterion for 3-connected graphs. Journal
of Graph Theory, 5:259–267, 1981.

[Kel93] A. K. Kelmans. Graph planarity and related topics. In Neil Robertson
and Paul Seymour, editors, Graph Structure Theory, Proceedings of the

40 CHAPTER 1. PLANARITY TESTING AND EMBEDDING

AMS-IMS-SIAM Joint Summer Research Conference on Graph Minors,
1991, volume 147 of Contemporary Mathematics, pages 635–667, 1993.

[KR88] P. N. Klein and J. H. Reif. An efficient parallel algorithm for planarity. J.
Comput. Syst. Sci., 37(2):190–246, 1988.

[Kur30] K. Kuratowski. Sur le problème des courbes gauches en topologie. Fund.
Math., 15:271–283, 1930.

[LEC67] A. Lempel, S. Even, and I. Cederbaum. An algorithm for planarity testing
of graphs. In Theory of Graphs: Internat. Symposium (Rome 1966), pages
215–232, New York, 1967. Gordon and Breach.

[LH77] C. H. C. Little and D. A. Holton. A new characterization of planar graphs.
Bulletin of the American Mathematical Society, 83(1):137–138, 1977.

[Lie01] A. Liebers. Planarizing graphs – a survey and annotated bibliography.
Journal of Graph Algorithms and Applications, 5(1):1–74, 2001.

[Liu88] Y. Liu. A new approach to the linearity of testing planarity of graphs. Acta
Mathematicae Applicatae Sinica (English Series), 4(3):257–265, 1988.

[Liu89] Y. Liu. Boolean approach to planar embeddings of a graph. Acta Mathe-
matica Sinica (New Series), 5(1):64–79, 1989.

[LS10] C. H. C. Little and G. Sanjith. Another characterisation of planar graphs.
The Electronic Journal of Combinatorics, 17(15), 2010.

[LT79] R. J. Lipton and R. E. Tarjan. A separator theorem for planar graphs.
SIAM J. Appl. Math., 36:177–189, 1979.

[Mac37a] S. MacLane. A combinatorial condition for planar graphs. Fundamenta
Mathematicae, 28:22–32, 1937.

[Mac37b] S. MacLane. A structural characterization of planar combinatorial graphs.
Duke Mathematical Journal, 3:466–472, 1937.

[Man83] A. Mansfield. Determining the thickness of graphs is NP-hard. Proc. Math.
Cambridge Philos. Soc., 93:9–23, 1983.

[Men27] Karl Menger. Zur allgemeinen kurventheorie. Fund. Math., 10:96–115,
1927.

[MM96] K. Mehlhorn and P. Mutzel. On the embedding phase of the Hopcroft and
Tarjan planarity testing algorithm. Algorithmica, 16:233–242, 1996.

[MW99] P. Mutzel and R. Weiskircher. Optimizing over all combinatorial embed-
dings of a planar graph. In Proceedings of the 7th International IPCO Con-
ference on Integer Programming and Combinatorial Optimization, pages
361–376, London, UK, 1999. Springer-Verlag.

[MW00] P. Mutzel and R. Weiskircher. Computing optimal embeddings for planar
graphs. In Proceedings of the 6th Annual International Conference on
Computing and Combinatorics, COCOON ’00, pages 95–104, London, UK,
2000. Springer-Verlag.

[Pap95] A. Papakostas. Upward planarity testing of outerplanar dags. In R. Tamas-
sia and I. G. Tollis, editors, Graph Drawing (Proc. GD ’94), volume 894
of Lecture Notes Comput. Sci., pages 298–306. Springer-Verlag, 1995.

[Piz05] M. Pizzonia. Minimum depth graph embeddings and quality of the draw-
ings: An experimental analysis. In P. Healy and N. S. Nikolov, editors,
Graph Drawing ’05, volume 3843 of LNCS, pages 397–408, 2005.

REFERENCES 41

[PT00] M. Pizzonia and R. Tamassia. Minimum depth graph embedding. In
M. Paterson, editor, ESA ’00, volume 1879 of LNCS, pages 356–367, 2000.

[RND77] E. M. Reingold, J. Nievergelt, and N. Deo. Combinatorial Algorithms:
Theory and Practice. Prentice Hall, Englewood Cliffs, NJ, 1977.

[Ros80] P. Rosenstiehl. Preuve algébrique du critère de planarité du Wu-Liu. An-
nals of Discrete Mathematics, 9:67–78, 1980.

[RR89] V. Ramachandran and J. H. Reif. An optimal parallel algorithm for graph
planarity. In Proc. 30th Annu. IEEE Sympos. Found. Comput. Sci., pages
282–293, 1989.

[RR94] V. Ramachandran and J. Reif. Planarity testing in parallel. Journal of
Computer and System Sciences, 49:517–561, December 1994.

[RS84] N. Robertson and P. D. Seymour. Graph minors. III. Planar tree-width.
Journal on Combinatorial Theory, Series B, 36(1):49–64, 1984.

[RSST97] N. Robertson, D. P. Sanders, P. D. Seymour, and R. Thomas. The four
color theorem. J. Combin. Theory Ser. B, 70:2–4, 1997.

[Sch89] W. Schnyder. Planar graphs and poset dimension. Order, 5:323–343, 1989.

[Sch12] J. M. Schmidt. A planarity test via construction sequences. CoRR,
abs/1202.5003, 2012.

[SH93] W. K. Shih and W. L. Hsu. A simple test for planar graphs. In Int.
Workshop on Discrete Math. and Algorithms, pages 110–122, 1993.

[SH99] W. K. Shih and W. L. Hsu. A new planarity test. Theor. Comp. Sci., 223,
1999.

[Tam98] R. Tamassia. Constraints in graph drawing algorithms. Constraints, 3:87–
120, April 1998.

[Tar72] R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM J.
Comput., 1(2):146–160, 1972.

[Tho81] C. Thomassen. Kuratowski’s theorem. Journal of Graph Theory, 5(3):225–
241, 1981.

[Tho99] R. Thomas. Graph planarity and related topics. In Jan Kratochv́ıl, editor,
Graph Drawing (Proc. GD ’99), volume 1731 of LNCS, pages 137–144.
Springer-Verlag, 1999.

[TT97] Hisao Tamaki and Takeshi Tokuyama. A characterization of planar graphs
by pseudo-line arrangements. In Proc. 8th Annu. Internat. Sympos. Algo-
rithms Comput., volume 1350 of Lecture Notes Comput. Sci., pages 123–
132. Springer-Verlag, 1997.

[Tut61] W. T. Tutte. A theory of 3-connected graphs. Indag. Math., 23:441–455,
1961.

[Tut66] W. T. Tutte. Connectivity in Graphs. University of Toronto Press, 1966.

[Wag37a] K. Wagner. Über eine Eigenschaft der ebenen Komplexe. Mathematische
Annalen, 114:570–590, 1937.

[Wag37b] K. Wagner. Über eine Erweiterung eines Satzes von Kuratowski. Deutsche
Mathematik, 2:280–285, 1937.

[Whi32] H. Whitney. Non-separable and planar graphs. Transactions of the Amer-
ican Mathematical Society, 34:339–362, 1932.

[Wil80] S. G. Williamson. Embedding graphs in the plane – algorithmic aspects.
Annals of Discrete Mathematics, 6:349–384, 1980.

42 CHAPTER 1. PLANARITY TESTING AND EMBEDDING

[Wu74] W. Wu. Planar embedding of linear graphs. Kexue Tongbao, 2:226–282,
1974. (In Chinese).

[Xu89] W. Xu. Improved algorithm for planarity testing based on Wu-Liu’s cri-
terion. Annals of the New York Academy of Science, 576:641–652, 1989.

[Yan78] M. Yannakakis. Node-and edge-deletion NP-complete problems. In Pro-
ceedings of the Tenth Annual ACM Symposium on Theory of Computing,
STOC ’78, pages 253–264, New York, NY, USA, 1978. ACM.

[Yan82] M. Yannakakis. The complexity of the partial order dimension problem.
SIAM J. Algebraic Discrete Methods, 3(3):351–358, 1982.

2
Crossings and Planarization

Christoph Buchheim
TU Dortmund

Markus Chimani
Friedrich-Schiller-Universität

Jena

Carsten Gutwenger
TU Dortmund

Michael Jünger
University of Cologne

Petra Mutzel
TU Dortmund

2.1 Introduction . 43
2.2 Crossing Numbers . 45

Known Bounds

2.3 Complexity of Crossing Minimization 50
NP-hardness • Fixed Parameter Tractability

2.4 Exact Crossing Minimization . 55
Subdivision-Based Formulation • Ordering-Based Formula-
tion • Branch-and-Cut-and-Prize

2.5 The Planarization Method . 63
Overview • Planar Subgraphs • Edge Insertion • Experimen-
tal Results • Beyond Edge Insertion

2.6 Approximation Algorithms . 76
Acknowledgment . 79
References . 80

2.1 Introduction

In many respects, crossing minimization is an exceptional problem in the wide range of
optimization problems arising in automatic graph drawing. First of all, it is one of the most
basic and natural problems among these, and, at the same time, very easy to formulate:
given a graph, draw it in the plane with a minimum number of crossings between its
edges. In fact, this problem is much older than automatic graph drawing. Crossing number
problems were first examined by Turán when he worked in a brick factory during the
Second World War. This work motivated him to search for crossing minimal drawings of
the complete bipartite graph Kn,m, without success. Later, Zarankiewicz gave a rule for
creating a drawing of Kn,m with ⌊m2 ⌋⌊m−1

2 ⌋⌊n2 ⌋⌊n−1
2 ⌋ crossings, but his proof of optimality

was shown to be incorrect. Still today, this is an open question. The same is true for the
crossing number of Kn.

Besides its theoretical relevance as a topological problem, crossing minimization has many
practical applications. In automatic graph drawing, it is well known that the readability
of a two-dimensional graph layout strongly depends on the number of edge crossings. This
was verified by empirical studies of Purchase [Pur97]. In fact, the main information given
by an abstract graph is whether two vertices are connected by an edge. This information
should be easily recognizable. In particular, it should be easily possible to trace the edges
in the drawing. This task is complicated by the presence of crossing edges, as they distract
the concentration of the human viewer. See Figure 2.1 for a comparison.

Another important application for the crossing minimization problem is VLSI (very large
scale integration) design. In this context, the problem was first discussed in depth. The

43

44 CHAPTER 2. CROSSINGS AND PLANARIZATION

Figure 2.1 Different drawings of the same abstract graph with different numbers of edge
crossings (51, 12, and 4, respectively). Most aesthetic criteria like few edge bends, uniform
edge lengths, or a small drawing area favor the first two drawings. However, with respect
to the number of edge crossings the last drawing is preferable.

aim of VLSI design is to arrange transistors on two-dimensional chips. Certain transistors
need to be connected by wires, which have to be routed on the chip. Every crossing of two
wires causes additional costs for realizing the chip, so that a small number of such crossings
is desired to reduce these costs as far as possible.

An outstanding property of the crossing minimization problem is its hardness. It was
shown by Garey and Johnson [GJ83] that this problem is NP-hard; see Section 2.3. However,
several optimization problems arising in the area of automatic graph drawing are NP-
hard and have nevertheless been solved in practice. In contrast, crossing minimization is
extremely hard also practically. So far, exact approaches can only solve relatively sparse,
medium sized instances within a reasonable running time; see Section 2.4. This is drastically
shown by the fact that even the crossing numbers of the complete graphs Kn are unknown
for n ≥ 13.

Given the NP-hardness of the general problem, many restricted versions of crossing min-
imization have been considered, in the hope of finding polynomial time algorithms in these
cases. However, in most cases, the problem remains NP-hard. Examples are bipartite
drawings or linear embeddings; see Section 2.3. In practice, however, some of the resulting
problems become easier as the degrees of freedom are reduced.

Besides considering special cases, it is natural to ask for approximation algorithms. How-
ever, up to now, only for graphs with bounded degree it was possible to find algorithms
yielding provably near-optimal solutions; see Section 2.6. On the other hand, no negative
results about approximability are known.

Currently used approaches to the general crossing minimization problem are of heuristic
nature. The state-of-the-art approach for general crossing minimization is the planarization
method, which is described in detail in Section 2.5. The main idea is to split up the problem
into two steps: in the first step, a planar subgraph is computed. The aim in this step is to
find a subgraph with as many edges as possible. In the second step, all edges not contained
in this subgraph are reinserted into the drawing. Whenever an edge is inserted, the produced
crossings are replaced by dummy vertices, so that the result is a planar graph again. Having
added all edges in this way, a planar drawing algorithm can be used to compute a layout
of the graph; see Chapters 6 and 7. After this, the dummy vertices are removed. For
both steps of the planarization approach, a variety of possible algorithmic realizations has
been discussed; see Section 2.5. This approach is also particularly interesting with respect
to approximation algorithms, as it can be shown that certain insertion algorithms in fact
approximate the crossing number in case of special graph classes; again see Section 2.6.

2.2. CROSSING NUMBERS 45

The second step of the planarization approach can also be realized in many different
ways; see Section 2.5.3. Usually, it is again solved heuristically; edges are reinserted one
after another, each with a minimal number of new edge crossings. It was shown recently
that one can add a single edge optimally over all possible embeddings of the planar graph
constructed so far.

After 60 years of research in different areas of mathematics and computer science, the
crossing minimization problem is still far from being fully explored, both theoretically and
practically. On the theoretical side, the most interesting open problems in our opinion are
the crossing numbers of the complete graphs, including Turán’s brick factory problem, as
well as the approximability of crossing minimization. Practically, one can hope for new and
better heuristic methods or faster exact approaches. At this point, we can only report on
the status quo. We hope that parts of this chapter will become obsolete sooner or later.

2.2 Crossing Numbers

A drawing of a graph G = (V,E) in the plane is a mapping of each vertex v ∈ V to a distinct
point and each edge e = (v, w) ∈ E to a curve connecting the incident vertices v and w
without passing through any other vertex. A common point of two edges in a drawing that
is not an incident vertex is called a crossing . The crossing number cr(G) is defined to be
the minimum number of crossings in any drawing of G.

In their paper “Which Crossing Number Is It, Anyway?”, Pach and Tóth define two
further possibilities on how to count the number of crossings in a graph (see [PT00]).

DEFINITION 2.1 Let G = (V,E) be a simple graph.

1. The pairwise crossing number ofG, denoted with pcr(G), is the minimum number
of pairs of edges (e1, e2) ∈ E×E, e1 6= e2 such that e1 and e2 determine at least
one crossing, over all drawings of G.

2. The odd-crossing number of G, denoted with ocr(G), is the minimum number of
pairs of edges (e1, e2) ∈ E×E, e1 6= e2 such that e1 and e2 cross an odd number
of times, over all drawings of G.

It is clear that ocr(G) ≤ pcr(G) ≤ cr(G), and we know that cr(G) cannot be arbitrarily
large if ocr(G) is bounded. More precisely we have that cr(G) ≤ 2(ocr(G))2. Only after
some years, an example was conceived by Pelsmajer et al. [PSŠ06], showing that there in
fact exist graphs with ocr(G) 6= cr(G). Yet, it is still unknown whether pcr(G) = cr(G).

Another well-studied variant of the crossing minimization problem is the rectilinear cross-
ing number cr1(G), which is defined to be the minimum number of crossings in any drawing
of a graph G where all edges are drawn as straight lines. Bienstock and Dean proved in
[BD93] that for graphs with crossing number at most three, the rectilinear crossing number
and the usual crossing number coincide. They could further show that there are graphs Gk
such that cr1(Gk) is arbitrarily large, even if cr(Gk) is only four.

As a generalization of the rectilinear crossing number, Bienstock introduced in [Bie91]
the concept of the t-polygonal crossing number.

DEFINITION 2.2 Let G = (V,E) be a graph. A t-polygonal drawing of G, for t ≥ 1, is
a good drawing where every edge is drawn as a t-polygonal line, i.e., a polygonal line with

46 CHAPTER 2. CROSSINGS AND PLANARIZATION

at most t segments. The t-polygonal crossing number crt(G) is defined as the minimum
number of crossings in any t-polygonal drawing of G.

A good drawing is a drawing that satisfies the following conditions:

1. no edge crosses itself

2. adjacent edges do not cross one another

3. non-adjacent edges cross each other at most once

Bienstock also showed that there cannot be a polynomial time algorithm for producing
optimal t-polygonal drawings of G unless P = NP and that there is no fixed t such that
cr(G) = crt(G) for any graph G.

An even more restricted version of the crossing number problem is the linear crossing
number : We call a drawing of a graph a linear drawing if all vertices lie on a straight line
and edges are drawn as semicircles above and below this line. It is easy to see that the
crossing number resulting from this drawing style is an upper bound for cr(G). Surprisingly,
there is a further connection to the general crossing number problem, as was shown by
Nicholson [Nic68]. He proved that any drawing in the plane with a minimum number of
crossings can be converted into a linear drawing with an equivalent crossing structure such
that all vertices are placed on a horizontal line and edges are drawn as a series of semicircles
while successive semicircles lie on different sides of the horizontal line.
It is interesting to see that the complexity of the linear crossing number problem stays

the same, even if we fix the ordering of the vertices of V (this is the so-called fixed linear
crossing minimization problem). Masuda et al. proved in [MNKF90] that even this variant
is NP-complete.

2.2.1 Known Bounds

No matter which definition or variant of the crossing number problem is used, its solution
seems to be a difficult task. Even though crossing numbers have been investigated exten-
sively in the past, useful theoretical results are rather limited. One of the first major results
has been claimed in 1953 by Zarankiewicz (and, independently, by Urbańık) as a solution to
Turán’s brick factory problem, which in fact asks for the crossing number of the complete
bipartite graph Km,n.

cr(Km,n) = ⌊m
2
⌋⌊m− 1

2
⌋⌊n

2
⌋⌊n− 1

2
⌋ (conjecture) (2.1)

Over ten years later, an error in the induction argument of Zarankiewicz’s proof was
unveiled, which is still unremedied. Hence, the correctness of equation (2.1) is still un-
known. The conjecture is derived from the following drawing rule for complete bipartite
graphs Km,n = (A ∪ B,E): place the vertices in vertex set A at coordinates (i(−1)i, 0)
for all i = 1, . . . ,m and the vertices of vertex set B at coordinates (0, j(−1)j) for all
j = 1, . . . , n. All edges are drawn as straight lines. Figure 2.2 shows a sample drawing
of K6,6 with 36 crossings. Even though the correctness of equation (2.1) could never be
verified, the provided drawing rule gives us an upper bound Z(m,n) for cr(Km,n). Recently,
de Klerk et al. [KMP+06, KPS07] devised a method for computing asymptotic lower bounds
for cr(Km,n) based on semidefinite programming. They show that

lim
n→∞

cr(Km,n)

Z(m,n)
≥ 0.8594

m

m− 1
.

2.2. CROSSING NUMBERS 47

Figure 2.2 A drawing of K6,6 with 36 crossings using Zarankiewicz’s rule.

Figure 2.3 A drawing of K8 with a minimum number of 18 crossings.

As for complete bipartite graphs, there is also a conjecture for the number of crossings
of the complete graph Kn with n vertices.

cr(Kn) =
1

4
⌊n
2
⌋⌊n− 1

2
⌋⌊n− 2

2
⌋⌊n− 3

2
⌋ (conjecture) (2.2)

Constructions of corresponding drawings [GJJ68] show that also this conjecture yields an
upper bound Z(n) on cr(Kn). For complete graphs on up to ten vertices, its correctness
has been verified by Guy [Guy72]. Pan and Richter [PR07] have extended this verification
to K11 and K12. We show a sample drawing of K8 with a minimum number of 18 crossings
in Figure 2.3. For Kn, the best-known asymptotic lower bound is again due to de Klerk et
al. [KMP+06]:

lim
n→∞

cr(Kn)

Z(n)
≥ 0.83.

The crossing number of a graph G with n vertices cannot exceed the crossing number
of the complete graph Kn, hence Z(n) also marks an upper bound for general graphs.
Unfortunately, it is the only known upper bound. A simple lower bound can be obtained
from Euler’s formula. Since any planar simple connected graph G = (V,E) cannot have
more than 3|V | − 6 edges, clearly cr(G) ≥ |E| − 3|V | + 6. If, in addition, G contains no
triangle, then cr(G) ≥ |E| − 2|V |+ 4.

48 CHAPTER 2. CROSSINGS AND PLANARIZATION

In 1983, Leighton used induction on the number of vertices to show the following theorem;
see [Lei83].

Theorem 2.1 Let G = (V,E) be a simple graph. If |E| ≥ 4|V |, we have

cr(G) ≥ 1

100

|E|3
|V |2 . (2.3)

Ajtai et al. obtained the same result independently with a smaller constant of 1
375 in

[ACNS82]. One of the best-known results has been derived by Pach and Tóth [PT97]. For
any simple graph G = (V,E), cr(G) satisfies

cr(G) ≥ 1

33.75

|E|3
|V |2 − 0.9|V | . (2.4)

Apart from bounds with respect to the number of vertices and edges, several approaches to
obtain tight lower bounds based on different graph properties can be found in the literature.

A simple example is the skewness sk(G) of a graph G. It is defined as the minimum
number of edges that must be removed from G in order to obtain a planar subgraph.
Clearly, the crossing number of a graph cannot be smaller than its skewness. Hence, we
have that

cr(G) ≥ sk(G) . (2.5)

Cimikowski showed in [Cim92] that there is a family of graphs with skewness one, but
an arbitrarily high crossing number. An example is shown in Figure 2.4. Computing the
skewness is equivalent to the maximum planar subgraph problem, which was shown to be
NP-hard by Liu and Geldmacher in [LG77] in general. For certain classes of graphs, i.e.,
complete and complete bipartite graphs, the skewness is known. We can derive it for
Kn from Euler’s formula and the observation that every maximal planar graph is also a
maximum planar subgraph of Kn. Hence, the skewness for complete graphs Kn is given by

sk(Kn) =
n(n− 1)

2
− 3n+ 6, (2.6)

and we can use similar arguments to derive the skewness for complete bipartite graphs as

sk(Km,n) = mn− 2(m+ n) + 4 . (2.7)

e

Figure 2.4 Construction of graphs with skewness one and arbitrarily high crossing num-
ber.

2.2. CROSSING NUMBERS 49

Another bound can be obtained from the bisection width bw(G). For any disjoint partition
of the vertex set V into sets V1 and V2, we denote the edges (v1, v2) with v1 ∈ V1 and v2 ∈ V2
by E(V1, V2). The bisection width bw(G) is defined as follows:

bw(G) = min
|V1|,|V2|≥

|V |
3

{|E(V1, V2)|}.

More intuitively, the bisection width is the minimum number of edges that must be removed
from G in order to partition the graph into two separate components with nearly equal size.
The first known bound for the crossing number based on the bisection width goes back to
Leighton. He proved the following theorem [Lei84].

Theorem 2.2 For any graph G = (V,E) of bounded degree, we have

cr(G) + |V | = Ω(bw(G)2) .

Pach, Shahrokhi, and Szegedy [PSS96] use the bisection width to show the following,
more general, result, which can be used to derive a lower bound for cr(G).

Theorem 2.3 Let G = (V,E) be a simple graph with |V | ≥ 2 vertices, and let k ≥ 1 be
an integer. If G has a drawing with at most k crossings, then

|E| ≤ 3|V |(10 log2 |V |)2k−2 .

A very similar parameter is the cutwidth cw(G). Let φ : V → {1, 2, . . . , |V |} be an
injection. We define cw(G) as follows:

cw(G) = min
φ

max
i

|{(u, v) ∈ E : φ(u) ≤ i ≤ φ(v)}|.

As a graphical interpretation, consider an injection of the vertices to the horizontal line and
draw edges on one side of this line using semicircles. For each injection, we can “cut” the
horizontal line between a pair of consecutive vertices such that the number of edges between
each of the segments is maximized. The minimum value over all possible injections is the
cutwidth. So far, the following relations are known (see [DV02], [PSS96], [SV94]; here δ(v)
denotes the set of neighbors of vertex v):

cr(G) +
1

16

∑

v∈V

|δ(v)|2 ≥ 1

40
bw2(G), (2.8)

cr(G) +
1

16

∑

v∈V

|δ(v)|2 ≥ 1

1176
cw2(G). (2.9)

Unfortunately, the computation of both parameters bw(G) and cw(G) is NP-hard.
Both the bisection width and the cutwidth can be seen as a measure for the “non-

planarity” of a graph. This applies also to the thickness Θ(G), which is defined as the
minimum number of planar graphs whose union forms G. The only families of graphs
whose thickness is known are complete graphs, complete bipartite graphs, and hypercubes.
Mansfield proved in [Man83] that the determination of Θ(G) is NP-hard in general. There
is a simple connection between thickness and crossing number:

Θ(G) ≤ cr(G) + 1

So far, all those bounds are only of limited use. Either their quality is poor or their
computation often exceeds practical limits. The investigation of tighter bounds could help
to improve practical applications and lead to more insight into the crossing minimization
problem.

50 CHAPTER 2. CROSSINGS AND PLANARIZATION

2.3 Complexity of Crossing Minimization

Crossing minimization is not only one of the most important problems arising in automatic
graph drawing, it is also one of the hardest. This is true both in practice and in theory:
until recently, not a single exact algorithm being able to solve instances of nontrivial size
had been devised. In fact, even for a graph as small and regular as K13, the minimal number
of crossings is still unknown. For a discussion of exact crossing minimization approaches,
see Section 2.4.

2.3.1 NP-hardness

On the theoretical side, it is a well-known fact that the general crossing minimization
problem is NP-hard. More precisely, consider the following crossing number problem:

Given a graph G and a nonnegative integer K, decide whether there is a drawing
of G with at most K edge crossings.

In 1983, Garey and Johnson proved that this problem is NP-complete [GJ83]. In the
following, we reproduce their proof. It is based on a transformation of the NP-complete
optimal linear arrangement problem:

Given a graph G = (V,E) and a nonnegative integer K, decide whether there is
a one-to-one function f :V → {1, . . . , |V |} with

∑

(v,w)∈E |f(v)− f(w)| ≤ K.

The corresponding optimization problem is thus to order the vertices of G such that the
total length of edges is minimal, where the length of an edge is defined as the distance of
the two adjacent vertices in this ordering.

As an intermediate step in the proof, Garey and Johnson show the NP-completeness of
the bipartite version of the crossing number problem for multigraphs, the bipartite crossing
number problem:

Given a bipartite multigraph G = (V1, V2, E) and a nonnegative integer K,
decide whether there is a drawing of G inside the unit square such that all
vertices of V1 lie on the northern boundary, all vertices of V2 lie on the southern
boundary, and the number of edge crossings is at most K.

In the following, we will call such drawings bipartite drawings for short. It is interesting
that, contrary to widespread belief, the NP-completeness of the bipartite crossing number
problem for simple graphs was long open—it was shown only very recently [Sch12].

Theorem 2.4 The crossing number problem is NP-complete.

It is easy to see that this problem is in NP: for every edge of G, one can guess all crossings
involving this edge, and their order along the edge. To answer the question whether such
a guessed crossing configuration is feasible, one can place dummy vertices on all chosen
crossings and test the resulting graph for planarity. Clearly, the result is positive if and
only if the given crossing configuration can be realized by some drawing of G.

The proof of completeness consists of several reduction steps and is split up into three
separate lemmas in the following.

LEMMA 2.1 The optimal linear arrangement problem can be reduced to the bipartite
crossing number problem in polynomial time.

2.3. COMPLEXITY OF CROSSING MINIMIZATION 51

Proof: The rough idea of the reduction is as follows: every vertex is doubled and the
linear ordering is modeled on two parallel layers (the northern and southern boundary of
the unit square) at the same time, with edges leading from one layer to the other. By a
large number of artificial edges connecting corresponding pairs of vertices, the ordering is
forced to be the same on both layers. The distance between two adjacent vertices in the
linear ordering problem is then essentially proportional to the number of artificial edges
crossed.

More formally, the transformation is defined as follows: Let an instance for the optimal
linear arrangement problem be given, consisting of a graph G and an integer K, and as-
sume V = {v1, . . . , vn}. We then construct an instance G′ = (V1, V2, E1 ∪ E2) and K ′ of
the bipartite crossing number problem as follows:

V1 = {ui | i = 1, . . . , n}
V2 = {wi | i = 1, . . . , n}
E1 = {|E|2 copies of (ui, wi) | i = 1, . . . , n}
E2 = {(ui, wj) | (vi, vj) ∈ E with i < j}
K ′ = |E|2(K − |E|) + |E|2 − 1

This construction is obviously polynomial. We have to show that the graph G admits a
linear ordering with total edge length at most K if and only if the bipartite multigraph G′

admits a bipartite drawing with at most K ′ crossings.

If a linear ordering f of G with total edge length at most K exists, we construct a
bipartite drawing as follows. We place vertex ui on position (f(vi)/(n + 1), 1) and vertex
wi on position (f(vi)/(n+ 1), 0). Furthermore, we draw all edges as straight lines; bundles
of parallel edges are drawn as nearly straight lines without mutual crossings; see Figure 2.5
for an example.

5 4 1 2 3 6

=⇒
5 4 1 2 3 6

5 4 1 2 3 6

Figure 2.5 Reducing the optimal linear arrangement problem to the bipartite crossing
number problem. Bold grey lines represent bundles of |E|2 edges each.

In the constructed drawing, no artificial edge from E1 will cross any other edge. More-
over, an edge (ui, wj) ∈ E2 crosses exactly |f(vi) − f(vj)| − 1 bundles of |E|2 edges each.

52 CHAPTER 2. CROSSINGS AND PLANARIZATION

Consequently, the total number of such crossings is

∑

(ui,wj)∈E2

|E|2
(

|f(vi)− f(vj)| − 1
)

= |E|2
∑

(v,w)∈E

(

|f(v)− f(w)| − 1
)

≤ |E|2(K − |E|) .

The remaining crossings in the constructed drawing can only occur between pairs of edges
in E2, so that their total number is at most |E|2 − 1. Summing up, the total number of
edge crossings in our drawing is at most |E|2(K − |E|) + |E|2 − 1 = K ′.
For showing the other direction, assume that a bipartite drawing of G′ with at most K ′

crossings is given. Then define f(vi) as the position of vertex ui in the order of vertices on
the northern boundary of the unit square. We claim that the linear ordering f leads to a
total edge length of at most K. To see this, first observe that the order of vertices on both
boundaries must be the same, as otherwise two bundles of |E|2 edges each would cross each
other, leading to |E|4 > K ′ crossings. Because of that, for each edge (vi, vj) with i < j, the
distance |f(vi) − f(vj)| is at most one more than the number of crossings of (ui, wj) with
any edge bundle, so that

∑

(v,w)∈E

|f(v)− f(w)| ≤ |E|+K ′/|E|2 = |E|+ (K − |E|) + 1− 1/|E|2 < K + 1 .

As the left-hand side of this inequality is integer, it is at most K. ✷

LEMMA 2.2 The bipartite crossing number problem can be reduced to the general
crossing number problem for multigraphs in polynomial time.

Proof: Let G = (V1, V2, E) and K be an instance of the bipartite crossing number
problem. We construct a multigraph G′ as follows: we add two vertices u and w to G.
Moreover, we connect u with all vertices of V1 by K+1 edges each. Analogously, we connect
w with all vertices of V2 by K + 1 edges each. Finally, we add K + 1 edges connecting u
and w. Now we claim that G has a bipartite drawing with at most K crossings if and only
if G′ has a general drawing with at most K crossings.

The basic idea of this construction is that w.l.o.g. no bundle of K+1 edges will be crossed
by any other edge, and that by this the crossing minimal bipartite drawings of G correspond
to the crossing minimal general drawings of G′. In particular, it is clear that a bipartite
drawing of G with at most K crossings yields a drawing of G′ with at most K crossings by
placing the vertices u and w outside the unit square; see Figure 2.6.

For showing the other direction, a drawing of G′ with at most K crossings has to be
converted into a bipartite drawing of G with at most K crossings. For this, a sequence of
so-called normalization steps is applied in order to transform the original drawing of G′ into
one of the type of Figure 2.6 without increasing the number of edge crossings; deleting the
vertices u and w then yields the desired drawing of G. This part of the proof was the most
technical one in the original presentation; we give a simplified version here.

In the first normalization step, multiple crossings between one pair of edges and crossings
between edges incident to a common vertex are removed in the obvious way. In particular,
every bundle of K + 1 edges connecting the same pair of vertices now defines a sequence
of K regions in the drawing.

In a second step, one can obtain a drawing such that none of these bundle regions contains
any vertex of G′ or is crossed by any edge of G′. Indeed, for a fixed v ∈ V1, consider the
edge e connecting u and v that in the current drawing has the minimum number of crossings

2.3. COMPLEXITY OF CROSSING MINIMIZATION 53

u

w

Figure 2.6 Reducing the bipartite crossing number problem to the general crossing num-
ber problem for multigraphs. Bold grey lines represent bundles of K + 1 edges each.

with other edges. Then one can reroute all edges (u, v), i.e., all edges parallel to e, along
the same route as e. This yields a new drawing of G′ with at most as many edge crossings
as before. Repeating this for every v ∈ V1 and analogously for w and every v ∈ V2, we get
a drawing without vertices in the bundle regions. Now it follows that no edge can cross
any of these regions. The reason is that such an edge would have to cross all K + 1 edges
of a bundle, as no vertices are contained in the bundle regions and multiple crossings were
eliminated in the first normalization step.

Clearly, the drawing resulting from these two normalization steps is topologically equiv-
alent to one of the type displayed in Figure 2.6. ✷

LEMMA 2.3 The crossing number problem for multigraphs can be reduced to the cross-
ing number problem for simple graphs.

Proof: For the given multigraph, place an artificial vertex in the middle of every edge.
The result is a simple graph with the same crossing number as the original multigraph. ✷

In the above scheme, we observe that the graph for which deciding on the crossing number
is NP-hard requires two distinct vertices u and v of very high degree. One may think that
they are central to the construction. Yet, using a different reduction strategy from optimal
linear arrangement, Hliněný showed in [Hli06]:

Theorem 2.5 The crossing number problem remains NP-complete even when restricted
to cubic graphs, i.e., graphs where every vertex has degree 3.

Theorem 2.4 shows that the crossing number problem is NP-complete. In particular, the
crossing minimization problem is NP-hard, i.e., the problem of constructing a drawing of

54 CHAPTER 2. CROSSINGS AND PLANARIZATION

a given graph with a minimal number of edge crossings. Nevertheless, one might hope for
polynomial time algorithms at least for special classes of graphs, or for situations where the
class of allowed drawings is restricted.

However, no interesting special class of graphs is known for which crossing minimization
can be done in polynomial time. Exceptions are the classes of graphs for which a constant
bound c on the number of crossings is given a priori, see Section 2.3.2, but this is a purely
theoretical result in that this bound is not at hand in general and the running time increases
heavily with the constant c.
The results also remain mostly negative if we restrict the set of feasible drawings by

additional conditions. For instance, the problem is still NP-hard (even for simple graphs)
if we require that

• the drawing is bipartite and the vertex order on one of the layers is fixed [EW94].

• all vertices have the same vertical coordinate and edges are drawn as semicircles.
This is the so-called linear crossing minimization problem [MKNF86]. This prob-
lem remains NP-hard even if the horizontal order of vertices is fixed [MNKF90].

• the vertices lie on the unit circle and edges are drawn as straight lines. This is
the circular crossing minimization problem [MKNF87].

However, we would like to point out that practically the problem might become consider-
ably easier with the degrees of freedom for the drawing decreasing. To give an example, the
bipartite crossing minimization problem with one layer fixed is NP-hard but can be solved
quickly in practice [JM97]. By now, also reasonably sized general multi-layer crossing mini-
mization instances can be tackled effectively with integer linear and semidefinite programs;
see [CHJM11] for an overview.

2.3.2 Fixed Parameter Tractability

In the last section, we reproduced a proof by Garey and Johnson showing that it is NP-hard
to decide whether a given graph G can be drawn with at mostK edge crossings. We can also
consider the situation where K is not given as part of the input but as a fixed parameter.
It is then easy to see that one can decide in polynomial time whether a drawing of G with
at most K crossings exists: broadly speaking, one could check all possible configurations
of the up to K crossings, replace the chosen crossings by dummy vertices, and check the
resulting graph for planarity. We can answer the original question affirmatively if and only
if we find any planar graph in this way.

Even if the above algorithm runs in polynomial time for fixed K, the obvious drawback is
the strong increase in running time for increasing K: if implemented in the straightforward
way, the runtime is O(|V | · |E|2K). For a long time, it was an open question whether the
problem is fixed-parameter tractable, i.e., whether the problem can be solved in O(f(K) ·
|V |c) running time for some function f(K) that is independent from the instance and some
constant c that is independent from K. This question was answered by Grohe in 2001

with c = 2 [Gro01]. However, the running time of Grohe’s algorithm is O(22
p(K) |V |2),

where p is a polynomial, and hence grows strongly with K. Thus, the relevance of this
algorithm is rather theoretical than practical. Kawarabayashi and Reed [KR07] improved
on this result by giving a linear algorithm, i.e., c = 1; yet f(K) remains too large for any
practical application.

2.4. EXACT CROSSING MINIMIZATION 55

2.4 Exact Crossing Minimization

Exact methods to solve the crossing minimization problem constitute the youngest research
field we are discussing in this chapter. The development showcases various algorithm engi-
neering aspects of algorithm development, as its iterative improvements were always based
on the analysis of the bottlenecks of the earlier approaches. The first approach [BEJ+05]
already lay the setting used in the subsequent developments: it relies on mathematical pro-
gramming in combination with branch-and-cut. Yet, its applicability was limited to very
small graphs. By introducing column generation schemes into the branch-and-cut frame-
work, its central ILP model, which we will describe in detail below, was later brought into
the realm of applicability [CGM09, BCE+08] to some real-world graphs. The currently best
exact approach replaces a key concept (the so-called simple crossing number) of the first
formulation by integrating multiple linear-ordering problems instead [CMB08]. This leads
to a mathematically more complex model but offers the advantage of fewer variables on the
one hand, and the possibility for even stronger column generation strategies, on the other
hand. Together with other developments like strong upper bounds (cf. Section 2.5), pre-
processing strategies like the non-planar core reduction [CG09], and efficient extraction of
multiple Kuratowski subdivisions (see below) at once [CMS08], we are now in the position
to compute the exact crossing number of sparse graphs with up to 100 vertices. Figure 2.4
gives an overview of the algorithmic progress over the last years, comparing the various
algorithms on the way to the currently most successful one. For a more detailed description
of all exact algorithms discussed in the following, see [Chi08].

A linear program (LP) is an optimization problem consisting of continuous variables,
a linear objective function, and linear constraints. The “father” of linear programming,
George B. Dantzig, proposed the following standard model:

maximize c⊤x
subject to Ax ≤ b

x ≥ 0

where c ∈ Rn, A ∈ Rm×n, and b ∈ Rm. The linear function c⊤x : Rn → R is called
the objective function and the inequalities in the system Ax ≤ b are called constraints . A
vector x̂ that satisfies the system of inequalities Ax ≤ b is called a feasible solution of the
LP. Moreover, x̂ is called an optimal solution if c⊤x̂ ≥ c⊤x′ for all feasible solutions x′.

Linear programs proved to provide a powerful tool for various optimization problems in
the past and extensive research led to efficient algorithms able to solve them in polynomial
time, e.g., the simplex [Chv83], the ellipsoid [GLS88], and the interior point method [RT97].
However, additional constraints that require some or all of the variables to be integer, render
the problem NP-complete in general [GJ79].

Anyway, (mixed) integer linear programs are widely used to solve NP-hard combinato-
rial optimization problems in conjunction with polyhedral combinatorics, which aims at
describing combinatorial optimization problems as linear programs and solving these with
special-purpose methods. A key feature therefore is the possibility to alternatively describe
the convex hull of the feasible points and extreme rays of a problem by a system of linear
inequalities. For an introduction into this field, the interested reader is referred to [Pul89].

Before introducing the ideas of the ILP formulation presented in this section, we have to
mention Kuratowski’s theorem, which is one of the most important results in the field of
planarity testing providing a full characterization of planar graphs based on the complete
graph K5 and the complete bipartite graph K3,3.

56 CHAPTER 2. CROSSINGS AND PLANARIZATION

0

40

80

120

160

200

240

280

320

360

400

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

n
u

m
b
er

 o
f

in
st

an
ce

s

su
cc

es
s

ra
ti

o

nodes

instances OC

SC+ SC

SA S+

S+ (5min) S (5min)

Figure 2.7 Success ratio (i.e., percentage of instances solved to provable optimality) in de-
pendency to the graphs’ size (number of vertices). Benchmark set: Rome library [DGL+97],
see also Section 2.5. Different lines give different development steps of the algorithms; each
instance was given 30 minutes of computation time unless specified otherwise. S is the
first implementation of [BEJ+05], S+ a more efficient reimplementation of the same al-
gorithm. SA and SC denote the subdivision-based algorithms as considered in [CGM09],
with algebraic pricing and the combinatorial column generation scheme, respectively. Fi-
nally, SC+ and OC denote the latest implementations of the subdivision-based and the
ordering-based ILPs, respectively, with combinatorial column generation and all further
described improvements, as presented in [CMB08].

2.4. EXACT CROSSING MINIMIZATION 57

Theorem 2.6 A finite graph is planar if and only if it contains no subgraph that is a
subdivision of K5 or K3,3.

We can obtain a subdivision S of a graph G by repeatedly replacing edges e by a path
of length two. As a consequence of Theorem 2.6, at least two edges belonging to each
Kuratowski subdivision have to cross. Based on this observation, we can try to address
the crossing minimization problem using mathematical programming in the following way:
we introduce a zero-one decision variable xe,f for each pair of edges (e, f) ∈ E × E that
encode the crossings in an associated drawing: edges e and f cross each other if and only
if xe,f = 1. For each subdivision of K5 or K3,3, we can add constraints that force at least
one of the involved variables to one.

Mutzel and Jünger [MJ01] pointed out the problems with this formulation. To our knowl-
edge, there is no known polynomial time separation algorithm to identify the constraints of
this type that are violated by a given fractional solution. Moreover, those constraints are
not strong enough since it is not guaranteed that there is a realizing drawing if at least one
of the involved crossing variables is one in every Kuratowski subdivision. Another severe
problem of this formulation is the NP-hardness of the realizability problem [Kra91]:

Given a vector x ∈ {0, 1}(E2), does there exist a drawing consistent with x?

In order to efficiently answer this question, we also need to know the order of the edge
crossings for a particular edge e. This additional information can be exploited by the intro-
duction of a dummy vertex for each crossing and the application of a linear-time planarity
testing algorithm to test the existence of a realizing drawing in polynomial time. Despite
all these drawbacks, it is interesting that under certain conditions the above-described con-
straints, as well as similar ones, in fact constitute facets of the polytope defined by the
convex hull of the feasible solutions [Chi11].

2.4.1 Subdivision-Based Formulation

One way to work around the realizability problem is the reduction to simple drawings . We
call a drawing simple if each edge crosses at most one other edge. As for planar graphs, we
can find a bound for the maximum number of edges of graphs that admit a simple drawing.
More precisely, Pach and Tóth show the following theorem [PT97]:

Theorem 2.7 Let G = (V,E) be a simple graph drawn in the plane so that every edge is
crossed by at most k others. If 0 ≤ k ≤ 4, then we have

|E| ≤ (k + 3)(|V | − 2) . (2.10)

They could further prove that this bound cannot be improved for 0 ≤ k ≤ 2 and that for
any k ≥ 1 the following inequality holds:

|E| ≤
√
16.875k|V | ≈ 4.108

√
k|V | . (2.11)

Furthermore, Bodlaender and Grigoriev prove in [BG04] that it is NP-complete to determine
whether there is a simple drawing for a given graph G. If there is such a drawing, we denote
the minimum number of crossings among all simple drawings of G by crs(G).
It is easy to see that cr(G) ≤ crs(G). We cannot state equality because there are graphs

G such that crs(G) > cr(G). Consider the sample graph in Figure 2.8. The left drawing
shows an optimal drawing with two crossings while the right drawing shows an optimal
drawing among all simple drawings with three crossings.

58 CHAPTER 2. CROSSINGS AND PLANARIZATION

a

b

c d

e

f

g

h

i

j

k

l

m

n

o

p

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

Figure 2.8 An optimal drawing of a graph with two crossings (left) and an optimal simple
drawing of the same graph with three crossings (right). Both drawings were produced with
the exact algorithm presented in this section.

u v

u v
d

1
d

2
d

l-1
d

l-2

Figure 2.9 Edges are replaced with a path of length ℓ by inserting ℓ− 1 dummy vertices.

Given an integer ℓ and a graph G = (V,E) such that ℓ ≥ |E|, we can create a graph
G∗ = (V ∗, E∗) by replacing every edge e ∈ E with a path of length ℓ. Figure 2.9 shows
an example that illustrates this transformation. The graph G∗ contains a total number of
|V |+ (ℓ− 1)|E| vertices and ℓ|E| edges.

It is easy to show that G can be drawn with n crossings if and only if there is a simple
drawing of G∗ with n crossings. Therefore, it is “sufficient” to solve the crossing min-
imization problem restricted to simple drawings in order to solve the “general” crossing
minimization problem. Since the transformation obviously can be done in polynomial time,
the NP-completeness of the corresponding decision problem for simple drawings follows im-
mediately from the proof by Garey and Johnson; see Section 2.3. Since an edge e = (u, v)
never crosses itself or an adjacent edge in an optimal drawing it is sufficient to replace e
with a path of length |E| − |δ(u)| − |δ(v)| − 1.
Let G = (V,E) be a graph and let D ⊆ E × E be a set of unordered pairs of edges. We

call D realizable if there is a drawing of G such that there is a crossing between edges e and
f if and only if (e, f) ∈ D. Furthermore, D is called simple if for every e ∈ E there is at
most one f ∈ E such that (e, f) ∈ D.

2.4. EXACT CROSSING MINIMIZATION 59

For every graph G and every simple D, GD denotes the graph that is obtained by in-
troducing a dummy vertex de,f for each pair of edges (e, f) ∈ D: in other words, de,f is
the unique vertex when identifying the two vertices arising from subdividing both e and f .
Note that GD is only well defined if D is simple. For both edges e1 and e2 resulting from
splitting e, we set ê1 = ê2 = e, analogously for f . Given a subgraph H = (V ′, E′) ⊆ GD,
we denote with Ĥ ⊆ E the subset of original edges of G involved in the subgraph H of GD,
i.e., Ĥ = {ê | e ∈ E′} ⊆ E. In the following, H will usually be a Kuratowski subdivision.
We call the path corresponding to a single edge of the underlying K5 or K3,3 a Kuratowski

path. By Ĥ [2] ⊂ Ĥ2 we will then denote the edge pairs (e, f) where e and f belong to
different, nonadjacent Kuratowski paths. Hence, these are the only edge pairs that may
actually form a crossing meaningful to the Kuratowski subdivision H.

COROLLARY 2.1 Let D be simple. Then D is realizable if and only if GD is planar.

Using a linear-time planarity testing algorithm, we can test in time O(|V | + |D|) whether
D is realizable, and compute a realizing drawing if so.

DEFINITION 2.3 For a set of pairs of edges D ⊆ E × E, we define

xDe,f =

{

1 if (e, f) ∈ D
0 otherwise.

PROPOSITION 2.1 Let D be simple and realizable. For an arbitrary set of pairs of
edges D′ ⊆ E ×E of G = (V,E) and any subdivision H of K5 or K3,3 in GD′ the following
inequality holds:

CD′,H :
∑

(e,f)∈Ĥ[2]\D′

xDef ≥ 1−
∑

(e,f)∈Ĥ[2]∩D′

(1− xDef) . (2.12)

Proof: Suppose inequality (2.12) is violated. Since every xDe,f ∈ {0, 1}, the left-hand side
of the inequality must be zero and the right-hand side must be one, which means that

xDe,f = 0 for all (e, f) ∈ Ĥ [2] \D′, and

xDe,f = 1 for all (e, f) ∈ Ĥ [2] ∩D′ .

It follows from the definition of xD that Ĥ [2] ∩D′ = Ĥ [2] ∩D, in other words, GD agrees
to GD′ on the subgraph induced by Ĥ, so that H is also a forbidden subgraph in GD, i.e.,
a subdivision of K5 or K3,3. It follows from Kuratowski’s Theorem that GD is not planar.
This contradicts the realizability of D by Corollary 2.1. ✷

Theorem 2.8 Let G=(V,E) be a simple graph. A set of pairs of edges D ⊆ E × E is
simple and realizable if and only if the following set of conditions holds:

xDe,f ∈ {0, 1} ∀ e, f ∈ E, e 6= f
∑

f∈E x
D
e,f ≤ 1 ∀ e ∈ E

CD′,H for every simple D′ ⊆ E × E
and every forbidden subgraph H in GD′

60 CHAPTER 2. CROSSINGS AND PLANARIZATION

Proof: It is easy to see that the constraints from the second row are satisfied if and only
if D is simple. It remains to show that a simple D is realizable if and only if the conditions
CD′,H from the last row hold. For a realizable D, every CD′,H is satisfied according to
Proposition 2.1.

We have to show that any set of pairs of edges D that is not realizable violates at least
one of the constraints CD′,H . It follows from Corollary 2.1 that GD is not planar if D is
not realizable and we know from Theorem 2.6 that there exists a subdivision H of K5 or
K3,3 in GD. Let D

′ = D and consider the constraint CD,H :

CD,H :
∑

(e,f)∈Ĥ[2]\D

xDef ≥ 1−
∑

(e,f)∈Ĥ[2]∩D

(1− xDef) (2.13)

It follows from the definition of xD that every xDe,f ∈ Ĥ [2] \D is zero, hence the left-hand

side of inequality (2.13) is also zero. Since Ĥ [2]∩D ⊆ D we also know that
∑

(e,f)∈Ĥ[2]∩D(1−
xDef) is zero and the right-hand side of CD,H is one. Thus, CD,H is violated. ✷

Since we can compute a corresponding drawing for a simple and realizableD in polynomial
time, we can reformulate the crossing minimization problem for simple drawings as

Given a graph G = (V,E), find a simple realizable subsetD ⊆ E×E of minimum
cardinality.

This leads to the following ILP-Formulation. We use x(F) as an abbreviation for the term
∑

(e,f)∈F xe,f .

minimize x(E × E)

subject to

∑

f∈E xe,f ≤ 1 ∀ e ∈ E

x(Ĥ [2] \D′)− x(Ĥ [2] ∩D′) ≥ 1− |Ĥ [2] ∩D′| for every simple D′ and every
forbidden subgraph H in GD′

xe,f ∈ {0, 1} ∀ e, f ∈ E

Given a simple set of crossings D we can easily check if D is realizable by applying a
planarity testing algorithm to GD. If the answer is “no” we also get a forbidden subdivision
H of GD and we can separate an additional constraint CD,H according to the proof of
Theorem 2.8 that excludes D.

2.4.2 Ordering-Based Formulation

The above subdivision-based formulation requires up to Ω(|E|4) variables, as every edge
may have to be subdivided into Ω(|E|) segments. The currently best-performing ILP model
avoids this subdivision and instead considers linear ordering problems on each edge. Recall
that the reason for the graph extension was to be able to model the order of the crossings,
in order to obtain a tractable realizability problem. The ordering-based ILP formulation
achieves this by explicitly computing an ordering of the edge crossings.
Consider an arbitrary, fixed orientation of the given graph G, i.e., for each undirected

edge we decide on one of the two possible directions. As in the original (problematic)

2.4. EXACT CROSSING MINIMIZATION 61

approach, we introduce Ω(|E|2) many binary variables xe,f , one for each edge pair e, f ,
which should be 1 if the two indexed edges cross. The objective function is simply the
sum over all these variables. We then introduce binary variables ye,f,g ∈ {0, 1} for all edge
triples e, f, g. This results in only Ω(|E|3) additional variables. A variable ye,f,g should be
1 if and only if the edge e is crossed by both edges f and g, and the crossing with f occurs
prior to the crossing with g, w.r.t. the fixed edge orientation. Conceptually, the variables
ye,·,·, when properly bound to their corresponding x variables, then form the variables of
a linear-ordering problem with the additional property that some elements need not to be
ordered at all. We can achieve this via

xe,f ≥ ye,f,g
xe,g ≥ ye,f,g

1 + ye,f,g + ye,g,f ≥ xe,f + xe,g
ye,f,g + ye,g,f ≤ 1

ye,f,g + ye,g,h + ye,h,f ≤ 2

over the suitable edge indices. The first two constraints guarantee that the x variables
(counting the crossing in the objective function) are set whenever a corresponding y variable
is set. The third constraint ensures that whenever there are two crossings occurring on the
same edge (here: on e), their relative order has to be specified. Then, we have to ensure
in the fourth constraint that this order is unique. The last constraint, known as a 3-cycle
constraint , ensures that the order given by the y variables is in fact a linear, i.e., acyclic,
order.

Using this setup it remains to introduce Kuratowski constraints much like the ones de-
scribed for the subdivision-based formulation. Recall that D′ in the subdivision-based
formulation described a simple set of edge crossings. Similarly, we now consider a (tech-
nically more involved) crossing shadow (X ,Y) instead. It can be thought of as a minimal
description of a not-necessarily realizable crossing situation. I.e., X (Y) lists x variables (y
variables, respectively) that should be set. The “minimality” of this description is achieved
by avoiding to list an x variable if a corresponding y variable in Y already induces that it
has to be set. Similarly, we use the transitivity property of a linear ordering, and, e.g., do
not include the variable ye,f,h if ye,f,g and ye,g,h are already in Y. For a concise definition,
we refer the reader to [CMB08]. Considering all possible crossing shadows (X ,Y) and all
thereby induced Kuratowski subdivisions H, we can require:

x(Ĥ [2]) ≥ 1−
∑

x′∈X

(1− x′)−
∑

y′∈Y

(1− y′)

2.4.3 Branch-and-Cut-and-Prize

For a practical implementation, we can omit variables in some cases. The graph G can be
split up into its blocks first, which can be solved separately. The crossing number of G is
equal to the sum of the crossing numbers of its blocks. Furthermore, it is easy to show
that adjacent edges do not cross in an optimal drawing and no edge crosses itself, i.e., we
can restrict ourselves to good drawings. Furthermore, we may apply more sophisticated
preprocessing strategies like the non-planar core reduction [CG09], which further shrinks
the graph based on its triconnectivity structure. Thereby, it may be necessary to introduce
integer weights w : E → N on the edges. A crossing between the edges e and f should
then be counted as w(e) · w(f), which is easily achievable in both above ILP formulations
by using these products as the coefficient for the respective x variables.

62 CHAPTER 2. CROSSINGS AND PLANARIZATION

L := {initial problem} {L denotes the list of unsolved problems}
repeat

Choose a subproblem Π ∈ L and set L := L \ {Π}
repeat

Let x̂ be an optimal solution for the linear relaxation of Π
if x̂ is not feasible for Π then

Separate violated inequalities and add them to the LP
end if

until no more violated inequalities can be found
if no feasible solution for Π could be found then

Split Π into subproblems and add them to L
end if

until L = ∅
Print the best found feasible solution

Figure 2.10 An overview of the branch-and-cut approach.

Because of the exponential number of constraints, we cannot create them in advance and
solve the ILP in a single step. A well-suited method for this class of ILPs is the branch-
and-cut approach. The basic structure of a branch-and-cut based algorithm is outlined in
Figure 2.10. The referred linear relaxation of Π can be easily obtained by dropping the
integrality constraints, i.e., variables are allowed to be fractional.
In the case of zero-one integer linear programs, the set of unsolved subproblems L is

organized as a binary tree, called the branch-and-bound tree. Each subproblem corresponds
to a node in the tree and the list of unsolved problems L is represented by its leaves. If we
need to split a problem Π into subproblems, we choose a fractional branching variable and
create two new subproblems by setting the branching variable to zero and one, respectively.

Whenever we split a problem into two subproblems by setting the branching variable to
zero and one, respectively, we can compute a local lower bound. This is the best value
for the objective function that can be obtained subject to the assignments of values for the
branching variables up to the root node. If this value is greater than the global upper bound,
we can discard all descendants of the current subproblem since they can never improve the
current feasible solution.

A severe problem of this approach is the separation problem: “Given a class of valid
inequalities and a vector z ∈ Rn, either prove that z satisfies all inequalities in the class,
or find an inequality which is violated by z.” Although we can easily separate violated
inequalities for integral solution vectors according to the proof of Theorem 2.8, the problem
becomes severe within the branch-and-cut framework since we have to deal with fractional
values.

This problem can be solved heuristically by rounding variables to either zero or one,
but one cannot guarantee that there is no violated inequality if the graph realizing the
crossing D or (X ,Y) is planar. In this case, we have to select a branching variable and
split the current problem into two subproblems by setting the branching variable to 0 and
1, respectively.

The major bottleneck when following this approach then remains the large number of
variables, rendering both approaches useless as such. Yet the concept of column generation
turns out to allow drastic speed-ups of the algorithms. Conceptually, and somewhat similar
to the separation approach, we start with a small subset of the variables. After solving the
LP relaxation, we not only have to solve the separation problem (“is our solution too good

2.5. THE PLANARIZATION METHOD 63

because some constraints are missing?”), but also the pricing problem: “Is our solution too
bad because some variables are missing?” Observe the difference in the obtained bounds
when constraints or variables are missing, which, in general, leads to weaker bounding
strategies than applicable to pure branch-and-cut approaches.

Following the traditional approach based on the Dantzig-Wolfe decomposition [DW60],
we can solve the pricing problem in a purely algebraic way by computing the reduced costs
of the variables not already in the model and adding them based on their sign. It turns out
that this approach, denoted by algebraic pricing , already speeds up the computation, but
we can do much better.

In a combinatorial column generation scheme, we refrain from computing reduced costs,
but try to incorporate our problem-specific knowledge to obtain more efficient strategies. In
particular, our special-purpose generation schemes allow us to overcome the aforementioned
bounding problem, and retain the fact that the LP-relaxation always gives a lower bound
to the problem, even when constraints and variables are missing.
We start with the observation that in most practical applications, most of the edges

will not be crossed at all or are only involved in one crossing. On these edges, we do not
have any ambiguity with the order of crossings, and the realizability problem is easy. The
central idea for the combinatorial column generation scheme for both formulations can be
roughly described as such: we start without any special constructions to avoid crossing-
order ambiguities, i.e., we do not subdivide the edges for the subdivision-based formulation
and do not introduce any y variables for the ordering-based formulation. Recall that the
crossing order only becomes crucial when considering Kuratowski constraints; these are only
generated via separation on a rounded solution. So, we use the branch-and-cut framework
as outlined above. Whenever the separation routine considers a rounded solution where
two or more edges cross the same edge, and their order is hence ambiguous, we introduce
the necessary variables and constraints from the original model which are necessary to
decide this order. Then, the LP relaxation is recomputed. We refrain from discussing
the relatively technical details of which variables or subdivisions are necessary, and refer
to [CGM09] and [CMB08] for the two formulations instead. The interesting part is that
adding variables in such a way will never decrease the objective function.
Overall, the currently most efficient approach from the practical point of view is the

ordering-based formulation, together with its combinatorial column generation scheme, the
aforementioned preprocessing strategies and upper bounds obtained via the strong pla-
narization heuristic that we will discuss in the following section. Furthermore, the separa-
tion routine is improved by not looking for single Kuratowski subdivisions in the rounded
solution, but by applying an algorithm that obtains several such subdivisions in one pass
requiring only linear time in input and output size [CMS08, CMS07]. This allows to solve
sparse real-world graphs with up to 100 vertices to provable optimality within reasonable
time bounds on average hardware; cf. Figure 2.4. Yet the subdivision-based formulation
allows extensions to other crossing number concepts where a pair of edges crosses multiple
times, e.g., the simultaneous crossing number [CJS08].

2.5 The Planarization Method

2.5.1 Overview

The most prominent and practically successful method for solving the crossing minimiza-
tion problem heuristically is the planarization approach. This approach was introduced by
Batini, Talamo, and Tamassia in [BTT84] and can be viewed as a general framework that
addresses the problem with a two-step strategy. Each step aims at solving a particular

64 CHAPTER 2. CROSSINGS AND PLANARIZATION

optimization problem for which various solution methods are possible. Let G = (V,E) be
the graph for which we want to find a crossing minimal drawing. Then, the two steps to be
executed are:

1. Compute a planar subgraph P = (V,Ep) of G. The objective is to have as many
edges in P as possible.

2. Reinsert the edges not contained in the planar subgraph, i.e., insert the edges in
E \Ep into P . During this edge insertion process, edge crossings that occur when
inserting an edge are replaced by dummy vertices with degree four, so that the
graph remains planar. The objective is to keep the number of dummy vertices
(and thus the number of crossings in the final drawing) as small as possible.

Figure 2.11 shows an example with the different stages of the approach. In this case, the
planar subgraph contains all but one edge (edge (2,5) is missing) and the final drawing of
G has only a single crossing.

The outcome of the planarization procedure is a planar graph Gp = (V ∪ Vd, Ep) such
that every planar drawing of Gp implies a drawing of G with at most |Vd| crossings. Hence,
we also say that Gp is a planarized representation of G with (at most) |Vd| crossings. We
can obtain such a drawing of G as follows. First, we compute an embedding of Gp. Then,
we have to distinguish two situations for each dummy vertex v ∈ Vd (see Figure 2.12). If
the corresponding edges of G, say, e and e′, cross each other, then v in fact represents a
crossing between e and e′ in the drawing of G. Otherwise, e and e′ just touch and we can
save a crossing.

The two optimization problems we have to solve in the planarization approach are the
maximum planar subgraph problem (MPSP) and the edge insertion problem (EIP). Both
problems are NP-hard and are usually solved in practice by applying heuristic approaches.
One reason for that is that even an optimal solution of MPSP in the first step and of EIP in
the second step does not yield a crossing minimal solution in general. We show an example

(a) Graph G. (b) Planar subgraph P of G.

(c) Planarized representation Gp of G. (d) Final drawing of G.

Figure 2.11 A sample application of the planarization method.

2.5. THE PLANARIZATION METHOD 65

(a) (b)

Figure 2.12 (a) The edges e and e′ cross at dummy vertex v; (b) e and e′ just touch at v.

x

y

z1 z8

Figure 2.13 A wall with width 8.

(see [GMW05]) where the maximum planar subgraph contains all but one edge, but even an
optimal solution of the edge insertion problem results in arbitrary many crossings, whereas
a crossing minimal drawing has only two crossings.

We define a wall graph as follows. A wall with width k consists of the vertices x, y, z1, . . . , zk,
the edges (zi, zi+1) for 1 ≤ i < k, and the edges (x, zi) and (y, zi) for 1 ≤ i ≤ k; see Fig-
ure 2.13 for an example of a wall with width 8. The vertices x and y are called the poles of
the wall. A wall with width greater than 2 is a triconnected planar graph.

For an even number m ≥ 2, the graph Gm is constructed in the following way; compare
Figure 2.14(a). We start with a ring of walls W1, . . . ,W6 with width m+1, where the poles
of adjacent walls in the ring are identified. We denote the pole vertices with w1, . . . , w6 such
that the poles of W1 are w1 and w2, and so forth. For each wall Wj , the other two vertices
on the boundary are denoted with uij and uej ; see Figure 2.14(a). Moreover, the edges

e1 = (ue1, w3), e2 = (ue6, w5), e3 = (ui2, u
i
3), and e4 = (ui5, u

i
4) are added, m/2 vertices are

inserted by splitting edge (ui3, w4) and m/2 vertices are inserted by splitting edge (w4, u
i
4),

and every created split vertex is connected with vertex w1 by an edge hj , 1 ≤ j ≤ m. We
want to insert edge (v1, v2) with v1 := ui1 and v2 := ui6, and we call the graph after addition
of this edge G′

m.

By construction, Gm is triconnected and planar. In particular, Gm has only two embed-
dings which are mirror images of each other. It is easy to see that an optimal insertion
of edge (v1, v2) crosses m edges, namely, h1, . . . , hm, since passing through a wall would
require at least m+ 1 crossings. On the other hand, there is a drawing of G′

m with only 2
crossings as shown in Figure 2.14(b). Here, only the two crossings e1 with e3 and e2 with
e4 occur, independent of the choice of m.

In summary, this construction shows that the planarization approach may yield arbi-
trarily bad solutions even if both steps are solved optimally. On the other hand, practical
experience has shown that it leads to excellent results in many applications even if each
step is only solved heuristically. In the sequel, we address the two optimization problems—
finding a planar subgraph and reinserting a set of edges—in detail, and discuss various
solution methods.

66 CHAPTER 2. CROSSINGS AND PLANARIZATION

e1 e2

e3 e4

W1

W2

W3
W4

W5

W6

w1

w2

w3

w4

w5

w6

ue

1

ue

2

ue

3
ue

4

ue

5

ue

6

ui

1

ui

2

ui

3 ui

4

ui

5

ui

6

h1

h2

hm

. . .

(a)

e1 e2

e3 e4

W1

W2

W3
W4

W5

W6

w1

w2

w3

w4

w5

w6ue

1

ue

2

ue

3
ue

4

ue

5ue

6

ui

1

ui

2

ui

3 ui

4

ui

5

ui

6

h1

h2

hm

. . .

(b)

Figure 2.14 (a) The graph Gm; each shaded region represents a wall with width m+ 1.
The dashed edge (ui1, u

i
6) is the edge to be inserted. (b) A drawing of the graph G′

m with
only two crossings.

2.5.2 Planar Subgraphs

In many practical applications, we expect that a graph G = (V,E) can be made planar by
removing only a few edges. Therefore, it is reasonable to use a planar subgraph with as
many edges as possible as a starting point for crossing minimization. A maximum planar
subgraph of G is a planar subgraph with the maximum number of edges among all planar
subgraphs of G. If, in addition, a weight we is given for each edge of G, a maximum weight
planar subgraph is a planar subgraph P = (V,E′) of G such that the sum of all edge weights
∑

e∈E′ we of P is maximum. Hence, a maximum planar subgraph is a special case of the
weighted version with we = 1 for every edge e ∈ G. In both the weighted and the unweighted
case, the problem of finding such a subgraph is NP-complete as shown in [LG77, GJ79].

Jünger and Mutzel [JM96] presented a branch-and-cut algorithm for finding a maximum
weight planar subgraph. An overview of the branch-and-cut approach can be found in
Section 2.4.

Let PG be the set of all planar edge-induced subgraphs of G. For each planar subgraph
P = (V, F) ∈ PG, we define its incidence vector χP ∈ RE by setting χPe = 1 if e ∈ F and
χPe = 0 if e /∈ F . This yields a 1-1-correspondence of the planar subgraphs with certain
{0, 1}-vectors in RE . The planar subgraph polytope PLS(G) of G is defined as the convex
hull over all incidence vectors of planar subgraphs of G:

PLS(G) := conv{χP ∈ RE | P ∈ PG} .
Let w ∈ RE be a vector assigning a weight to each edge. The problem of finding a maximum
weight planar subgraph can thus be written as the linear program

max{wTx | x ∈ PLS(G)},
since the vertices of the polytope PLS(G) are exactly the incidence vectors of the planar
subgraphs of G. In order to apply linear programming techniques, PLS(G) has to be
represented as the solution of an inequality system. Because of the NP-hardness of the
problem, we cannot expect to find a full description of PLS(G). Jünger and Mutzel show
several facet-defining inequalities of the polytope, including Kuratowski inequalities, which
are based on the fact that a planar graph contains no subdivision of K5 and K3,3, and Euler
inequalities, which are based on the maximal number of edges in a planar graph given by
Euler’s formula. Further facet-defining inequalities can be found in [JM96].

2.5. THE PLANARIZATION METHOD 67

Require: graph G = (V,E)
Ensure: maximal planar subgraph P of G

P := a spanning tree of G
F := E \ E(P)
for all e ∈ F do

if P ∪ e is planar then
P := P ∪ e

end if

end for

Figure 2.15 A simple algorithm for computing a maximal planar subgraph.

Using these inequalities, a branch-and-cut algorithm can be derived that adopts the
planarity testing algorithm by Hopcroft and Tarjan [HT74] for cutting plane generation
and as lower-bound heuristic. Computational results show that the algorithm is able to
provide a provably optimal solution quite fast if the number of edges to be deleted is small.
However, the method is quite complicated to understand and to implement. Moreover, if
the number of deleted edges exceeds 10, the algorithm usually needs far too long to be
acceptable for practical computation.

Since finding a maximum planar subgraph is hard, the problem of finding just a maximal
planar subgraph has received much attention. A maximal planar subgraph of G = (V,E) is
a planar subgraph P = (V,E \ F) of G such that adding any edge of F to P destroys the
planarity, i.e., P ∪ e is not planar for every e ∈ F .

A widely used standard heuristic for finding a maximal planar subgraph is to start with
a spanning tree of G, and to iteratively try to add the remaining edges one by one; see
Figure 2.15. In every step, a planarity testing algorithm is called for the obtained graph.
If the addition of an edge would lead to a nonplanar graph, then the edge is disregarded;
otherwise, the edge is added permanently to the planar graph obtained so far. After |F |
planarity tests, we obtain a maximal planar subgraph P of G. Planarity can be tested
in linear time; see Chapter 1, or [HT74, BL76, BM04]. Hence, the running time of the
procedure is O((1 + |F |)(|V |+ |E|)).

This incremental approach can be made more efficient by using incremental planarity
testing algorithms. Di Battista and Tamassia [DT96] presented an algorithm that tests in
O(log |V |) time if an edge can be added while preserving planarity, and that performs the
required updates of the data structure when adding an edge in O(log |V |) amortized time.
The algorithm uses the data structures BC-tree and SPQR-tree equipped with efficient,
dynamic update operations. A BC-tree represents the block-cutvertex tree of a connected
graph G which consists of the interrelation of the blocks (B-nodes) and cutvertices (C-nodes)
of G. It has an edge (c,B) if c is a cutvertex of G contained in block B. SPQR-trees have
been introduced by Di Battista and Tamassia in [DT89]. They represent the decomposition
of a biconnected graph into its triconnected components, which essentially consists of serial
(expressed by S-nodes), parallel (P-nodes), and simple, triconnected structures (R-nodes).
Additionally, Q-nodes represent the original edges of G. The specific structures of tree
nodes are given by skeleton graphs that are associated with each node. Using these data
structures, a maximal planar subgraph can be found in O(|E| log |V |) time. SPQR-trees
are also useful in a static environment for the representation of all planar embeddings of
a graph. The static data structure can be built in linear time [HT73, GM01] using an
algorithm for dividing a graph into its triconnected components.

68 CHAPTER 2. CROSSINGS AND PLANARIZATION

The running time for incremental planarity testing has been improved by La Poutré [La 94]
to O(α(|E|, |V |)) amortized time per query and update operation. This yields an almost
linear time algorithm for the maximal planar subgraph problem that runs in O(|V |+ |E| ·
α(|E|, |V |)) time. Here, α(x, y) denotes the inverse Ackermann function, which means that
α(x, y) is a function that grows extremely slowly. A linear time algorithm for finding a max-
imal planar subgraph is given by Djidjev [Dji95]. This algorithm uses BC- and SPQR-trees
and applies a fast data structure for online planarity testing in triconnected graphs.
Jayakumar et al. [JTS89, JLM98] proposed a method for computing a planar subgraph

that is based on PQ-trees. The PQ-tree data structure has been developed by Booth and
Lueker [BL76] for solving the problem of finding permissible permutations of a set U . The
permissible permutations are those in which certain subsets S ⊆ U occur as consecutive
subsequences. Drawbacks of this planar subgraph algorithm are that it cannot guarantee
to find a maximal planar subgraph, and that the theoretical worst-case running time is
O(|V |2). However, in practice it is usually very fast and the quality of the results can
be improved by introducing random events and calling the algorithm several times. The
algorithm starts by computing an st-numbering of G, which determines the order in which
the vertices are processed. A simple but useful randomization is to choose a random edge
(s, t) for each run.

The trivial approach for finding a planar subgraph consists of computing a spanning tree.
If G is a graph with n vertices and c components, then this approach has an approximation
factor of n−c

3n−6c >
1
3 for MPSP, since a spanning tree of G contains n − c edges, and a

planar graph with c components has at most 3n − 6c edges by Euler’s formula. Surpris-
ingly, we cannot guarantee a better approximation factor than that of the spanning tree
approach if we demand that the computed subgraph must be maximal planar; see [DFF85].
Călinescu et al. [CFFK98] present an algorithm with approximation factor 4/9 that runs
in O(m3/2n log6 n) time, where m is the number of edges of G. For the maximum weight
planar subgraph problem, the simple approach is to compute a maximum weight spanning
tree, which gives an approximation factor of 1/3, and the best algorithm [CFKZ03] achieves
an approximation factor of 1/3 + 1/72.

2.5.3 Edge Insertion

The planar subgraph P computed in the first step of the planarization approach is a good
starting point for finding a planarized representation Gp of G with few crossings. In practice,
we expect that only a small number of edges has to be inserted into P in order to obtain
Gp. However, the edge insertion step fixes the crossings in the final drawing, and the choice
of the edge insertion technique may have a significant impact on the quality of the final
solution. Ziegler and Mutzel [MZ99, Zie00] have shown that even a restricted variant of
the edge insertion problem is NP-hard: The constrained crossing minimization problem
(CCMP) asks for the minimum number of crossings required for inserting a set of edges into
a fixed embedding. They also present a branch-and-cut algorithm to solve CCMP. However,
experiments show that it can only solve instances to provable optimality if there are less
than 10 edges to be inserted.

Gutwenger [GM04, Gut10] has conducted an extensive study on crossing minimization
heuristics, including different methods for edge insertion. Figure 2.16 shows the general
framework for edge insertion used in this study. It contains three essential parts leaving
room for enhancement:

Single edge insertion: The edges are inserted into the planarized representation in-
dividually one after the other. The simple approach for inserting a single edge e

2.5. THE PLANARIZATION METHOD 69

Require: planar subgraph P = (V,EP) of G = (V,E)
Ensure: planarized representation G∗

p of G

Let E \ EP = {e1, . . . , ek}
best := ∞
for i := 1 to nPermutations do

Let σ be a randomly chosen permutation of {1, . . . , k}
Gp := P

for j := 1 to k do

Insert edge eσ(j) into Gp
end for

Determine a set R ⊆ E of edges for which postprocessing shall be applied

repeat

for all e ∈ R do

Remove edge e from Gp
Insert edge e into Gp

end for

until number of crossings in Gp has not decreased

current := number of crossings in Gp
if current < best then
G∗
p := Gp; best := current

end if

end for

Figure 2.16 Edge insertion with postprocessing and permutation.

is to fix an embedding Π of Gp and to insert e into Π. However, the choice of Π
may have a considerable influence on the number of edges that e has to cross. A
more sophisticated algorithm introduced by Gutwenger et al. [GMW05] is able
to insert e with the minimum number of crossings among all embeddings of Gp.

Postprocessing: After all edges have been inserted, a simple postprocessing technique
tries to improve the current solution. It determines a set of edges R which have
one or more crossings and repeatedly tries to find a better insertion path for each
of them by removing an edge from Gp and inserting it again. Variants for the
choice of R include all edges, only the edges e1, . . . , ek, or some portion of the
edges with the most crossings (see [Gut10] for more details).
An alternative approach combines the edge insertion with the postprocessing.
Instead of performing the remove-reinsert strategy after all edges have been in-
serted, we can perform this strategy after each edge insertion. The idea behind
this variation is to keep the number of crossings low as early as possible. We call
this strategy incremental postprocessing.

Permutation: The order in which the edges e1, . . . , ek are processed also affects the
final number of crossings. Calling the complete edge insertion process several
times with different, randomly chosen permutations of the edge list e1, . . . , ek
may significantly improve the solution. The parameter nPermutations in the
algorithm determines the number of permutation rounds.

70 CHAPTER 2. CROSSINGS AND PLANARIZATION

Apart from the choice of some parameters like the number of permutation rounds or
the selection of the edges for postprocessing, the challenging part of the algorithm is the
insertion of a single edge. We consider the two variants—insertion with fixed and with
variable embedding—in more detail.

Fixed Embedding. Suppose, we want to insert edge e = (v, w) into the planar graph Gp.
Let Π be a fixed embedding of Gp. We construct the extended dual graph G∗ of Π with
respect to e as follows. The vertices of G∗ are the faces of Π plus two new vertices v∗ and
w∗ representing v and w. For each edge e′ in Gp, we have an edge in G∗ connecting the two
faces separated by e′ (if e′ is a bridge, we have a self-loop in Gp). Additionally, we have an
edge (v∗, fv) for each face fv adjacent to v, and (w∗, fw) for each face fw adjacent to w.

We observe that inserting e into Π corresponds to finding an (undirected) path from v∗

to w∗ in G∗. If such a path has length ℓ, then we can insert e with ℓ − 2 crossings, since
the first and the last edge on this path do not produce a crossing. Therefore, in order to
insert e into Π with the minimum number of crossings, we have to find a shortest path
from v∗ to w∗ in G∗. This is possible in linear time using a simple breadth-first search
traversal starting at v∗. Figure 2.17 shows a nontrivial example. Here, we want to connect
the vertices 1 and 2. The dashed vertices and edges belong to the extended dual graph.
The optimal solution highlighted in bold crosses four edges.

Though we can easily find a crossing minimal solution if the embedding of Gp is fixed,
the drawback of this method is that fixing an unfavorable embedding may result in an
arbitrarily bad solution. Figure 2.18(a) gives an example of such a family of graphs Gk
with embeddings Γk. The black fat lines in this figure denote bundles of k + 1 parallel

Figure 2.17 Edge insertion with fixed embedding by finding a shortest path in the ex-
tended dual graph.

2.5. THE PLANARIZATION METHOD 71

(a) Fixed embedding Γk. (b) Optimal Embedding.

Figure 2.18 A family of graphs Gk and embeddings Γk for which the insertion of an edge
e requires k crossings more than the optimal solution.

edges, and the gray fat line a bundle of k parallel edges. Hence, inserting edge e into the
given embedding requires at least k+1 crossings. On the other hand, it is possible to insert
e with only one crossing by changing the embedding; see Figure 2.18(b). It is easy to see
that this example can also be adapted to the case of simple graphs by splitting all the edges
in each bundle.

Variable Embedding. Surprisingly, there exists also a linear time algorithm for finding
an optimal embedding of Gp which allows to insert e with the minimum number of cross-
ings. The algorithm by Gutwenger et al. [GMW05] uses the data structures BC-tree and
SPQR-tree for the representation of all planar embeddings of a connected graph. These
decomposition trees allow to enumerate all possible embeddings of a connected graph. Ba-
sically, we can

• put any subgraph which is only attached to the rest of the graph at a cutvertex
into any face containing this cutvertex;

• arbitrarily permute parallel structures joined at a separation pair; and

• mirror any subgraph that is only attached to the rest of the graph at a separation
pair.

Let G be a graph and T its SPQR-tree. We denote the skeleton of a node µ in T with
skeleton(µ). Each edge e in a skeleton represents a subgraph of G called the expansion
graph of e. Replacing each edge in a skeleton by its expansion graph yields G again.

In order to find the optimal insertion path for (v, w) in G, it is essentially sufficient to
consider only the R-nodes in the SPQR-trees of the blocks of G. Assume first that G is
already biconnected. Let T be its SPQR-tree and let µ1, . . . , µk be the shortest path in T
between a node µ1 with v ∈ skeleton(µ1) and a node µk with w ∈ skeleton(µk). For each
R-node on this path, we expand its skeleton S in the following way. First, we make sure
that we have a representative for both v and w. If one of these vertices, say, v, is not yet
contained in S, then there is an edge whose expansion graph contains v and we split this
edge introducing a representative for v. Then, we replace every edge that was not split with
its expansion graph and compute an arbitrary embedding Π of the resulting graph. For this
fixed embedding, we determine the ordered list of edges we have to cross when inserting
an edge from the representative of v to the representative of w as described above for the
fixed embedding scenario. If we do this for every R-node in µ1, . . . , µk, and if we join the
resulting edge lists in the order they appear on the path from µ1 to µk, then we obtain an
optimal edge insertion path for inserting the edge (v, w).

If G is not biconnected, we determine the shortest path B1, c1, . . . , ck−1, Bk in the BC-
tree of G such that v ∈ B1 and w ∈ Bk. Then, we find an optimal edge insertion path

72 CHAPTER 2. CROSSINGS AND PLANARIZATION

(a) SPQR-tree. (b) Expanded skeleton S1 (c) Expanded skeleton S2

Figure 2.19 Edge insertion with variable embedding.

Figure 2.20 An embedding of the example graph that allows to embed edge (1,2) with
the minimum number of crossings.

for (ci−1, ci) in Bi for every i = 1, . . . , k, where c0 := v and ck := w. We can simply join
the resulting insertion paths pi to obtain an optimal insertion path p1, . . . , pk for inserting
(v, w).

The corresponding embedding that allows to insert (v, w) with the minimum number of
crossings is easy to find. We in fact insert the edge (v, w) into the planarized representation
Gp by creating dummy vertices for edge crossings. The construction above guarantees that
the resulting graph is planar. Then, we compute an embedding of this planar graph and
remove the inserted edge(s) again.

Figure 2.19 continues our example for the insertion strategy with variable embedding.
In this case, the graph is biconnected and the corresponding SPQR-tree has the structure
depicted in Figure 2.19(a). The relevant path in the SPQR-tree is R1, P,R2, which con-
tains two R-nodes. The expanded skeleton graphs S1 for R1 and S2 for R2 are shown in
Figure 2.19(b) and (c). We need only a single crossing in S1 and no crossing at all in S2.
Hence, an optimal solution will only cross a single edge, which is edge (3,4) in our solution.
Figure 2.20 shows an embedding that allows to insert (1,2) with only one crossing.

2.5. THE PLANARIZATION METHOD 73

2.5.4 Experimental Results

Recently, Gutwenger [Gut10] presented an extensive experimental study on the planariza-
tion approach for crossing minimization and analyzed the effect of pre- and postprocessing
strategies, edge insertion, and permutations, including the nonplanar core reduction (Npc)
as preprocessing, edge insertion with fixed (Fix) and variable (Var) embedding, and var-
ious postprocessing strategies (all edges (All), only the inserted edges (Ins), x% of the
edges with the most crossings (Mostx), and incremental postprocessing (Inc)). The pla-
nar subgraph was computed using the PQ-tree-based algorithm with 100 random iterations.
Two benchmark sets of graphs have been used in this study:

• The Rome graphs [DGL+97] are a collection of more than 11.000 graphs ranging
from 10 to 100 vertices, which have been generated from a core set of 112 graphs
used in real-life software engineering and database applications.

• The Artificial graphs1 are a collection of nonplanar graphs with known crossing
numbers. It contains 1946 graphs with up to 250 vertices and consists of cross
products of cycles (Cm × Cn), 5-vertex graphs with paths (Gi × Pn), 5-vertex
graphs with cycles (Gi × Cn), and generalized Petersen graphs (P (m, 2) and
P (m, 3)).

Table 2.1 shows a ranking of some selected strategies, sorted by average number of crossings
for graphs with 100 vertices.

rank crossings time [s] EI PRE POST PERM

1 26.71 9.387 Var Npc Inc 20

2 27.14 4.681 Var Npc Inc 10

3 28.49 1.857 Var Npc All 20

4 28.69 0.727 Fix Inc 20

5 30.43 0.490 Var Npc Inc 1

6 30.52 0.221 Fix All 20

7 32.66 0.105 Var Npc All 1

8 33.33 0.098 Fix Npc All 1

9 33.96 0.067 Fix Inc 1

10 35.09 0.041 Fix All 1

11 35.79 0.040 Fix Most25 1

12 38.38 0.037 Fix Most10 1

13 41.61 0.036 Fix Ins 1

14 45.47 0.034 Fix None 1

Table 2.1 The ranking list of crossing minimization heuristics; the table shows average
number of crossings and running times for graphs with 100 vertices.

Figure 2.21 compares the two edge insertion variants and some postprocessing strategies.
It shows that Var clearly dominates Fix and that postprocessing helps a lot. Although the
Inc strategy is rather time consuming, it justifies this by achieving excellent improvements.
Using permutations also gives significant improvements, but not as much as postprocess-

1available at http://ls11-www.cs.uni-dortmund.de/people/gutweng/artificial-graphs.zip

74 CHAPTER 2. CROSSINGS AND PLANARIZATION

0

5

10

15

20

25

30

35

40

45

50

10 20 30 40 50 60 70 80 90 100

n
u

m
b

e
r

o
f

cr
o

ss
in

g
s

number of vertices

fix-none

fix-most10

fix-inc

var-none

var-most10

var-inc

Figure 2.21 Average number of crossings for Rome graphs with various postprocessing
strategies.

ing. Figure 2.22 demonstrates the effect of up to 500 permutations on graphs with 100
vertices. Performing only a few permutations achieves already good improvements; further
permutations can still reduce the number of crossings, but the effect becomes smaller and
smaller. The best result obtained for graphs with 100 vertices was 25.51 crossings with 500
permutations (Npc-Var-Inc).

We can judge the quality of the results better if we can compare them with the actual
crossing numbers. Figure 2.23 shows the results for the artificial graphs, grouped by graph
types. We observe that using edge insertion with variable embedding and incremental
postprocessing already comes very close to the exact crossing numbers (Opt), whereas
using fixed embedding without postprocessing achieves very bad results.

2.5.5 Beyond Edge Insertion

The central ingredient of the above discussed heuristic clearly is the efficient optimal edge
insertion procedure that considers all possible embeddings. Starting from there, there are
multiple extensions and generalizations.

Instead of considering only edges, we may also consider a vertex of the graph, together
with all its incident edges. This problem is known as the vertex- or star-insertion problem.
Reusing the ideas of the fixed-embedding edge insertion, we can easily find a BFS-based
algorithm to insert a vertex into a fixed embedding of a planar graph. Yet, when con-
sidering the variable embedding setting, we cannot straightforwardly reuse many of the
edge-insertion algorithm’s methods, since vertex insertion does not offer the same degree of
problem locality within each separate SPQR-skeleton. Chimani et al. [CGMW09] showed
how to combine the SPQR-tree-based approach with a sophisticated dynamic programming
scheme, to solve the vertex insertion problem in O(θ2 · |V |3 · |W |2) time, where θ gives the

2.5. THE PLANARIZATION METHOD 75

Figure 2.22 The effect of up to 500 permutations for Rome graphs with 100 vertices.

2
.9
8

6
0
.1
4

1
0
3
.5
6

7
3
.5
2

7
9
.8
4

2
.9
8

2
5
.3
1

6
5
.2
7

6
1
.9
5

7
0
.8
9

2
.9
8

2
4
.4
5

6
3
.2
4

6
1
.0
7

7
0
.6
0

2
.9
8

2
3
.7
3

6
0
.1
7

5
9
.7
6

7
0
.1
2

2
.9
8

2
3
.6
8

5
9
.1
4

5
9
.4
6

7
0
.1
2

2
.9
8

2
5
.1
0

6
4
.3
5

6
0
.7
8

7
0
.4
5

2
.9
8

2
3
.9
8

5
9
.5
8

6
0
.1
8

7
0
.3
2

2
.9
8

2
3
.6
6

5
7
.5
7

5
9
.0
3

7
0
.1
2

2
.9
8

2
3
.6
6

5
7
.4
1

5
8
.7
5

7
0
.1
2

2
.9
8

2
3
.6
6

5
7
.0
6

5
7
.7
4

7
0
.1
2

0

10

20

30

40

50

60

70

80

90

100

110

P(m,2) P(m,3) G_x_C G_x_P C_x_C

n
u

m
b

e
r

o
f

cr
o

ss
in

g
s

fix-none-perm1

fix-all-perm1

fix-inc-perm1

fix-inc-perm10

fix-inc-perm30

var-all-perm1

var-inc-perm1

var-inc-perm10

var-inc-perm30

opt

Figure 2.23 Average number of crossings for graphs with known crossing numbers.

76 CHAPTER 2. CROSSINGS AND PLANARIZATION

thickness (number of edges) of the thickest P-node skeleton andW are the vertices adjacent
to the inserted vertex. For a graph without P-nodes, this time reduces to O(|V |2 · |W |2).

We will revisit both the edge and the vertex insertion problem in the next section when
discussing approximation algorithms. It remains to state that these two graph structures
are currently the only structures for which we know that the insertion problem is efficiently
solvable. It is therefore an open challenge to identify more complicated (planar) subgraphs
that allow efficient insertion algorithms.

Based on the success in the traditional crossing number setting, one may consider the
minor crossing number, or its set-restricted version that arises when considering an electrical
network; see [CG07]. Such a network consists of several components (logic gates, chips,
resistors,. . .) that are connected via wires. But such wires are usually not simple edges
with one source and one target vertex, but hyperedges : they connect several components
on the same electric potential, e.g., the output signal of one logic gate may serve as an
input signal for several other gates. Graphs with hyperedges are usually called hypergraphs ,
and it is natural to try to adopt the planarization strategy to them. We may represent a
hypergraph via a traditional graph by replacing each hyperedge ψ (adjacent to the vertices
N) by a star, i.e., we introduce a new hypervertex vψ and add edges (v, vψ) for all vertices
v ∈ N . For a final drawing, we are allowed to modify each such star into a tree Tψ with N
as its leaves. Such a modification is captured by the notion of the minor crossing number
of a graph G: the smallest crossing number achievable by any graph H which has G as its
minor. We may briefly describe the minor operations as removing edges and merging two
adjacent vertices. It is easy to see that the expansion from a star to a tree can be obtained
exactly by the inverse of the last operation. Therefore, the hypergraph crossing number
is equivalent to the so-called W -restricted minor crossing number, where W is the set of
hypervertices. ByW -restricted we describe the constraint that the inverse minor operations
may only be applied to the vertices W .

Chimani and Gutwenger [CG07] showed that inserting hyperedges (or, equivalently, in-
serting a vertex in the minor crossing number setting) is NP-hard, already when considering
a fixed embedding of the (hyper)graph into which to insert. On the other hand, they show
how to efficiently and optimally insert edges into a graph w.r.t. the minor crossing number,
over all possible embeddings. This is equivalent to optimally inserting a simple edge into
a hypergraph (note that during the insertion, other hyperedges become expanded to more
general trees). This latter algorithm can then be applied iteratively, to (heuristically) insert
a hyperedge by successive insertions of its star’s edges. This in turn leads to a crossing
number heuristic for electrical networks which generates drawings with astonishingly fewer
crossings than the other known approaches, which are based on Sugiyama’s framework.

The planarization strategy has also shown great potential when applied to the related
issue of upward drawings , i.e., we want to draw a directed graph such that all edges point
upward. Traditionally, this was solved via Sugiyama-style algorithms, but in the last years,
Eiglsperger et al. [EKE03] and Chimani et al. [CGMW08] introduced algorithms reusing
ideas of the planarization approach to find drawings of real-world graphs with drastically
less crossings.

2.6 Approximation Algorithms

Finally, the last approach to crossing minimization that we will discuss is the search for
approximation algorithms. By the end of the last century, this search has been mostly
fruitless despite many attempts. It is still the case that on the one hand, no approximation
algorithm for crossing minimization of general graphs with any type of guarantee could be

2.6. APPROXIMATION ALGORITHMS 77

found; on the other hand, the theoretical complexity of approximation is unknown. The
only relevant case in which provably near-optimal solutions can be generated is the case of
bounded degrees.

Recall the bisection width bw(G) ofG as defined in Section 2.2.1. Bhatt and Leighton [BL84],
later improved by Even et al. [EGS00], used a bisection approach for devising a polynomial-
time algorithm with a quality guarantee for the number of crossings plus the number of
vertices ; the quality, however, depends on the quality of the incorporated approximation
algorithm for the bisection width. As shown later [CY94], the latter problem can be approx-
imated within a constant factor in polynomial time. Using this result, Bhatt and Leighton’s
algorithm yields a drawing with O(log2 |V |(cr(G)+ |V |)) edge crossings in polynomial time.
In other words, the number of edge crossings plus vertices in the constructed drawing of G
is at most a factor of O(log2 |V |) away from the optimum. In fact, for bounded degree
graphs satisfying |E| ≥ 4|V |, this yields an O(log2 |V |)-approximation algorithm for the
crossing minimization problem, as in this case the number of vertices is at most linear in
the minimal number of crossings.

After laying semidormant for some time, the topic of approximation algorithms for cross-
ing numbers received a lot of attention in recent years. The first decade of this millennium
saw the first constant factor approximation algorithms in this area, although only for special
graph classes, and only when assuming bounded degrees. Let ∆ be the maximum degree
in the following.

The first class of approximation algorithms are insertion based. They use the insertion
algorithms presented in the previous section.

An almost planar or near-planar graph G is a graph that has an edge e such that G′ :=
G−e, the graph obtained from removing e, is planar. In other words, G is a planar graph plus
one additional edge. For such a graph, Hliněný and Salazar [HS06] showed that inserting
e optimally into a planarly embedded G′ [GMW05] (considering all possible embeddings,
as described for the planarization heuristic) approximates the crossing number of G. The
provably tight approximation factor of ∆/2 was established by Cabello and Mohar [CM10]
using a different proof strategy: the lower bound is obtained by analyzing its relation to the
facial distance, i.e., a shortest insertion path with respect to the minor-monotone crossing
number model, unknowingly using an algorithm first outlined in [CG07]. In this setting,
the inserted edge not only crosses edges but may also cross through vertices, resembling a
crossing solution in a graph that has G′ as its minor.

Shortly after the aforementioned algorithm to optimally insert a vertex with its incident
edges into a planar graph was presented in [CGMW09], Chimani et al. [CHM12] showed
that this solution in fact approximates the crossing number of apex graphs . Similar to above,
such a graph becomes planar when removing a specific vertex, together with its incident
edges. The proof argues over different flip structures in the graph’s SPQR-tree and thereby
reuses some strategic elements of [HS06], as the stronger bounding techniques of [CM10]
seem not applicable to the apex case. Consequently, the proven approximation guarantee
of factor |W | ·∆/2 might not be tight (thereby, W are the vertices incident to the inserted
vertex, and ∆ is the maximum degree of the graph into which we insert). In the worst
known example, the obtained crossing number is only |W | ·∆/4 times the optimal solution.
The second known class of approximation algorithms are topology based. Thereby, we

assume that the given graph is embeddable—i.e., drawable without edge crossings—on
some specific surface, more complex than the traditional plane. This class of graphs is then
a superset of the class of planar graphs. By clever simplification strategies, usually based
on cutting the surface with its embedded graph, the surface is simplified until a planar
drawing is reached. Therein, the cut edges and vertices have to be reconnected cheaply to
obtain a drawing of the original graph. Interestingly, the algorithms themselves, as well as

78 CHAPTER 2. CROSSINGS AND PLANARIZATION

estimating the number of the produced crossings, are relatively simply. The hard part is to
show a matching lower bound in order to deduce the approximation factor.

In 2007, Gitler et al. showed in [GHLS08] that cr(G) is approximable within a factor of
4.5∆2 when considering projective graphs , i.e., graphs that are embeddable in the projective
plane. One may think of such a projective plane as a large circular area A, on which to draw
the graph without any crossings. Any line leaving A re-enters A exactly at the opposite
position. Consequently, any vertex drawn on the border of A is mirrored on the opposite
side as well. The key idea of the approximation algorithm now is to take such a drawing,
paste A on a regular plane, and connect the “jump points” cheaply outside of A. In order
to prove that this strategy yields an approximation algorithm, one has to show a matching
lower bound. This is established by proving that any nonplanar projective graph contains a
diamond grid of certain size, which in turn induces a lower bound on the crossing number.

Hliněný and Salazar showed in [HS07] that cr(G) is approximable within a factor of
12∆2 when considering (dense enough) toroidal graphs , i.e., graphs that are embeddable
on the torus. Assume a graph is already drawn on a torus without any crossings (such
an embedding can be found in linear time if it exists [Moh99]). We search for a shortest
two-sided, non-separating loop around the torus (think, e.g., of a circular line “around”
the thinner part of a torus) which only crosses through vertices of the graph, but not
through edges. We then cut along this loop, effectively cutting the crossed vertices in two.
The remaining surface can be thought of as a cylinder; when we cap its ends, it becomes
topologically equivalent to a sphere and hence, for the purpose of drawings, to the plane.
We denote this operation as cut-and-cap. For each pair of cut vertices, we remove the
one with lower degree and route its incident edges to its twin, along the shortest path in
the then-fixed embedding. In order to prove that this strategy yields an approximation
algorithm, one has to show a matching lower bound for the number of crossings. This is
established by proving that any toroidal graph of sufficient density contains a toroidal grid
of certain minimal size as a minor. For toroidal grids of dimension p× q (p ≥ q ≥ 3), it is
known that they require at least (q − 2)p/2 crossings.

A torus is an (in fact, topologically, the unique) orientable surface of genus 1. Using the
toroidal case as an inspiration, it is natural to try to generalize it to graphs embedded on any
orientable surfaces of some fixed genus. Note that for every graph there is some g such that
it is embeddable on a genus-g surface. The necessary basic tool of iteratively performing
cut-and-cap operations on the surface’s handles until we reach a sphere has already been
investigated in [BPT06, DV06] in order to obtain upper bounds for the crossing number.
Yet, there was no straightforward way to generalize the lower bound proof to higher genus.
Only recently, Hliněný and Chimani [HC10] showed how to carefully choose the cycles to
cut (both for the upper and the lower bound), such that the largest grid minor is retained
within a factor depending only on the surface’s genus and the graph’s degree. They showed
the following theorem:

Theorem 2.9 Let G be a graph with maximum degree ∆ and (densely enough) embeddable
on an orientable surface of genus g ≥ 1. There is an O(n log n) algorithm which generates
a drawing of G in the plane with at most 3 · 23g+2 ·∆2 · cr(G) crossings. This is a constant
factor approximation algorithm for bounded degree ∆ and bounded genus g.

These bounds are not known to be tight—in fact, they are likely not to be. Yet, some
kind of density requirement (we refrain from defining the quite technical concise constraint
here) will always be necessary in algorithms only performing surface cuts. Otherwise, the
considered graph could even be a planar graph, awkwardly embedded on a higher genus
surface.

2.6. APPROXIMATION ALGORITHMS 79

Apart from considering restricted graph classes, one may also consider restricted crossing
minimization problems, in order to obtain approximation results. For instance, for bipar-
tite drawings with one layer fixed, Eades and Wormald [EW94] showed that there is a
polynomial-time algorithm that produces drawings with at most three times as many edge
crossings as necessary, for any graph G.

Acknowledgment

Markus Chimani was funded via a junior professorship by the Carl-Zeiss-Foundation.

80 CHAPTER 2. CROSSINGS AND PLANARIZATION

References

[ACNS82] M. Ajtai, V. Chvátal, M.M. Newborn, and E. Szemerédi. Crossing-free
subgraphs. Annals of Discrete Mathematics, 12:9–12, 1982.

[BCE+08] C. Buchheim, M. Chimani, D. Ebner, C. Gutwenger, M. Jünger, G. W.
Klau, P. Mutzel, and R. Weiskircher. A branch-and-cut approach to the
crossing number problem. Discrete Optimization, Special Issue in Memory
of George B. Dantzig, 5(2):373–388, 2008.

[BD93] D. Bienstock and N. Dean. Bounds for rectilinear crossing numbers. J.
Graph Theory, 17(3):333–348, 1993.

[BEJ+05] C. Buchheim, D. Ebner, M. Jünger, P. Mutzel, and R. Weiskircher. Exact
crossing minimization. In P. Eades and P. Healy, editors, Graph Drawing
(Proc. GD ’05), volume 3843 of Lecture Notes in Computer Science, pages
37–48. Springer-Verlag, 2005.

[BG04] H. Bodlaender and A. Grigoriev. Algorithms for graphs em-
beddable with few crossings per edge. Research Memoranda
036, Maastricht : METEOR, Maastricht Research School of Eco-
nomics of Technology and Organization, 2004. available at
http://ideas.repec.org/p/dgr/umamet/2004036.html.

[Bie91] D. Bienstock. Some provably hard crossing number problems. Discrete
Comput. Geom., 6(5):443–459, 1991.

[BL76] K. Booth and G. Lueker. Testing for the consecutive ones property interval
graphs and graph planarity using PQ-tree algorithms. J. Comput. Syst.
Sci., 13:335–379, 1976.

[BL84] S. N. Bhatt and F. T. Leighton. A framework for solving VLSI graph
layout problems. J. Comput. Syst. Sci., 28:300–343, 1984.

[BM04] J. M. Boyer and W. Myrvold. On the cutting edge: simplified o(n) pla-
narity by edge addition. J. Graph Algorithms Appl., 8(3):241–273, 2004.

[BPT06] K. Böröczky, J. Pach, and G. Tóth. Planar crossing numbers of graphs
embeddable in another surface. Internat. J. Found. Comput. Sci., 17:1005–
1015, 2006.

[BTT84] C. Batini, M. Talamo, and R. Tamassia. Computer aided layout of entity-
relationship diagrams. Journal of Systems and Software, 4:163–173, 1984.

[CFFK98] G. Călinescu, C. G. Fernandes, U. Finkler, and H. Karloff. A better
approximation algorithm for finding planar subgraphs. Journal of Algo-
rithms, 27(2):269–302, May 1998.

[CFKZ03] G. Cǎlinescu, C. G. Fernandes, H. Karloff, and A. Zelikovsky. A new ap-
proximation algorithm for finding heavy planar subgraphs. Algorithmica,
36(2):179–205, 2003.

[CG07] M. Chimani and C. Gutwenger. Algorithms for the hypergraph and the
minor crossing number problems. In Proc. ISAAC ’07, volume 4835 of
LNCS, pages 184–195. Springer, 2007.

[CG09] M. Chimani and C. Gutwenger. Non-planar core reduction of graphs.
Discrete Mathematics, 309(7):1838–1855, 2009.

[CGM09] M. Chimani, C. Gutwenger, and P. Mutzel. Experiments on exact crossing
minimization using column generation. ACM Journal of Experimental
Algorithmics, 14(3):4.1–4.18, 2009.

REFERENCES 81

[CGMW08] M. Chimani, C. Gutwenger, P. Mutzel, and H.-M. Wong. Layer-free up-
ward crossing minimization. In Proc. WEA ’08, volume 5038 of LNCS,
pages 55–68. Springer, 2008.

[CGMW09] M. Chimani, C. Gutwenger, P. Mutzel, and C. Wolf. Inserting a vertex
into a planar graph. In Proc. SODA ’09, pages 375–383. ACM-SIAM,
2009.

[Chi08] M. Chimani. Computing crossing numbers. PhD thesis, TU Dortmund,
2008. http://hdl.handle.net/2003/25955.

[Chi11] M. Chimani. Facets in the crossing number polytope. SIAM Journal on
Discrete Mathematics, 25(1):95–111, 2011.

[CHJM11] M. Chimani, P. Hungerländer, M. Jünger, and P. Mutzel. An SDP ap-
proach to multi-level crossing minimization. In Proc. ALENEX’11. SIAM,
2011.

[CHM12] M. Chimani, P. Hliněný, and P. Mutzel. Vertex insertion approximates
the crossing number of apex graphs. European Journal of Combinatorics,
33(3):326–335, 2012.

[Chv83] V. Chvátal. Linear Programming. W. H. Freeman and Company, New
York, 1983.

[Cim92] R. J. Cimikowski. Graph planarization and skewness. Congressus Numer-
antium, 88:21–32, 1992.

[CJS08] M. Chimani, M. Jünger, and M. Schulz. Crossing minimization meets
simultaneous drawing. In Proc. PacificVis ’08, pages 33–40, 2008.

[CM10] S. Cabello and B. Mohar. Crossing and weighted crossing number of near-
planar graphs. Algorithmica, 2010. in print.

[CMB08] M. Chimani, P. Mutzel, and I. Bomze. A new approach to exact crossing
minimization. In Proc. ESA ’08, volume 5193 of LNCS, pages 284–296.
Springer, 2008.

[CMS07] M. Chimani, P. Mutzel, and J. M. Schmidt. Efficient extraction of multiple
Kuratowski subdivisions (TR). Technical Report TR07-1-002, June 2007,
TU Dortmund, June 2007.

[CMS08] M. Chimani, P. Mutzel, and J. M. Schmidt. Efficient extraction of multiple
Kuratowski subdivisions. In Proc. GD ’07, volume 4875 of LNCS, pages
159–170. Springer, 2008.

[CY94] F. R. K. Chung and S.-T. Yau. A near optimal algorithm for edge sepa-
rators. In Proceedings of STOC’94, pages 1–8, 1994.

[DFF85] M. E. Dyer, L. R. Foulds, and A. M. Frieze. Analysis of heuristics for find-
ing a maximum weight planar subgraph. European Journal of Operational
Research, 20(1):102–114, 1985.

[DGL+97] G. Di Battista, A. Garg, G. Liotta, R. Tamassia, E. Tassinari, and
F. Vargiu. An experimental comparison of four graph drawing algorithms.
Comput. Geom. Theory Appl., 7:303–325, 1997.

[Dji95] H. N. Djidjev. A linear algorithm for the maximal planar subgraph prob-
lem. In Proc. 4th Workshop Algorithms Data Struct., Lecture Notes Com-
put. Sci., pages 369–380. Springer-Verlag, 1995.

[DT89] G. Di Battista and R. Tamassia. Incremental planarity testing. In Proc.
30th Annu. IEEE Sympos. Found. Comput. Sci., pages 436–441, 1989.

82 CHAPTER 2. CROSSINGS AND PLANARIZATION

[DT96] G. Di Battista and R. Tamassia. On-line planarity testing. SIAM J.
Comput., 25:956–997, 1996.

[DV02] H. Djidjev and I. Vrt’o. An improved lower bound for crossing numbers. In
GD ’01: Revised Papers from the 9th International Symposium on Graph
Drawing, pages 96–101, London, UK, 2002. Springer-Verlag.

[DV06] H. Djidjev and I. Vrt’o. Planar crossing numbers of genus g graphs. In
Proc. ICALP ’06, volume 4051 of LNCS, pages 419–430. Springer, 2006.

[DW60] G. B. Dantzig and P. Wolfe. Decomposition principle for linear programs.
Operations Research, 8:101–111, 1960.

[EGS00] G. Even, S. Guha, and B. Schieber. Improved approximations of crossings
in graph drawing. In Proc. STOC ’00, pages 296–305, 2000.

[EKE03] M. Eiglsperger, M. Kaufmann, and F. Eppinger. An approach for mixed
upward planarization. J. Graph Algorithms Appl., 7(2):203–220, 2003.

[EW94] P. Eades and N. C. Wormald. Edge crossings in drawings of bipartite
graphs. Algorithmica, 11(4):379–403, 1994.

[GHLS08] I. Gitler, P. Hliněný, J. Leanos, and G. Salazar. The crossing number
of a projective graph is quadratic in the face-width. Electr. Journal of
Combinatorics, 15, 2008.

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman, New York, NY, 1979.

[GJ83] M. R. Garey and D. S. Johnson. Crossing number is NP-complete. SIAM
J. Algebraic Discrete Methods, 4(3):312–316, 1983.

[GJJ68] R. K. Guy, T. A. Jenkyns, and J.Schaer. The toroidal crossing number of
the complete graph. Journal of Combinatorial Theory, 4:376–390, 1968.

[GLS88] M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and
Combinatorial Optimization. Springer-Verlag, 1988.

[GM01] C. Gutwenger and P. Mutzel. A linear time implementation of SPQR
trees. In J. Marks, editor, Graph Drawing (Proc. GD 2000), volume 1984
of LNCS, pages 77–90. Springer-Verlag, 2001.

[GM04] C. Gutwenger and P. Mutzel. An experimental study of crossing minimiza-
tion heuristics. In G. Liotta, editor, 11th Symposium on Graph Drawing
2003, volume 2912 of LNCS, pages 13–24. Springer-Verlag, 2004.

[GMW05] C. Gutwenger, P. Mutzel, and R. Weiskircher. Inserting an edge into a
planar graph. Algorithmica, 41(4):289–308, 2005.

[Gro01] M. Grohe. Computing crossing numbers in quadratic time. In Proceedings
of STOC’01, 2001.

[Gut10] C. Gutwenger. Application of SPQR-Trees in the Planarization Ap-
proach for Drawing Graphs. PhD thesis, TU Dortmund, 2010.
http://hdl.handle.net/2003/27430.

[Guy72] R. K. Guy. Crossing numbers of graphs. In Graph Theory and Ap-
plications (Proceedings, Lecture Notes in Mathematics, pages 111–124.
Springer-Verlag, 1972.

[HC10] P. Hliněný and M. Chimani. Approximating the crossing number of graphs
embeddable in any orientable surface. In Proc. SODA’10, pages 918–927.
SIAM, 2010. Proc. SODA ’10.

REFERENCES 83

[Hli06] P. Hliněný. Crossing number is hard for cubic graphs. Journal of Combi-
natorial Theory, Series B, 96:455–471, 2006.

[HS06] P. Hliněný and G. Salazar. On the crossing number of almost planar
graphs. In Proc. GD ’05, volume 4372 of LNCS, pages 162–173. Springer,
2006.

[HS07] P. Hliněný and G. Salazar. Approximating the crossing number of toroidal
graphs. In Proc. ISAAC ’07, volume 4835 of LNCS, pages 148–159.
Springer, 2007.

[HT73] J. Hopcroft and R. E. Tarjan. Dividing a graph into triconnected compo-
nents. SIAM J. Comput., 2(3):135–158, 1973.

[HT74] J. Hopcroft and R. E. Tarjan. Efficient planarity testing. J. ACM,
21(4):549–568, 1974.

[JLM98] M. Jünger, S. Leipert, and P. Mutzel. A note on computing a maximal
planar subgraph using PQ-trees. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 17(7):609–612, 1998.

[JM96] M. Jünger and P. Mutzel. Maximum planar subgraphs and nice embed-
dings: Practical layout tools. Algorithmica, 16(1):33–59, 1996. (special
issue on Graph Drawing, edited by G. Di Battista and R. Tamassia).

[JM97] Michael Jünger and Petra Mutzel. 2-layer straightline crossing minimiza-
tion: Performance of exact and heuristic algorithms. J. Graph Algorithms
Appl., 1(1):1–25, 1997.

[JTS89] R. Jayakumar, K. Thulasiraman, and M. N. S. Swamy. O(n2) algorithms
for graph planarization. IEEE Trans. Comp.-Aided Design, 8:257–267,
1989.

[KMP+06] E. de Klerk, J. Maharry, D. V. Pasechnik, R. B. Richter, and G. Salazar.
Improved bounds for the crossing numbers ofKm,n andKn. SIAM Journal
on Discrete Mathematics, 20(1):189–202, 2006.

[KPS07] E. de Klerk, D. V. Pasechnik, and A. Schrijver. Reduction of symmetric
semidefinite programs using the regular ∗-representation. Mathematical
Programming, 109(2):613–624, 2007.

[KR07] K. Kawarabayashi and B. Reed. Computing crossing number in linear
time. In Proc. STOC ’07, pages 382–380, 2007.

[Kra91] J. Kratochv́ıl. String graphs. II: Recognizing string graphs is NP-hard. J.
Comb. Theory Ser. B, 52(1):67–78, 1991.

[La 94] J. A. La Poutré. Alpha-algorithms for incremental planarity testing. In
Proc. 26th Annu. ACM Sympos. Theory Comput., pages 706–715, 1994.

[Lei83] F. T. Leighton. Complexity issues in VLSI: optimal layouts for the shuffle-
exchange graph and other networks. MIT Press, 1983.

[Lei84] F. T. Leighton. New lower bound techniques for VLSI. Mathematical
Systems Theory, 17:47–70, 1984.

[LG77] P. Liu and R. C. Geldmacher. On the deletion of nonplanar edges of a
graph. In Proc. 10th S.-E. Conf. on Combinatorics, Graph Theory and
Computing, pages 727–738, Boca Raton, FL, 1977.

[Man83] A. Mansfield. Determining the thickness of a graph is np-hard. In Math-
ematical Proceedings of the Cambridge Philosophical Society, pages 9–23,
1983.

84 CHAPTER 2. CROSSINGS AND PLANARIZATION

[MJ01] Petra Mutzel and Michael Jünger. Graph drawing: Exact optimization
helps! In M. Grötschel, editor, The Sharpest Cut, Series on Optimization.
MPS - SIAM, 2001. Festschrift zum 60. Geburtstag von Manfred Padberg.

[MKNF86] S. Masuda, T. Kashiwabara, K. Nakajima, and T. Fujisawa. An NP-hard
crossing minimization problem for computer network layout. Technical
Report SRC TR 86-80, Electrical Engineering Department and Systems
Research Center, University of Maryland, 1986.

[MKNF87] S. Masuda, T. Kashiwabara, K. Nakajima, and T. Fujisawa. On the NP-
completeness of a computer network layout problem. In Proceedings of the
IEEE International Symposium on Circuits and Systems, pages 292–295,
1987.

[MNKF90] S. Masuda, K. Nakajima, T. Kashiwabara, and T. Fujisawa. Crossing
minimization in linear embeddings of graphs. IEEE Trans. Comput.,
39(1):124–127, 1990.

[Moh99] B. Mohar. A linear time algorithm for embedding graphs in an arbitrary
surface. SIAM J. Discrete Math., 12:6–26, 1999.

[MZ99] P. Mutzel and T. Ziegler. The constrained crossing minimization problem.
In J. Kratochvil, editor, Graph Drawing (Proc. GD ’99), volume 1731 of
Lecture Notes in Computer Science, pages 175–185. Springer-Verlag, 1999.

[Nic68] T. A. J. Nicholson. Permutation procedure for minimising the number of
crossings in a network. IEE Proceedings, 115:21–26, 1968.

[PR07] S. Pan and R. B. Richter. The crossing number of K11 is 100. Journal of
Graph Theory, 56:128–134, 2007.

[PSS96] J. Pach, F. Shahrokhi, and M. Szegedy. Applications of the crossing num-
ber. Algorithmica, 16:111–117, 1996.

[PSŠ06] M. Pelsmajer, M. Schaefer, and D. Štefankovič. Odd crossing number
is not crossing number. In Proc. GD ’05, volume 3843 of LNCS, pages
386–396. Springer, 2006.

[PT97] J. Pach and G. Tóth. Graphs drawn with few crossings per edge. Combi-
natorica, 17(3):427–439, 1997.

[PT00] J. Pach and G. Tóth. Which crossing number is it, anyway? J. Comb.
Theory Ser. B, 80(2):225–246, 2000.

[Pul89] W. R. Pulleyblank. Polyhedral combinatorics. In G. L. Nemhauser,
A. H. G. Rinnooy Kan, and M. J. Todd, editors, Optimization, volume 1 of
Handbooks in Operations Research and Management Science, pages 371–
446. North-Holland, 1989.

[Pur97] Helen Purchase. Which aesthetic has the greatest effect on human under-
standing? In G. Di Battista, editor, Graph Drawing (Proc. GD ’97), vol-
ume 1353 of Lecture Notes Comput. Sci., pages 248–261. Springer-Verlag,
1997.

[RT97] C. Roos and T. Terlaky. Advances in linear optimization, 1997.

[Sch12] M. Schaefer, 2012. personal communication, joint work with D.
Štefankovič. Also mentioned in the unpublished manuscript The Graph
Crossing Number and Its Variants: A Survey.

[SV94] O. Sýkora and I. Vrt’o. On VLSI layout of the star graph and related
networks. The VLSI Journal, 17:83–93, 1994.

REFERENCES 85

[Zie00] T. Ziegler. Crossing Minimization in Automatic Graph Drawing. PhD
thesis, Max-Planck-Institut für Informatik, Saarbrücken, 2000.

3
Symmetric Graph Drawing

Peter Eades
University of Sydney

Seok-Hee Hong
University of Sydney

3.1 Introduction . 87
3.2 Basic Concepts for Symmetric Graph Drawing 89

Drawing of a graph • Automorphisms of a graph •

Symmetries of a graph drawing

3.3 Characterization of Geometric Automorphism Groups 91
3.4 Finding Geometric Automorphisms . 95
3.5 Symmetric Drawings of Planar Graphs 98

Triconnected planar graphs • Biconnected planar graphs •

One-connected planar graphs • Disconnected planar graphs
• Drawing algorithms

3.6 Conclusion . 108
Further topics • Open problems

Acknowledgments . 110
References . 111

3.1 Introduction

Symmetry is one of the most important aesthetic criteria that clearly reveals the structure
and properties of a graph. Graphs in textbooks on graph theory are normally drawn sym-
metrically. In some cases, a symmetric drawing may be preferred over a planar drawing.
As an example, consider the two drawings of the same graph in Figure 3.1 (from [KK89]).
The left drawing has five edge crossings, but eight symmetries (four rotations and four re-
flections). On the right is a planar drawing; it only has axial symmetry. Most people prefer
the drawing on the left. As another example, the Petersen graph is normally drawn as in
Figure 3.2. This drawing shows ten symmetries (five rotations and five reflections). In fact,
it can be shown that a drawing of the Petersen graph can have at most ten symmetries,
and Figure 3.2 is maximally symmetric.

Of course, every drawing has the trivial symmetry, the identity mapping on the plane.
The aim of symmetric graph drawing is to draw a graph with nontrivial symmetry. More
ambitiously, we aim to draw a graph with as much symmetry as possible.
Symmetries of a drawing of a graph G are clearly related to the automorphisms of G;

intuitively, a symmetry of a drawing of G induces an automorphism of the graph. For
example, in Figure 3.2, a rotational of the plane by 2π/5 is a symmetry of the drawing and
induces the automorphism (0, 1, 2, 3, 4)(5, 6, 7, 8, 9). A reflection of the plane in a vertical
axis induces the automorphism (1, 4)(6, 9)(7, 8)(2, 3). The automorphism group of a graph
G defines its “combinatorial symmetries.” However, not every automorphism can be rep-
resented as a symmetry of a drawing of G. For example, the automorphism group of the
Petersen graph has 120 elements, but, as mentioned above, a drawing can display only ten

87

88 CHAPTER 3. SYMMETRIC GRAPH DRAWING

Figure 3.1 Two drawings of the same graph: a planar drawing with eight symmetries
and five edge crossings, and a planar drawing with an axial symmetry [KK89].

Figure 3.2 A drawing of the Petersen graph.

of these. Symmetric graph drawing involves determining those automorphisms of a graph
G that can be represented as symmetries of a drawing of G.

This chapter describes a formal model for symmetric graph drawing in Section 3.2, and
gives a characterization of subgroups of the automorphism group of a graph that can be
displayed as symmetries of a drawing in Section 3.3. Most precise formulations of the
symmetric graph drawing problem are NP-complete. Section 3.4 describes a proof of the
NP-completeness of one such formulation and briefly reviews some heuristics for the general
symmetric graph drawing problem. Of course, we want a drawing of a graph to satisfy
other aesthetics as well as symmetry. In particular, it is useful to examine the problem
of constructing a planar straight-line drawing of a planar graph, such that symmetry is
maximized. Surprisingly, there is a linear-time algorithm for this problem; it is sketched
in Section 3.5. The chapter concludes with a brief survey of some other approaches to
symmetric graph drawing and some open problems.

3.2. BASIC CONCEPTS FOR SYMMETRIC GRAPH DRAWING 89

3.2 Basic Concepts for Symmetric Graph Drawing

3.2.1 Drawing of a graph

A graph G = (V,E) consists of a set V of vertices and a set E edges, that is, unordered
pairs of vertices. Unless explicitly stated otherwise, we assume that the graph is simple,
that is, it has no multiple edges and no self-loops.

A drawing D of a graph G consists of a point DV (u) in R2 for every vertex u ∈ V , and
a closed curve segment DE(u, v) in R2 for every edge (u, v) ∈ E. The curve DE(u, v) has
its endpoints at DV (u) and DV (v). Through most of this chapter, the curve DE(u, v) is a
straight-line segment.

For an investigation of symmetric graph drawing, we must take a little care about the
definition of the drawing of a graph. We allow two curves DE(u, v) and DE(u

′, v′) to cross
(share a point), but we have some non-degeneracy conditions as follows:1

ND1 The mapping DV is injective. This excludes, for example, the ultra-symmetric
case where all vertices are drawn at the origin.

ND2 A curve DE(u, v) must not contain a point DV (w) where u 6= w 6= v; in other
words, an edge must not intersect with a vertex to which it is not incident.

ND3 Two curves must not overlap; that is, they must not share a curve of nonzero
length. This excludes, for example, the axially symmetric case where all the
vertices of the graph are drawn on the x axis.

ND4 If two curves share a point, then they must cross at this point; that is, they
alternate in cyclic order around the crossing point.

Note that for straight-line drawings, ND2 implies both ND3 and ND4. Most of this chapter
is concerned with straight-line drawings, and so discussions of degeneracy concentrate on
ND1 and ND2.

3.2.2 Automorphisms of a graph

Basic concepts and terminology for permutation groups can be found in [Wie64].

An isomorphism from a graph G1 = (V1, E1) to a graph G2 = (V2, E2) is a one-
one mapping β of V1 onto V2 that preserves adjacency, that is, (u, v) ∈ E1 if and only
(β(u), β(v)) ∈ E2. An automorphism of a graph G = (V,E) is an isomorphism of G onto
itself, that is, a permutation of the vertex set that preserves adjacency. The order of an
automorphism β is the smallest positive integer k such that βk is the identity.

Any set of automorphisms of G that forms a group is called an automorphism group of
G; the set of all automorphisms of G is denoted by aut(G). The size of an automorphism
group is the number of elements of the group.

We have defined an automorphism group A of a graph as a permutation group on the
vertex set V of a graph G = (V,E). It is easy to see that this defines a permutation group
A′ acting on the edge set E, and it is often convenient to regard A as acting on E. For

1The graph drawing literature is somewhat inconsistent about the precise details of the definition of
a graph drawing. In some places, a drawing with these non-degeneracy conditions is called a strict,
clear, and/or proper. In this chapter, however, we use the term “graph drawing” to includes these
non-degeneracy conditions.

90 CHAPTER 3. SYMMETRIC GRAPH DRAWING

example, if β ∈ A and (u, v) ∈ E, then we write “the edge β(u, v)” to denote the edge
(β(u), β(v)).

A subset B = {β1, β2, . . . , βk} of an automorphism group A generates A if every element
of A can be written as a product of elements of B. We denote the group A generated by B by
〈β1, β2, . . . , βk〉. From the computational point of view, generators are important because
they give a succinct way to represent an automorphism group. If we were to represent a
permutation explicitly, then it may require Ω(n) space, where n = |V |. Thus, an explicit
representation of an automorphism group of size k may take space Ω(kn). In many cases
this is too large; for example, the space requirement may preclude a linear-time algorithm,
merely because the representation of the output is super-linear. To avoid this problem, we
usually represent a group by a set of generators; in general the set of generators is smaller
than the group. Most of the groups discussed in this chapter are generated by one or two
elements.

Many of the difficulties of symmetric graph drawing arise when vertices and/or edges are
fixed by an automorphism. For this reason, we need a careful notion of “fix.” Suppose that
A is an automorphism group of G = (V,E). The stabilizer of u ∈ V , denoted by stabA(u),
is the set of automorphisms in A that fix u, that is,

stabA(u) = {β ∈ A | β(u) = u}. (3.1)

The definition can be extended to subsets of V : if Y ⊆ V , then

stabA(Y) = {β ∈ A | ∀y ∈ Y, β(y) ∈ Y }. (3.2)

Note that the stabilizer of a set fixes the set setwise.
For each automorphism β we denote {u ∈ V | β(u) = u} by fixβ . The set of vertices

that are fixed elementwise by every element of A is denoted by fixA, that is,

fixA = {v ∈ V | ∀ β ∈ A, β(v) = v }. (3.3)

Note that while stabA(Y) is a set of group elements, fixA is a set of vertices. Further, the
expression “fix the edge (u, v)” does not necessarily entail “fixing u and fixing v”; it could
mean that u and v are swapped.

If β ∈ A and u ∈ V , then the orbit of u under β, denoted by orbitβ(u), is the set of
images of u under 〈β〉, that is,

orbitβ(u) = {βi(u) | 0 ≤ i < k}, (3.4)

where β has order k. We can extend this definition to groups: the orbit of u under A is

orbitA(u) = {β(u) | β ∈ A}. (3.5)

Note that the orbits partition V . The following theorem is fundamental in finite group
theory.

Theorem 3.1 (Orbit-stabilizer theorem [Arm88]) Suppose that A is a group acting
on a set X and let x ∈ X. Then |A| = |orbitA(x)| × |stabA(x)|.

The following corollary is helpful in the following sections.

COROLLARY 3.1 Suppose that A is a group acting on a set X.

• If A has no fixed points, then |orbitA(x)| = |A| for every x ∈ X.

• If A has one fixed point w ∈ X, then |orbitA(x)| = |A| for every x 6= w ∈ X.

3.3. CHARACTERIZATION OF GEOMETRIC AUTOMORPHISM GROUPS 91

3.2.3 Symmetries of a graph drawing

Symmetry is an intuitive notion that can be formally defined in many different ways. In
this chapter we will concentrate on a standard mathematical notion of symmetry; other
notions are discussed in Section 3.6.

An isometry is a mapping of the plane onto itself that preserves distances. A symmetry
of a drawing D = (DV , DE) of a graph G = (V,E) is an isometry σ of the plane that maps
the drawing onto itself, that is:

• for every vertex u ∈ V , there is a vertex v ∈ V such that σ(DV (u)) = DV (v),
and

• for every edge (u, v) ∈ E, there is an edge (a, b) ∈ E such that σ(DE(u, v)) =
DE(a, b).

Note that if σ is a symmetry of a drawing D = (DV , DE) of a graph G = (V,E), then
β = D−1

V σDV is an automorphism of G. We say that D displays β. Given an automorphism
β, if there is a drawing which displays β, then we say that β is geometric.

An automorphism group A is geometric if every element of A is displayed in a single
drawing; in this case the drawing displays A.

To define the intuitive notion of “maximally symmetric drawing” of a graph, we need to
decide what it means for one drawing to display more symmetry than another. Here we
take a simple view: that if D displays A and D′ displays A′, then D is more symmetric than
D′ if A has a larger size than A′. This means that searching for a maximally symmetric
drawing entails searching for a maximum size geometric automorphism group.

3.3 Characterization of Geometric Automorphism Groups

Suppose that a drawing D of a graph G = (V,E) displays the automorphism group A. Let
A′ denote the group of symmetries of D. It is useful to note the group-theoretic relationship
between A and A′. If D contains three non-collinear points, then A is isomorphic to A′

because a motion of three non-collinear points in the plane uniquely determines an isometry.
If all the vertices of the drawing lie on a single line, it may be the case that |A′| = 4 while
|A| = 2, because the rotation by π gives the same automorphism as a reflection in the line.
However, this is a pathological case, because the only graphs that have drawings on a single
line are sets of paths; in general, we assume that A is isomorphic to A′.

Next, we consider the simple question: Given an automorphism group A of a graph G,
is there a drawing of G that displays A? The answer is straightforward, since a symmetry
of a finite set of points in the plane is relatively straightforward. The following theorem is
an extension of results of Lipton et al. [LNS85], Manning et al. [MA86, MA88, AM88], and
Lin [Lin92] to handle degeneracies.

Theorem 3.2 Suppose that A is an automorphism group of a graph G. Then:

(a) A can be displayed as a reflection if and only if |A| = 2 and fixA induces a set
of disjoint paths.

(b) A can be displayed as a rotation if and only if all the following conditions hold

i. A has one generator ρ, and

ii. |fixA| ≤ 1, and

iii. if A fixes an edge, then |fixA| = 0.

92 CHAPTER 3. SYMMETRIC GRAPH DRAWING

C1

C2

C3

R0

R1

R2

R3

R4

R5

R6

R7

Figure 3.3 A circular grid.

(c) A can be displayed as a dihedral group if and only if all the following conditions
hold.

i. A is dihedral; that is, it has two generators α and ρ such that α2 = 1, ρk = 1
for some k > 1, and αρ = ρ−1α.

ii. |fixA| ≤ 1.

iii. fixα induces a set of disjoint paths.

iv. If ρ fixes an edge, then |fixA| = 0.

The proof of Theorem 3.2 is an algorithm, stated below, that takes a graph G and an
automorphism group A satisfying the conditions of the theorem, and draws G to display A.
The drawing is on a circular grid as illustrated in Figure 3.3. An m × n circular grid has
n ≥ 2 equally spaced rays R0, R1, . . . , Rn−1 from the origin, that is, the ray Ri makes an
angle of 2πi/k to the x axis. There are m ≥ 1 circles C1, C2, . . . , Cm centered at the origin,
in increasing order of radius. However, the circles may not be equally spaced. The drawing
algorithm below chooses a radius for each circle, and places vertices at the grid points, that
is, at the intersection points between the circles and the rays.
To prove part (c) of Theorem 3.2, we need the following technical lemma.

LEMMA 3.1 Suppose that the radius of the circle Ci in the m × n circular grid is ni,
and there are three circular grid points that lie on a straight line ℓ. Then ℓ passes through
the origin.

Proof: Suppose that u, v and w are circular grid points on Ci, Cj , and Ck, respectively,
and that i ≥ j ≥ k.

Note the case i = j = k is not possible.

3.3. CHARACTERIZATION OF GEOMETRIC AUTOMORPHISM GROUPS 93

Cj

Ci

v

u

Ck

O

Figure 3.4 Three-in-a-line for the circular grid: first case.

First, consider the case that i ≥ j > k, as in Figure 3.4. We show that the line segment
between u and v cannot intersect Ck unless it passes through the origin.
Assume that such an intersection occurs. Then let θ = ∠Ouv and φ = ∠Ovu. Since the

line segment between u and v intersects Ck with k < j and the radius of ck is at least n
times smaller than the radii of Ci and Cj , it follows that sin(θ) ≤ n−1 and sin(φ) ≤ n−1.
One can deduce that for n > 2:

sin(θ + φ) < 2n−1. (3.6)

However, considering the triangle uOv and noting that u and v are at circular grid points,
we can see that θ+φ is an integer multiple of 2πn−1. If both are nonzero, then θ+φ ≥ 2πn−1;
this implies that sin(θ+φ) ≥ 2n−1, contradicting the inequality above. It follows that both
θ and φ are zero, and so the line segment between u and v passes through the origin.

For the case that i > j = k, as in Figure 3.5, a variation of the argument above can be
used to show that ℓ passes through the origin.

✷

Next, we prove Theorem 3.2. We prove each of the parts (a), (b), and (c) in turn.

Part (a) Suppose that A is displayed as a reflection. Then every vertex u on the
line of reflection is fixed by the reflection and thus u ∈ fixA. Any cycle or vertex of degree
more than two on this line violates the non-degeneracy conditions, thus fixA induces a set
of disjoint paths.

Conversely, suppose that A = {1, α} is an automorphism group such that fixA induces
a set of disjoint paths. We use the following algorithm.

First, draw V −fixA on a circle about the origin, so that the x coordinates of u and α(u)
are the same, then draw the edges induced by V − fixA as straight lines. Note that, so far,
the drawing is axially symmetric about the y axis and it is non-degenerate.

Next, note that the edges induced by V − fixA cross the y axis at a finite number of
places. Draw fixA on the y axis, one path at a time, in such a way that the vertices of
fixA avoid the edges induced by V − fixA.

Finally, draw the edges between V − fixA and fixA.

94 CHAPTER 3. SYMMETRIC GRAPH DRAWING

Cj

Ci

v

u

Ck

w

O

Figure 3.5 Three-in-a-line for the circular grid: second case.

This drawing displays α as a reflection in the y axis; note that it satisfies the non-
degeneracy conditions.

Part (b) Suppose that A is displayed by a rotation. It is clear that A has one
generator. A rotation fixes only one point of the plane, and thus A can fix at most one
vertex. If A fixes an edge as well as a vertex w, then w must lie at the midpoint of the
edge, and thus the drawing is degenerate.

Conversely, suppose that A = 〈ρ〉 is an automorphism group satisfying the conditions
of the lemma. Assume, for the moment, that fixA is empty. Our algorithm places every
vertex u on a circle of radius one about the origin; it must choose the angle θu that the line
between u and the origin makes with the x axis.

From Corollary 3.1, each orbit has the same size. Thus, there are n/k orbits
O1, O2, . . . , On/k, where n = |V |. We choose an element ui from Oi and, for j =
0, 2, . . . , k − 1, place ρj(ui) so that θρj(ui) = 2π(i + jn/k)/n. Effectively, this spaces the
vertices equally around the circle so that the angle between consecutive elements of the
same orbit is 2π/k. Thus the drawing displays A with a rotation by 2π/k. It is clear that
this drawing is non-degenerate.

If fixA is nonempty, then it has one element c, which we place at the origin. This
preserves symmetry but introduces a possible degeneracy: the central fixed vertex may
lie on an edge that forms a diameter of the circle. However, such an edge is fixed by a
rotation by π and, from the conditions of part (b) of the lemma, cannot occur when fixA

is nonempty.

Part (c) Finally, suppose that A is dihedral. Suppose that A = 〈α, ρ〉, where
α2 = 1 and ρk = 1, with k ≥ 2. If fixρ is nonempty, then it forms a trivial orbit of 〈ρ〉.
Denote the nontrivial orbits of 〈ρ〉 by O1, O2, . . . , On/k, where n = |V − fixA|.

For 0 ≤ i ≤ k−1, the automorphism ρi will be displayed as a rotation by 2πi/k about the
origin, and the automorphism ρ−iαρi will be displayed as a reflection in the line through
the origin at an angle of 2πi/k to the x axis.

We will use a circular grid with n rays R0, R1, . . . , Rn−1 and n/k circles C1, C2, . . . , Cn/k.
First, we draw fixρ−iαρi for each i, starting with i = 0. We assume first that fixρ = ∅.

3.4. FINDING GEOMETRIC AUTOMORPHISMS 95

Since fixα is a set of disjoint paths, we can draw it on the x axis so that each vertex
is at a grid point of the circular grid and no vertex lies on any edge with which it is not
adjacent. If k is even, then we must ensure that α(fixρ−k/2αρk/2) = fixρ−k/2αρk/2 ; this is
easily achieved.

Now consider fixρ−iαρi .
Note that if u ∈ fix〈α〉, then ρi(u) ∈ fixρ−iαρi ; in other words, if u is fixed by α then

every vertex in orbitρ(u) is fixed by a conjugate of α. We can draw fixρ−iαρi on Rni/k and
Rn(k−i)/k by rotating the drawing of fixα by 2πi/k. In this way, we draw orbitρ(u) for
every vertex u ∈ fixα.

Every other orbit is drawn on the innermost circle C1. We use a similar method to that
for cyclic groups, except that we display α. To do this, we choose a vertex u1 from an orbit,
and draw u1 on ray R1. Then draw α(u1) on ray Rn−1. Next, we choose a vertex u2 from
another orbit and draw u2 on R2 and α(u2) on Rn−2. This continues until we have placed
one vertex from each orbit. To place the remaining vertices from these orbits, we just rotate
by 2π/k.

The resulting drawing displays A; we must show that it is not degenerate.
From Lemma 3.1, we can assume that if there is a degeneracy, then there is a vertex w

lying on an edge (u, v) with w 6= u, v, and the line through u, w, and v passes through
the origin. If u ∈ fixα, then since v and w are on the line through u and the origin, we
must have v, w ∈ fixα. This is impossible since the layout method for fixα precludes
degeneracies. We can deduce that neither u nor v is in fixρ−iαρi for any i. Hence, we
conclude that u and v are on C1. The only possible degeneracy is if w is the central vertex,
fixed by all automorphisms; thus, fixA 6= ∅. However, 〈ρ〉 fixes the edge (u, v), contradicting
the conditions of the theorem. This completes the proof of Theorem 3.2.

The proof of Theorem 3.2 essentially consists of an algorithm for the following problem.

Geometric Automorphism Drawing Problem (GADP)

Instance: A graph G, and an automorphism group A of G given as a set of at most
2 generators.

Output: If possible, a straight-line drawing of G that displays A.

COROLLARY 3.2 There is a linear-time algorithm that solves the Geometric Automor-
phism Drawing Problem.

Note that the resolution of the drawing obtained by the proof of Theorem 3.2 is poor in the
dihedral case, because the radii of the circles in the circular grid used increase exponentially.

Theorem 3.2 does not solve the main problem in symmetric graph drawing: given a
graph, find its largest geometric automorphism group. The next section shows that it is
NP-complete to find such a group.

3.4 Finding Geometric Automorphisms

In this section, we discuss the complexity of computing geometric automorphisms, and,
since the problem is NP-complete, we briefly mention heuristics.

The relationship between automorphisms of a graph and symmetries of drawings of the
graph suggests that the problem of drawing a graph symmetrically is at least as hard as
graph isomorphism. Manning [Man90] has shown a surprisingly stronger result: the problem
is NP-hard. The intuition behind Manning’s result comes from two directions. First, as
noted in Section 3.3, the major difficulties in drawing graphs symmetrically arise from the

96 CHAPTER 3. SYMMETRIC GRAPH DRAWING

u1

u2

u3

u4

Figure 3.6 The auxiliary graph H.

fixed points of the automorphisms. Secondly, a result of Lubiw [Lub81] states that finding
a fixed-point free automorphism of a graph is NP-complete.

In fact, Manning shows that a number of problems related to symmetric graph drawing
are NP-hard. Here, we study just one of these problems: detecting whether a graph has an
automorphism that can be displayed as a reflection.

Axial Geometric Automorphism Problem (AGAP)

Instance: A graph G.

Question: Is there an automorphism of G that can be displayed as a reflection?

Theorem 3.3 The axial geometric automorphism problem is NP-complete.

Proof: Lubiw [Lub81] showed that the following problem is NP-hard.

Fixed Point Free Automorphism Problem (FPFAP)

Instance: A graph G.

Question: Is there an automorphism of G with no fixed points?

We show that FPFAP reduces to AGAP.
Suppose that G is an instance of FPFAP with n vertices. We assume without loss of

generality that G is connected and every vertex has degree at least 2. Define a graph H as
follows: H has a path P = (u1, u2, . . . , un+1). For 1 ≤ i ≤ n+ 1, ui is joined to two paths,
each of length n+ i. This is illustrated in Figure 3.6.

Now consider an automorphism β of H. It is clear that for 1 ≤ i ≤ n+1, β(ui) = ui, and
β either fixes or swaps the two paths joined to ui. If a drawing D of H displays β, then it
is displayed as a reflection, and P lies on the axis of reflection with the paths attached to
each ui on each side of the axis.

Now form a graph G′ from H and G. The vertex set is the union of the vertex sets of H
and G, plus extra vertices wv

0 , w
v
1 , . . . , w

v
n for each vertex of v of G. For 2 ≤ i ≤ n, join ui to

every vertex of G. For each vertex v of G, join wv
0 to v, and join all vertices wv

0 , w
v
1 , . . . , w

v
n

together to make a clique of size n+ 1.
Note that G′ can be formed in polynomial time.
We claim that G′ has an axial geometric automorphism if and only if G has a fixed point

free automorphism.

3.4. FINDING GEOMETRIC AUTOMORPHISMS 97

First, suppose that G has a fixed point free automorphism β. It is clear that one can
extend β to G′ to give an automorphism that satisfies part (a) of Theorem 3.2, and so G′

has an axial geometric automorphism group.
Now suppose that G′ has an axial geometric automorphism γ.
We claim that γ cannot map a vertex w of H to a vertex v of G, or to one of the new

vertices wv
i . This is because every vertex of G is adjacent to a clique of size n + 1, while

no vertex of H has this property. Further, γ cannot map a vertex of G to one of the new
vertices wv

i , because each wv
i is in a clique of size n + 1, and none of the original vertices

have this property. Thus, γ restricted to H is an automorphism β of H; as mentioned
above, the only drawing that displays β has P lying on the axis of reflection.
Also, γ restricted to G is an automorphism δ of G. Suppose that δ has a fixed point v.

Recall that v is joined by an edge to a vertex ui in P ; this means that the induced subgraph
fixγ has a vertex of degree at least three. From Theorem 3.2, this is impossible. Thus δ is
fixed-point-free.

Finally, note that AGAP is in NP, because one can guess an automorphism group, and,
using Theorem 3.2, check whether it is geometric. ✷

The NP-completeness results have led to a number of heuristic approaches; see [dF99,
Kam89, Lin92, LNS85].

The most common are the generic multidimensional scaling, or force directed meth-
ods [dF99, Ead84, Kam88, Lin92]. Roughly speaking, this method projects a high-
dimensional drawing of the graph into low dimensions. The first step is to define a dis-
tance function d between vertices, and then the graph is drawn in a high-dimensional space
in such a way that the Euclidean distance in the high-dimensional space is equal or close
to the distances defined by d. In some cases, this (high-dimensional) drawing is unique
up to isometry; this implies that every automorphism of the graph is a symmetry of the
drawing. In other words, it achieves maximum symmetry in the high dimension. The next
step is to project the high-dimensional drawing into a low-dimensional space (either 2 or 3
dimensions) in such a way that the distances are preserved as much as possible.
As an example of such a method, de Fraysseix [dF99] uses the Czekanovski-Dice semi-

distance for a graph G = (V,E):

d(u, v) =

√

1− 2
|Nu ∩Nv|

|Nu|+ |Nv|
. (3.7)

(A semi-distance d : X → R is a function that is almost a distance function: it satisfies
two of the axioms of a distance function: d(u, v) = d(v, u) and d(u, v) + d(v, w) ≥ d(u,w).
However, it is possible that there are distinct elements u, v ∈ X with d(u, v) = 0.) De
Fraysseix uses projections defined by the principal components of the corresponding inner
product matrix whose entries are defined by a pair s, t of vertices as follows:

Wst =
1

2
(d2s + d2t − d2V), (3.8)

where for w = s, t,

d2w =
1

n

∑

u∈V

d2(w, u), (3.9)

and

d2V =
1

n

∑

w∈V

d2w. (3.10)

98 CHAPTER 3. SYMMETRIC GRAPH DRAWING

These projections are remarkably successful in displaying two dimensional symmetry;
see [dF99] for details.

It is common to look at such methods as a system of forces: for example, one can simulate
a system of forces between vertices where the force exerted on u by v is proportional to the
distance d(u, v). A minimum energy configuration defines a drawing, and in many cases
this drawing displays symmetries. For example, one can view the Tutte method [Tut63,
DETT99] in this way. In fact, one of the reasons for the popularity of force directed methods
is the fact that the drawings often display some symmetry. One can give some explanation
(see [EL00, Lin92]) of why the approach works.

3.5 Symmetric Drawings of Planar Graphs

In this section, we describe a linear-time algorithm to draw planar graphs with no edge
crossings and as much symmetry as possible.

The concept of geometric automorphism in Section 3.2.3 can be extended to planar draw-
ings: an automorphism β of a graph G is planar if there is a planar drawing of G that
displays β, and an automorphism group A is a planar automorphism group if there is a
planar drawing which displays every element of A.
The problem of finding automorphisms of a planar graph can be solved in linear time

(see [HW74, Won75]); however, it is clear that not all automorphisms are geometric. Fur-
ther, not every geometric automorphism is planar. For example, the complete graph K4

with four vertices has a dihedral geometric automorphism group of size eight, but this group
is not planar. The largest planar automorphism group of K4 has size six.
The following theorem summarizes the result.

Theorem 3.4 There is a linear-time algorithm that constructs maximum planar auto-
morphism group of a planar graph.

The remainder of this section is a sketch of a proof of Theorem 3.4. The algorithm
to prove the theorem uses a connectivity decomposition. We decompose the graph into
connected components, then decompose each connected component into biconnected com-
ponents, and finally decompose each biconnected component into triconnected components.
Different algorithms are needed for triconnected, biconnected, one-connected, and discon-
nected graphs. Each uses the algorithms for higher connectivity as subroutines. Details of
the proof can be found in [HE05, HE06, HE03, HME06].

In Section 3.5.5, we briefly describe the drawing algorithms.

3.5.1 Triconnected planar graphs

This section describes an algorithm for finding planar automorphism groups of maximum
size for triconnected planar graphs.

The uniqueness of the faces of a triconnected planar graph G = (V,E) means that an
automorphism group A defines a permutation group acting on the set F of faces of G.
Effectively this means that A defines an automorphism group of the dual G∗ of G. We can
regard A as acting on G∗, and write, for example, “the face β(f)” for some β ∈ A, f ∈ F .

It is well known that a triconnected planar graph can be represented as the skeleton of
a polyhedron in three dimensions [SR34]. A more surprising and less well known result,
due to Mani [Bab95, Man71], states that the automorphism group of a triconnected planar
graph can be completely encapsulated in the symmetries of a polyhedron. The symmetry
finding algorithm relies on this fundamental result.

3.5. SYMMETRIC DRAWINGS OF PLANAR GRAPHS 99

Figure 3.7 Example of star triangulation.

Theorem 3.5 (Mani [Bab95, Man71]) Suppose that G is a triconnected planar graph.
Then there is a convex polytope P in R3 such that G is the skeleton of P and the full
automorphism group of G is displayed by P .

Mani’s theorem leads to an elegant characterization of planar automorphisms of tricon-
nected planar graphs.

Theorem 3.6 Let G be a triconnected planar graph. An automorphism group of G is
planar if and only if it is the stabilizer of a face of G.

Proof: Every planar automorphism fixes the outside face. Further, if A stabilizes a face
f then, using Theorem 3.5, a projection about f from the polyhedron to the plane gives a
symmetric drawing. ✷

An outline of the algorithm for the triconnected case of Theorem 3.2 is as follows.

Algorithm Max PAG tricon

1. Find a face f of G such that the stabilizer stabA(f) of f in A is maximized.

2. Find the orbits of stabA(f).

3. Find generators of stabA(f).

For the first step, note that from Theorem 3.1, we must find an orbit (in the dual G∗) of
minimum size. A linear-time algorithm of Fontet [Fon76] takes a triconnected planar graph
G as input and outputs the orbits on vertices of aut(G). Using Fontet’s algorithm, we can
compute the orbits of G∗, then choose an orbit of minimum size. Choose a face f in this
minimum orbit; then f can be used as the outside face of an embedding that displays the
maximum number of symmetries.

The next step is to find the orbits of stabA(f). This can be done by transformations of
the graph, and then using Fontet’s algorithm again. The first part of the transformation is
star triangulation: we triangulate each internal face by inserting a new vertex in the face
and joining it to each vertex of the face. This process is illustrated in Figure 3.7.

It is not difficult to show that the star triangulation takes linear time, and the new graph
has exactly the same planar automorphism group as the original graph (see [HME06]).

Next, we transform the graph to ensure that the outside face f has more than three ver-
tices. If f has three vertices v0, v1, v3, we draw a hexagon surrounding G in the plane, with
vertices w0, w1, . . . , w5 in clockwise order. Insert the edges v0w0, v0w1, v0w2, v1w2, v1w3,

100 CHAPTER 3. SYMMETRIC GRAPH DRAWING

Figure 3.8 Adding an outside face.

v1w4, v2w4, v2w5, and v2w0. The transformation is shown in Figure 3.8. The transformation
preserves automorphisms that fix f .

The transformed graph has a new outside face with more than three vertices, and all
other faces are triangles. Now apply Fontet’s algorithm to the transformed graph. The
outside face must be fixed by all automorphisms, since all other faces have size three. Thus,
Fontet’s algorithm gives the orbits of stabA(f) in the transformed graph, and we can extract
the orbits of A on the vertices of G.

The third and final step is to find generators of the planar automorphism group. Sup-
pose that the vertices on the outside face f are v0, v1, . . . , vm−1, in clockwise order. If
v0, v1, . . . , vm−1 are all fixed by A, then A is trivial. Otherwise, let vi, vj , vk be three con-
secutive vertices in the same nontrivial orbit of A, where j − i is as small as possible and
vk is the same as vi if the orbit has size 2.

We need to introduce further terminology: a flag of an embedded graph is a triple
(v, w, f), where v and w are adjacent vertices and f is a face that has the edge (v, w)
on its boundary. The action of automorphisms on flags uniquely identifies them, as stated
in the following lemma.

LEMMA 3.2 Let G be a triconnected planar graph. Let F = (v, w, f) and F ′ =
(v′, w′, f ′) be flags of G. Then there is at most one automorphism of G that maps F
onto F ′. Moreover, there is a linear-time algorithm that finds that automorphism or deter-
mines that it does not exist.

Lemma 3.2 is folklore in graph automorphism theory; a proof is in [HME06].

We can apply Lemma 3.2 to find three possible automorphisms or prove that they do not
exist. First, we compute three possible automorphisms α, ρ1, ρ2, as follows:

• α is the automorphism mapping the flag (vi, vi+1, f) onto the flag (vj , vj−1, f),
if that automorphism exists. (That is, a reflection that exchanges vi and vj .)

• ρ1 is the automorphism mapping the flag (vi, vi+1, f) onto the flag (vj , vj+1, f),
if that automorphism exists. (That is, a rotation by j − i positions.)

• ρ2 does not exist in the case that vk = vi. Otherwise, ρ2 is the automorphism
mapping the flag (vi, vi+1, f) onto the flag (vk, vk+1, f), if that automorphism
exists. (That is, a rotation by k − i positions.)

This allows us to compute generators for A, as follows.

3.5. SYMMETRIC DRAWINGS OF PLANAR GRAPHS 101

• If α does not exist, then ρ1 exists and A is a cyclic group of size m/(j − i)
generated by the rotation ρ1.

• If α exists but neither ρ1 nor ρ2 exists, then A is the group of size 2 generated
by the reflection α.

• If α and ρ1 exist, then A is the dihedral group of size 2m/(j − i) generated by
the reflection α and the rotation ρ1.

• Otherwise, α and ρ2 exist, and A is the dihedral group of size 2m/(k−i) generated
by the reflection α and the rotation ρ2.

We summarize this section with the following lemma.

LEMMA 3.3 Algorithm Max PAG tricon computes generators for the largest planar
automorphism group of a triconnected planar graph in linear time.

3.5.2 Biconnected planar graphs

If the input graph G is biconnected, then we break it into triconnected components and
apply the algorithm for triconnected graphs in Section 3.5.1. However, this process is not
as simple as it sounds.

We use a version of the “SPQR-tree” to represent the decomposition of a biconnected
planar graph into triconnected components. Various versions of the SPQR tree appear in the
literature; the version that we use is closely related to the original version of Tutte [Tut66].

It is useful to review the definition of triconnected components [HT73]. If G is tricon-
nected, then G itself is the unique triconnected component of G. Otherwise, let u, v be a
separation pair of G. We split the edges of G into two disjoint subsets E1 and E2, such that
|E1| > 1, |E2| > 1, and the subgraphs G1 and G2 induced by E1 and E2 only have vertices
u and v in common. Form the graph G′

1 by adding an edge (called a virtual edge) between u
and v; similarly, form G′

2. We continue the splitting process recursively on G′
1 and G′

2. The
process stops when each resulting graph reaches one of three forms: a triconnected simple
graph, a set of three multiple edges (a triple bond), or a cycle of length three (a triangle).
The triconnected components of G are obtained from these resulting graphs. They may be
of three types:

1. a triconnected simple graph;

2. a bond, formed by merging the triple bonds into a maximal set of multiple edges;

3. a polygon, formed by merging the triangles into a maximal simple cycle.

The triconnected components of G are unique. See [HT73] for further details.
Now we can describe the SPQR tree. Each node v in the SPQR tree is associated with a

graph skeleton(v), corresponding to a triconnected component. There are several types of
nodes in the SPQR tree, corresponding to the type of triconnected components described
above. The edges of the SPQR tree are defined by the virtual edges, that is, if u and v are
two nodes whose skeletons share a virtual edge, then u and v are connected in the SPQR
tree.

The SPQR tree can be rooted at its center (if the tree has two centers, it can be rooted at
either one). The motivation for using the rooted version is that the SPQR tree is unique for
each biconnected planar graph [Bab95, DT92]. This means that the triconnected component
corresponding to the root of the SPQR-tree is fixed by a planar automorphism group of a
biconnected planar graph. Further, each leaf is mapped to a leaf. These two properties of
the rooted SPQR tree are essential for our algorithm outlined below.

102 CHAPTER 3. SYMMETRIC GRAPH DRAWING

To state the algorithm, we need some more terminology. We say that a virtual edge e of
skeleton(v) is a parent (child) virtual edge if e corresponds to a virtual edge of u which is
a parent (resp. child) node of v. We define a parent separation pair s = (s1, s2) of v as the
two endpoints of a parent virtual edge e.

The overall algorithm is composed of three steps.

Algorithm MAX PAG bicon

Step 1. Construct the SPQR-tree T of G.

Step 2. Reduction: For each level i of T (from the lowest level to the root level)

(a) For each leaf node on level i, compute labels on the parent virtual edge in
the leaf node.

(b) For each leaf node on level i, label the corresponding virtual edge in the
parent node with the labels.

(c) Remove the leaf nodes on level i.

Step 3. Compute a maximum size planar automorphism group at the labeled center.

We briefly describe each step of the algorithm. The first step is to construct the SPQR-tree
for the input biconnected planar graph. This can be done in linear time using the classical
Hopcroft-Tarjan algorithm [HT73].

The second step, reduction, is the most important. This takes the rooted SPQR-tree of a
biconnected graph, and proceeds up the SPQR-tree from the leaf nodes to the center level
by level, computing labels. The labels consist of integer and boolean values that capture
some information of the planar automorphisms of the leaf nodes. First, it computes the
labels for the leaf nodes. Then, it labels the corresponding virtual edge in the parent node
and delete each leaf node. The reduction process stops when it reaches the root.

The reduction process clearly does not decrease the planar automorphism group of the
original graph. This is not enough; we need to also ensure that the planar automorphism
group is not increased by reduction. This is the role of the labels. As a leaf v is deleted, the
algorithm labels the virtual edge e of v in skeleton(u) where u is a parent of v. Roughly
speaking, the labels encode enough information about the deleted leaf to ensure that planar
automorphisms of the labeled reduced graph can be extended to a planar automorphisms
of the original graph.

We illustrate the basic idea of the algorithm with an example.

Consider the biconnected graph represented in Figure 3.9. Here the graph G has an SPQR
tree with three leaves; these are triconnected components, G1, G2, and G3, illustrated by
shaded blobs. The remainder of the graph, G∗, is illustrated by a shaded oval. This is
connected to the leaves by separation pairs {ui, vi}, for i = 1, 2, 3..

Intuitively, G can be drawn with an axial symmetry (a reflection in a horizontal line) as
long as:

1. L1 is isomorphic to L2 with an isomorphism that maps u1 to u2 and v1 to v2.

2. L3 has an axial planar automorphism that swaps u3 with v3.

3. G∗ has an axial planar automorphism that swaps u3 with v3, and maps u1 to u2

and v1 to v2.

To decide whether G can be drawn with an axial symmetry, we maintain a number of
labels, including:

3.5. SYMMETRIC DRAWINGS OF PLANAR GRAPHS 103

G*

L1

L2

L3

v1

u1

v2

u2

v3

u3

Figure 3.9 A biconnected graph.

G*

v1

u1

v2

u2

v3

u3

IP(L 1)

IP(L 2)

Aswap (L3)

Figure 3.10 Labels on the reduced biconnected graph.

1. An isomorphism code IP that has the property that IP (L1) = IP (L2) if and
only if L1 is isomorphic to L2 with an isomorphism that maps u1 to u2 and v1
to v2.

2. A boolean axial swap label Aswap that has the property that Aswap(L3) = true
if and only if L3 has an axial planar automorphism that swaps u3 with v3.

These labels can be computed at Step 2(a) of Algorithm MAX PAG bicon, then transferred
to the parent virtual edges in G∗ at Step 2(b). Then Step 2(c) gives the labeled reduced
graph illustrated in Figure 3.10.

The reduction then continues to the next iteration of Step 2, operating on the labeled
reduced graph in Figure 3.10. This continues to the root of the SPQR tree.

In fact, the reduction step is much more complex than this example suggests. There are
seven different kinds of labels and separate algorithms for computing these labels for each
type of triconnected component. Details of these algorithms are in [HE05].

104 CHAPTER 3. SYMMETRIC GRAPH DRAWING

Step 3 of Algorithm MAX PAG bicon computes a maximum size planar automorphism
group at the center, using the information encoded on the labels. Again this step is quite
complex, with separate algorithms for computing these labels for each type of triconnected
component and each type of center (the center of the SPQR tree can be a node or and
edge). Details of these algorithms are in [HE05].

3.5.3 One-connected planar graphs

The algorithm for computing a maximum size planar automorphism group of one-connected
planar graph uses a reduction process that is similar to the biconnected case. For one-
connected graphs, we take the block-cut vertex tree (the BC-tree). The BC- tree defines the
structure of the biconnected components of a graph. If G is a one-connected graph, then
a maximal biconnected subgraph of G is a block, or a biconnected component. Two blocks
share a cut vertex. The BC-tree has a B-node for each block of G and a C-node for each
cut vertex of G. There is an edge between the B-node B and the C-node c if c is a vertex
of B. The BC-tree can be computed in linear time [AHU83].

Again we can choose the center of the BC-tree as a root, and the rooted BC-tree is
unique. This property allows a reduction and labeling process similar to that described in
the previous section, although the details are very different; see [HE06]. The algorithm uses
the algorithms for the biconnected case as subroutines.

3.5.4 Disconnected planar graphs

Drawing disconnected graphs is surprisingly challenging (see, for example, [FDK01]). In this
section, we give an intuitive explanation of an algorithm for finding planar automorphisms
of a disconnected graph G. The algorithm uses the algorithms for the higher-connectivity
cases as subroutines. For the purposes of an intuitive explanation, we consider problems of
arranging objects in the plane to maximize symmetry.

First, suppose that we have a set of colored discs, with nj discs of color j, for j =
1, 2, . . . ,m. Each disc is circular and has radius one. We want to arrange the discs in
the plane so that no two discs overlap, and the arrangement is as symmetrical as possible.
We can make a picture something like a flower: one disc in the center, and the others as
“petals.” Such an arrangement is in Figure 3.11; here m = 2, n1 = 4 and n2 = 6, and the
discs are arranged to have a dihedral group of size 6.

The center of the flower may be empty. In this case, all discs must be arranged as petals;
if there are k petals, then nj must divide k for j = 1, 2, . . . ,m. If the center of the flower
has a disc of color i, ni − 1 divides k, and for j 6= i, nj divides k. We can deduce that the

Figure 3.11 A symmetrical arrangement of circular discs.

3.5. SYMMETRIC DRAWINGS OF PLANAR GRAPHS 105

Figure 3.12 A symmetrical arrangement of polygonal discs.

Figure 3.13 Nesting of discs with holes.

maximum symmetry group is dihedral of size 2k as long as the following equation holds:

k = max{gcd(n1, n2, . . . , nm),
m

max
i=1

gcd(n1, n2, . . . , ni−1, ni − 1, ni+1, . . . , nm)}. (3.11)

With some clever computation of the gcds, we can compute equation (3.11) and a maximally
symmetric layout of the discs in time O(n1 + n2 + · · ·+ nm).

Now consider a problem with a little more complexity. Suppose that we have colored
polygonal discs, with nj discs of color j, for j = 1, 2, . . . ,m. Each disc is a regular polygon;
all discs of color i have si sides, and have radius one. Again, we can make a symmetric
picture something like a flower, as in Figure 3.12; here m = 2, n1 = 5, s1 = 4, n2 = 4 and
s2 = 6.

In this case, we can obtain a dihedral symmetry group of size 2k if k satisfies either:

k = gcd(n1, n2, . . . , nm), (3.12)

(for the case where the center is empty), or for some i,

k = gcd(si, n1, n2, . . . , ni−1, ni − 1, ni+1, . . . , nm)} (3.13)

(for the case where a disc with si sides is in the center).
Again, using some clever computation of the gcds and maximizing over i, we can compute

a maximally symmetric layout of the discs in time O(s1n1 + s2n2 + · · ·+ smnm).
Now consider a more complex problem: suppose that some of the discs have holes. We

have nj discs of color j, for j = 1, 2, . . . ,m. The outside of each disc is a regular polygon;
all discs of color i have si sides. For some values of i, the all discs of color i have a circular
hole in the middle. Further, each disc is shrinkable or expandable; this means that we can
fit one disc inside another to make a kind of “nest,” as in Figure 3.13.

106 CHAPTER 3. SYMMETRIC GRAPH DRAWING

Figure 3.14 Symmetric arrangement of polygonal discs with holes.

Again, we can make a symmetric picture something like a flower, as in Figure 3.14; in
this case, we can place a “nest” of discs in the center of the flower, as long as all but one of
them have a hole.

Let H denote the set of colors of discs with holes. We can obtain a dihedral symmetry
group of size 2k if there is a subset H ′ of H such that k satisfies one of the following:

k = gcd (gcd{sj : j ∈ H ′}, gcd{nℓ : ℓ ∈ H −H ′}) (3.14)

(for the case where every discs in the center has a hole), or for some i,

k = gcd (gcd{sj : j ∈ H ′}, gcd{nℓ : ℓ ∈ H −H ′, ℓ 6= i}, si, ni − 1) , (3.15)

for the case where there is a disc of color i, without a hole, in the center.

One can maximize over i and H ′ to compute a maximally symmetric layout of the colored
polygonal discs, with and without holes, in time O(s1n1 + s2n2 + · · ·+ smnm).

One can use such disc arrangement algorithms to construct maximally symmetric draw-
ings of disconnected graphs. We can compute the connected components Gℓ of a discon-
nected graph G and, using planar graph isomorphism algorithms, divide the components
into isomorphism classes N1, N2, . . . , Nm, where |Nj | = nj . We compute maximal planar
automorphism groups for Gj using the algorithm for connected graphs; assume for the mo-
ment that these groups are dihedral and the group for isomorphism class Nj has size 2sj .
For the purposes of symmetric layout, the isomorphism class Nj is akin to a color class of
polygonal disc with sj sides. For some j, it is possible that the components in Nj has two
faces fixed by their planar automorphism group. This is akin to a disc with a hole, because
one fixed face can be the outside face and the other can be a central inside face.

There are some further complexities. First, some of the components may have no dihedral
planar automorphism group: the group may be purely cyclic, or purely axial, or even trivial.
This requires algorithms that are substantially more complex, but follow the same general
pattern as above.

Secondly, the connected components may have several maximal planar automorphism
groups, and the largest of these may not lead to the maximum planar automorphism group
of the whole graph. An example is in Figure 3.15: the two pictures here show a graph with
two drawings, one displaying 6 symmetries and one displaying 8 symmetries.

We say that a planar automorphism group A of G is maximal if A is not contained in
another planar automorphism group of G. One must take all maximal groups into account
when this graph is a connected component of a larger disconnected graph. Fortunately, this
pathological case is relatively contained; the next Lemma explains why.

LEMMA 3.4 [HE03] A planar graph has at most 3 non-conjugate maximal planar au-
tomorphism groups.

3.5. SYMMETRIC DRAWINGS OF PLANAR GRAPHS 107

Figure 3.15 Display of two maximal planar automorphism groups.

This means that additional maximal planar automorphism groups only add a constant
to the time complexity of the algorithms.

3.5.5 Drawing algorithms

The algorithms presented in the preceding sections take a planar graph as input and produce
two outputs: a planar automorphism group of maximum size, and an embedding of the
graph. In this section, we show how to use this information to construct a straight-line
symmetric drawing of the graph. The drawing algorithms follow the same connectivity
hierarchy.

For triconnected graphs, one could use the well-known barycenter algorithm of
Tutte [Tut63, DETT99]. This algorithm draws symmetrically but unfortunately takes
super-linear time. A much more complex algorithm, described in [HME06], runs in lin-
ear time. Note that the drawing can be “squashed” at a specified vertex on the outer face;
that is, given an angle a and a vertex u on the outer face, we can adjust the drawing so
that the angle at u on the outer face is at most a. The squashing can be done so that any
axial symmetry that fixes a is preserved. This process, illustrated in Figure 3.16, is helpful
for lower connectivity drawings.

For a biconnected planar graph, we use “augmentation”: we increase the connectivity
by adding new edges and new vertices to make it triconnected, while preserving the planar
automorphism group. The easiest way to do this is to use the star triangulation method
described in Section 3.5.1. Then we can apply the algorithm for constructing symmetric
drawings of triconnected planar graphs with straight-line edges to construct a symmetric
drawing.

Given an embedding of a one-connected planar graph, we use “attachment,” as follows.
First, we augment the biconnected component to make them triconnected, as above, and
draw the triconnected components. Then we draw the root of the BC-tree; then we traverse
the BC-tree “attaching” blocks as we go. We can scale blocks to fit inside faces of previously
drawn blocks, using the “squash” operation described above.

108 CHAPTER 3. SYMMETRIC GRAPH DRAWING

u u

a

Figure 3.16 Squashing a triconnected component at u.

Figure 3.17 The graph G3.

The drawing process takes linear time, and we can state the following result.

Theorem 3.7 Given a planar graph G and a planar automorphism group A of G, we
can construct a straight-line drawing of G that displays A in linear time.

The drawings obtained in this way have poor resolution. Unfortunately, in the worst
case, this is unavoidable, as the following example shows. Suppose that G0 is a single
triangle with vertices a0, b0, c0. For i > 0, Gi is a planar graph with a triangular out-
side face {ai, bi, ci}. We form Gi from Gi−1 by adding the face {ai, bi, ci} and the edges
(ai, ai−1), (ai, bi−1), (bi, bi−1), (bi, ci−1), (ci, ci−1), (ci, ai−1). The graph G3 is shown in Fig-
ure 3.17.

The graph Gk has 3k vertices and has a dihedral planar automorphism group of size 6.
However, one can show that every straight-line drawing of Gk that displays this dihedral
group requires exponential area; that is, if it has a minimum distance of one between
vertices, then the area of the drawing is Ω(2k).

3.6 Conclusion

This chapter describes the symmetric graph drawing problem, and discusses some of its
qualitative and algorithmic aspects. In particular, we characterize those automorphism
groups that can be displayed as symmetries of a graph drawing, we show that the gen-

3.6. CONCLUSION 109

Figure 3.18 Almost symmetric drawings.

eral problem of finding such automorphisms is NP-complete, and we describe linear-time
algorithms for finding and displaying such symmetries in the case where the input graph is
planar.

In this section, we briefly mention some important aspects of symmetric graph drawing
that have not been covered in this chapter and conclude with some open problems.

3.6.1 Further topics

Directed graphs. The model of symmetry needs some modification for directed
graphs; for example, perhaps a directed geometric symmetry should either pre-
serve the direction of every directed edge or reverse the direction of every directed
edge. With a variety of modifications of the model, a number of algorithms have
been developed for symmetrically directed graphs. Examples include algorithms
for rooted trees [RT81, SR83], series-parallel digraphs [DETT99, HEL00], upward
planar graphs [DTT92], and hierarchical graphs [ELT96].

Three-dimensional graph drawing is now well established and some attempts have
been made to draw graphs symmetrically in 3D; see [HEQL98, HE00, Hon01].

Exact but exponential time algorithms often work well for small graphs. These
include methods based on integer linear programming [BJ01, BJ03] and group
theory [AHT07].

Approximation algorithms. The formal definition of the intuitive notion of sym-
metry display given in Section 3.2.3 is fairly strong. For example, it does not
consider the drawings in Figure 3.18 to be symmetric at all. There have been sev-
eral attempts to formalize the intuitive “approximate” symmetry such as shown
in Figure 3.18. For example, Bachl [Bac99] gives a simple approach to approx-
imate axial symmetry: if a graph has two large disjoint isomorphic subgraphs,
then one can draw it so that a large part of the drawing displays axial symmetry.
Finding such subgraphs is, of course, NP-complete; Bachl gives algorithms for
some restricted cases. Other examples include [BJ03, CY02, CLY00].

3.6.2 Open problems

Here we list a couple of open problems in symmetric graph drawing.

Very very symmetric graph drawing. Consider the two drawings in Figure 3.19.
The two drawings, according to the model in Section 3.2.3, have the same degree

110 CHAPTER 3. SYMMETRIC GRAPH DRAWING

Figure 3.19 A symmetric drawing and a very very symmetric drawing.

of symmetry. However, intuitively the one on the right is more symmetric than
the one on the left. The extra symmetry does not come from isometry of the
plane; it arises in a more subtle way. Modeling this kind of “very very symmetric”
drawing has not been done at this point. Further, algorithms to draw graphs very
very symmetrically have not been designed.

An algorithmic version of Mani’s Theorem. Theorem 3.5 is one of the
most beautiful results in graph drawing. It is not clear how to make Mani’s
proof [Bab95, Man71] into an algorithm. It would be very interesting to find a
linear-time algorithm that takes a triconnected planar graph as input and draws
it as the skeleton of a convex polyhedron so that every automorphism of the
graph is a symmetry of the polyhedron.

Acknowledgments

This work has been supported by the Australian Research Council. Parts of this chapter
were written when the authors were visiting the University of Kyoto under Grant-in-Aid
16092101 for Scientific Research on Priority Areas from the Ministry of Education, Culture,
Sports, Science and Technology of Japan.

REFERENCES 111

References

[AHT07] David Abelson, Seok-Hee Hong, and Donald E. Taylor. Geometric automor-
phism groups of graphs. Discrete Applied Mathematics, 155(17):2211–2226,
2007.

[AHU83] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. Data Structures and Algo-
rithms. Addison-Wesley, Reading, MA, 1983.

[AM88] M. J. Atallah and J. Manning. Fast detection and display of symmetry in
embedded planar graphs, 1988.

[Arm88] M. A. Armstrong. Groups and Symmetry. Springer-Verlag, 1988.

[Bab95] L. Babai. Automorphism groups, isomorphism, and reconstruction. In
Groetschel Graham and Lovasz, editors, Handbook of Combinatorics, vol-
ume 2, chapter 27. Elsevier Science, 1995.

[Bac99] Sabine Bachl. Isomorphic subgraphs. In Kratochv́ıl [Kra99], pages 286–296.

[BJ01] Christoph Buchheim and Michael Jünger. Detecting symmetries by branch
& cut. In Mutzel et al. [MJL02], pages 178–188.

[BJ03] Christoph Buchheim and Michael Jünger. An integer programming ap-
proach to fuzzy symmetry detection. In Giuseppe Liotta, editor, Graph
Drawing, volume 2912 of Lecture Notes in Computer Science, pages 166–
177. Springer, 2003.

[CLY00] Ho-Lin Chen, Hsueh-I Lu, and Hsu-Chun Yen. On maximum symmetric
subgraphs. In Marks [Mar01], pages 372–383.

[CY02] Ming-Che Chuang and Hsu-Chun Yen. On nearly symmetric drawings of
graphs. In IV, pages 489–, 2002.

[DETT99] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing.
Prentice Hall, Upper Saddle River, NJ, 1999.

[dF99] Hubert de Fraysseix. An heuristic for graph symmetry detection. In Kra-
tochv́ıl [Kra99], pages 276–285.

[DT92] G. Di Battista and R. Tamassia. On-line planarity testing. Report CS-92-
39, Comput. Sci. Dept., Brown Univ., Providence, RI, 1992.

[DTT92] G. Di Battista, R. Tamassia, and I. G. Tollis. Area requirement and symme-
try display of planar upward drawings. Discrete Comput. Geom., 7(4):381–
401, 1992.

[Ead84] P. Eades. A heuristic for graph drawing. Congr. Numer., 42:149–160, 1984.

[EL00] Peter Eades and Xuemin Lin. Spring algorithms and symmetry. Theor.
Comput. Sci., 240(2):379–405, 2000.

[ELT96] P. Eades, X. Lin, and R. Tamassia. An algorithm for drawing a hierarchical
graph. Internat. J. Comput. Geom. Appl., 6:145–156, 1996.

[FDK01] Karlis Freivalds, Ugur Dogrusöz, and Paulis Kikusts. Disconnected graph
layout and the polyomino packing approach. In Mutzel et al. [MJL02],
pages 378–391.

[Fon76] M. Fontet. Linear algorithms for testing isomorphism of planar graphs. In
Proceedings Third Colloquium on Automata, Languages, and Programming,
pages 411–423, 1976.

[HE00] Seok-Hee Hong and Peter Eades. An algorithm for finding three dimensional
symmetry in trees. In Marks [Mar01], pages 360–371.

112 CHAPTER 3. SYMMETRIC GRAPH DRAWING

[HE03] Seok-Hee Hong and Peter Eades. Symmetric layout of disconnected graphs.
In Toshihide Ibaraki, Naoki Katoh, and Hirotaka Ono, editors, ISAAC, vol-
ume 2906 of Lecture Notes in Computer Science, pages 405–414. Springer,
2003.

[HE05] Seok-Hee Hong and Peter Eades. Drawing planar graphs symmetrically, ii:
Biconnected planar graphs. Algorithmica, 42(2):159–197, 2005.

[HE06] Seok-Hee Hong and Peter Eades. Drawing planar graphs symmetrically, iii:
One-connected planar graphs. Algorithmica, 44(1):67–100, 2006.

[HEL00] Seok-Hee Hong, Peter Eades, and Sang Ho Lee. Drawing series parallel
digraphs symmetrically. Comput. Geom., 17(3-4):165–188, 2000.

[HEQL98] Seok-Hee Hong, Peter Eades, Aaron J. Quigley, and Sang Ho Lee. Drawing
algorithms for series-parallel digraphs in two and three dimensions. In
Graph Drawing, pages 198–209, 1998.

[HME06] Seok-Hee Hong, Brendan D. McKay, and Peter Eades. A linear time algo-
rithm for constructing maximally symmetric straight line drawings of tri-
connected planar graphs. Discrete & Computational Geometry, 36(2):283–
311, 2006.

[Hon01] Seok-Hee Hong. Drawing graphs symmetrically in three dimensions. In
Mutzel et al. [MJL02], pages 189–204.

[HT73] J. Hopcroft and R. E. Tarjan. Dividing a graph into triconnected compo-
nents. SIAM J. Comput., 2(3):135–158, 1973.

[HW74] J. E. Hopcroft and J. K. Wong. Linear time algorithm for isomorphism of
planar graphs. In Proc. of the Sixth Annual ACM Symposium on Theory
of Computing, pages 172–184, 1974.

[Kam88] T. Kamada. On Visualization of Abstract Objects and Relations. PhD
thesis, Department of Information Science, University of Tokyo, 1988.

[Kam89] T. Kamada. Symmetric graph drawing by a spring algorithm and its ap-
plications to radial drawing. Technical report, Department of Information
Science, University of Tokyo, 1989.

[KK89] T. Kamada and S. Kawai. An algorithm for drawing general undirected
graphs. Inform. Process. Lett., 31:7–15, 1989.

[Kra99] Jan Kratochv́ıl, editor. Graph Drawing, 7th International Symposium,
GD’99, Stiŕın Castle, Czech Republic, September 1999, Proceedings, vol-
ume 1731 of Lecture Notes in Computer Science. Springer, 1999.

[Lin92] X. Lin. Analysis of Algorithms for Drawing Graphs. PhD thesis, Depart-
ment of Computer Science, University of Queensland, 1992.

[LNS85] R. J. Lipton, S. C. North, and J. S. Sandberg. A method for drawing
graphs. In Proc. 1st Annu. ACM Sympos. Comput. Geom., pages 153–160,
1985.

[Lub81] Anna Lubiw. Some np-complete problems similar to graph isomorphism.
SIAM J. Comput., 10(1):11–21, 1981.

[MA86] J. Manning and M. J. Atallah. Fast detection and display of symmetry in
outerplanar graphs. Technical Report CSD-TR-606, Department of Com-
puter Science, Purdue University, 1986.

[MA88] J. Manning and M. J. Atallah. Fast detection and display of symmetry in
trees. Congr. Numer., 64:159–169, 1988.

REFERENCES 113

[Man71] P. Mani. Automorphismen von polyedrischen graphen. Math. Annalen,
192:279–303, 1971.

[Man90] J. Manning. Geometric Symmetry in Graphs. PhD thesis, Purdue Univ.,
1990.

[Mar01] Joe Marks, editor. Graph Drawing, 8th International Symposium, GD 2000,
Colonial Williamsburg, VA, USA, September 20-23, 2000, Proceedings, vol-
ume 1984 of Lecture Notes in Computer Science. Springer, 2001.

[MJL02] Petra Mutzel, Michael Jünger, and Sebastian Leipert, editors. Graph Draw-
ing, 9th International Symposium, GD 2001 Vienna, Austria, September
23-26, 2001, Revised Papers, volume 2265 of Lecture Notes in Computer
Science. Springer, 2002.

[RT81] E. Reingold and J. Tilford. Tidier drawing of trees. IEEE Trans. Softw.
Eng., SE-7(2):223–228, 1981.

[SR34] E. Steinitz and H. Rademacher. Vorlesungen über die Theorie der Polyeder.
Julius Springer, Berlin, Germany, 1934.

[SR83] K. J. Supowit and E. M. Reingold. The complexity of drawing trees nicely.
Acta Inform., 18:377–392, 1983.

[Tut63] W. T. Tutte. How to draw a graph. Proceedings London Mathematical
Society, 13(52):743–768, 1963.

[Tut66] W. T. Tutte. Connectivity in Graphs. University of Toronto Press, 1966.

[Wie64] Wielandt. Finite Permutation Groups. Academic Press, 1964.

[Won75] J. K. Wong. Isomorphism Problems Involving Planar Graphs. PhD thesis,
Cornell Univ., 1975.

4
Proximity Drawings

Giuseppe Liotta
University of Perugia

4.1 Introduction . 115
4.2 Proximity Rules and Proximity Drawings 116

Proximity Region Based Drawings • Global Proximity

4.3 Results . 123
Minimum Weight Drawings • Delaunay and Voronoi
Drawings • Rectangle of Influence Drawings • Nearest
Neighbor Drawings • Sphere of Influence Drawings •

β-Drawings

4.4 Variations of Proximity Drawings . 132
Witness Proximity Drawings • Weak Proximity Drawings •

Approximate Proximity Drawings

4.5 Open Problems . 142
4.6 Beyond this Chapter . 143
Acknowledgments . 145
References . 146

4.1 Introduction

In 1969, Gabriel and Sokal [GS69] presented a method for associating a graph to a set
of geographic data points P by connecting points x, y ∈ P with an edge if and only if
the closed disk having the segment xy as diameter contained no other point of P . This
geometric graph, called the Gabriel graph of P , is just one example of what have come to
be called proximity graphs. Loosely speaking, a proximity graph is a geometric graph (i.e., a
straight-line drawing) constructed from a set P of points in some metric space by connecting
pairs of points that are deemed to be “sufficiently” close together. A set P can give rise to
a variety of different proximity graphs depending upon the definition of closeness used.

Proximity graphs have applications in numerous areas where they are commonly used
to describe the underlying “shape” of a set of points, including computer graphics, com-
putational geometry, pattern recognition, computational morphology, numerical analysis,
computational biology, and GIS (see, e.g., [OBS92, GO04]). A paper by Toussaint [Tou05]
describes applications of proximity graphs in the context of instance-based learning and
data-mining and a paper by Carreira-Perpinan and Zemel [CPZ04] to the field of clustering
and manifold learning. Motivated by these many applications, a rich body of computational
geometry literature has been devoted to the question of efficiently computing different types
of proximity graphs of a given set of points. For exhaustive lists of references on the subject,
the interested reader is referred to the above-mentioned paper by Toussaint [Tou05] and to
the survey by Jaromczyk and Toussaint [JT92].

115

116 CHAPTER 4. PROXIMITY DRAWINGS

In this chapter, we shall look at proximity from the different perspective of graph drawing:
The goal is computing a straight-line drawing of a given graph with the additional constraint
that the drawing be a proximity graph. There is a strong connection between the graph
drawing and the computational geometry point of views about proximity. Indeed, the
(computational geometry) problem of analyzing the combinatorial properties of a given
type of geometric graph naturally raises the (graph drawing) question of characterizing
those graphs that admit the given type of straight-line drawing. This in turn leads to the
investigation of the design of efficient algorithms for computing such a drawing when one
exists.

We therefore will talk about the proximity drawability problem: Given a graph G and a
definition of proximity, determine whether a set P of points exists such that the proximity
graph of P is isomorphic with the given graph, and if so, compute such a set. Clearly, the
set P , if it exists, gives rise to a straight-line drawing of G, called a proximity drawing of G,
where each vertex of G is mapped to a distinct point of P and each edge to a straight-line
segment between pairs of points of P . Proximity drawings have several interesting features.
They are usually unaffected by changes in scale, since the measures of proximity used are
based on relative distances between points. Also, adjacent vertices are drawn (relatively)
more closely together than non-adjacent vertices, and vertices not incident to a particular
edge are not drawn too close to the edge. Furthermore, neighbors of a given vertex tend to
cluster together.

This chapter surveys some of the central problems, results, and research trends on prox-
imity drawings. Although many of the ideas described here can be developed in the more
general setting of a metric space, we shall most often assume that the drawings are to be
made in Euclidean d-space (the only exception will be for Voronoi and Delaunay drawings).

The remainder of this chapter is structured as follows. In Section 4.2, various definitions
of proximity drawings are given; in Section 4.3, the basic graph drawing literature on the
proximity drawability problem is reviewed. Section 4.4 introduces extensions and relax-
ations of the definition of proximity drawing that make it possible to significantly enlarge
the families of representable graphs. Some challenging open problems on proximity draw-
ings are listed in Section 4.5. Finally, Section 4.6 concludes the chapter by briefly pointing
at two research directions in the areas of sensor networks and of robust geometric computing
where proximity graphs and drawings have received some attention in the last few years.

4.2 Proximity Rules and Proximity Drawings

At a first, broad approximation, the definition of closeness in a proximity drawing can be
either based on the concept of proximity region or based on a global proximity measure.
In a proximity region based drawing two or more vertices are adjacent if and only if some
suitably defined region that describes the neighborhood of these vertices contains at most
k other vertices, for a given integer value k ≥ 0. Global proximity, by contrast, gives rise
to proximity drawings where the overall sum of the lengths of the edges in the drawing is
minimized. In the remainder of this section, we recall some of the most common definitions
of region-based and of global proximity rules and drawings; unless stated otherwise, P
denotes the set of vertices of a straight-line drawing Γ of some graph G.

4.2.1 Proximity Region Based Drawings

Let R be a function that associates to every set S of k ≥ 2 points in Euclidean d-space
Ed a subset R(S) of Ed; R(S) is called the proximity region or region of influence of S.

4.2. PROXIMITY RULES AND PROXIMITY DRAWINGS 117

Now consider a straight-line drawing Γ of G in which the vertices are drawn at a set of
locations P . Drawing Γ is an (h, k)-proximity drawing of G if Γ results from the following
procedure: For every set S ⊂ P of h vertices, edges are drawn between all pairs of vertices
in S if and only if the proximity region R(S) contains at most k vertices from P −S. While
the proximity region can be any subset of the space in question, usually the regions chosen
are homeomorphic to an open or closed ball of dimension equal to that of the space. Such
drawings are referred to as open or closed proximity drawings , respectively. Examples of
open/closed (h, k)-proximity drawings follow.

The Gabriel region [GS69] of two vertices x and y is defined to be the closed sphere (in
d dimensions) having the segment xy as diameter. A Gabriel drawing is a closed (2, 0)-
proximity drawing where the region of influence is the Gabriel region. Indeed, a Gabriel
drawing of G is a straight-line drawing of G having the property that two vertices x and y
of the drawing form an edge if and only if the Gabriel region of x and y does not contain
any other vertex. Figure 4.1 (a) shows a Gabriel drawing of a planar triangulated graph; in
the figure, vertices p and q are adjacent because their Gabriel region does not contain any
other vertex, while vertices u and v are not adjacent because their Gabriel region contains
vertex q. If one changes the definition of Gabriel region by saying that the sphere defined by
the two vertices x and y is an open set, then the corresponding proximity region is termed
a modified Gabriel region and the associated drawing is called a modified Gabriel drawing .
Figure 4.1 (b) shows a modified Gabriel drawing of a wheel graph of five vertices; note that
vertices u and v are adjacent because the modified Gabriel region is an open set and hence
it does not contain vertex q. Note that the graph of Figure 4.1 (b) does not have a Gabriel
drawing [Cim92].

v

p

v

q

u

u

q

(a) (b)

Figure 4.1 (a) A Gabriel drawing. (b) A modified Gabriel drawing of a graph that does
not have a Gabriel drawing.

118 CHAPTER 4. PROXIMITY DRAWINGS

A relative neighborhood drawing of a graph G is an open (2, 0)-proximity drawing in which
the region of influence of two points x and y is the intersection of the open disks of radius
d(x, y) centered at x and y. Thus, in a proximity drawing of G, x and y are adjacent if and
only if there is no vertex whose distance to both x and y is less than the distance between x
and y. The proximity region of x and y is called the relative neighborhood region or lune of
x and y [Tou80].1 A relative neighborhood drawing of a wheel graph consisting of a vertex
of degree six adjacent to five vertices of degree three is depicted in Figure 4.2 (a): Since the
relative neighborhood region is an open set, vertex w is not in the relative neighborhood
region of vertices u and v and therefore the two vertices are adjacent.

u

v

u

w

v

w

(a) (b)

Figure 4.2 (a) A relative neighborhood drawing. (b) A relatively closest drawing of a
tree that does not have a relative neighborhood drawing.

Variants of relative neighborhood graphs have also been studied. One example is the k-
relative neighborhood drawing [CTL92] where the proximity constraint is relaxed by saying
that two vertices are adjacent if and only if their lune contains at most k other vertices
(for a given k > 0). As another example, if the relative neighborhood region is assumed to
be a closed set, we have the so-called relatively closest region [Lan69] and relatively closest
drawing . Figure 4.2 shows how proximity drawability differs for relative neighborhood
drawings and relatively closest drawings. The drawing of Figure 4.2 (b) uses the same
vertex set as the one of Figure 4.2 (a); however, the vertices u and v of Figure 4.2 (b) are

1While the term lune is commonly used in the computational geometry literature to denote the relative

neighborhood region, it has to be recalled that in plane geometry the non-empty intersection of two

disks of equal radius is called symmetric lens.

4.2. PROXIMITY RULES AND PROXIMITY DRAWINGS 119

not adjacent because their relatively closest region, which is a closed set, contains vertex
w. Note that a tree with one interior vertex and six leaves does not admit a relative
neighborhood drawing [BLL96].

The Gabriel, modified Gabriel, relative neighborhood, and relatively closest drawings de-
scribed above are all examples of members of a family of drawings called β-drawings . In
1985, Kirkpatrick and Radke [KR85, Rad88] introduced a family of closed (2, 0)-proximity
regions called β-neighborhoods, denoted by R[x, y, β] and defined as follows (see also Fig-
ure 4.3):

1. For β = 0, R[x, y, β] is the line segment xy.

2. For 0 < β < 1, R[x, y, β] is the intersection of the two closed disks of radius
d(x, y)/(2β) passing through both x and y.

3. For 1 ≤ β < ∞, R[x, y, β] is the intersection of the two closed disks of radius
βd(x, y)/2 and centered on the line through x and y.

4. For β = ∞, R[x, y, β] is the closed infinite strip perpendicular to the line segment
xy.

x y

R[x, y, 0.5]

R[x, y, 4]

R[x, y,∞]

R[x, y, 1]

R[x, y, 2]

R[x, y, 0]

Figure 4.3 A set of (2, 0)-proximity regions R[x, y, β].

Obviously, one can also define the analogous regions R(x, y, β) using open sets instead
of closed sets (R(x, y, 0) is defined to be the empty set). The Gabriel, modified Gabriel,
relative neighborhood and relatively closest drawings mentioned above are obtained from
the β-regions R[x, y, 1], R(x, y, 1), R(x, y, 2) and R[x, y, 2], respectively. The closed strip
drawings are β-drawings that use the region R[x, y,∞]. Similarly, the open strip drawings
are β-drawings that use the region R(x, y,∞). The regions defined above are also referred
to as lune-based β-regions. In the same papers, Kirkpatrick and Radke [KR85, Rad88] also
describe circle-based β-regions: for each β ≥ 1, the region associated with two vertices x
and y is the union of the two disks of radius βd(x, y)/2 passing through both x and y and
centered on the line through them.

120 CHAPTER 4. PROXIMITY DRAWINGS

In the (2, 0)-proximity drawings described above, the proximity region chosen for a pair
of vertices x, y is symmetric about the perpendicular bisector of the segment xy. This
guarantees a certain symmetry in the drawings produced. This symmetry, however, is
not always desirable. Veltkamp [Vel92, Vel94, Vel95] introduced a family of proximity
regions, called γ-regions , in which the proximity region may lack this symmetry and that
generalize lune-based and circle-based β-regions. While Veltkamp takes advantage of this
absence of symmetry in constructing object boundaries from a set of points in the context of
visual processing and pattern recognition, the notion of γ-regions can be used from a graph
drawing perspective to define γ-drawings . Another generalization of proximity drawings
based on β-region are the so-called empty region graphs , recently introduced by Cardinal,
Collette, and Langerman [CCL09]. An empty region graph is a proximity drawing where
the proximity region of any pair of points u and v in the plane is a template region, that is
a function mapping the pair u, v to a subset of the plane. In particular, the authors focus
on the combinatorial properties of proximity graphs whose template regions are convex and
symmetric.

Several (2, 0)-proximity regions can be seen as special cases of either β-regions or γ-
regions; however, there are some well-known proximity regions defined in the literature
that cannot be classified as members of some parameterized infinite family. Among those
that have been investigated in the graph drawing context, we recall here the rectangle of
influence [IS85] region, for which the proximity region associated with two points x and y is
the axis-parallel rectangle determined by x and y. As in the case of β-drawings, one can use
either open or closed rectangles; as with β-regions, the choice will determine which graphs
can be drawn. A proximity drawing that uses the (open or closed) rectangle of influence
region is called (open or closed) rectangle of influence drawing . In this type of drawing two
vertices x and y are connected by an edge if and only if the (open or closed) rectangle of
influence of x and y does not contain any other vertex. Figures 4.4 (a) and (b) show an
open and a closed rectangle of influence drawing, respectively; the two drawings have the
same vertex set.

(b)(a)

Figure 4.4 (a) An open rectangle of influence drawing; the dotted box represents the
rectangle of influence of two vertices. (b) A closed rectangle of influence drawing.

4.2. PROXIMITY RULES AND PROXIMITY DRAWINGS 121

The (2, k)-proximity drawing paradigm can also be used to produce drawings of directed
graphs by associating with each ordered pair of points (x, y) a proximity region Rx,y. By
allowing the region Rx,y to be different from the region Ry,x, it is possible to produce
drawings where the edge (x, y) is in the drawing, but not the edge (y, x). An early example
of this is the nearest neighbor drawing (see, e.g, [PY92]), where each vertex x ∈ P is
connected to all vertices (or sometimes just one) of minimum distance from x. Although
the nearest neighbor drawing is usually considered to be an undirected graph, the definition
is inherently that of a directed graph. The proximity region Rx,y in this case is the open
disk of radius d(x, y) centered at x.

Besides (2, h)-proximity drawings, there are many other meaningful and well-investigated
families of proximity drawings. A Delaunay drawing [Del34] is an example of a closed (3, 0)-
proximity drawing: here triplets of points in P are connected into triangles if and only if
the closed disk they determine contains no other points of P . Delaunay drawings make
sense for planar triangulated graphs (a Delaunay drawing is commonly called a Delaunay
triangulation in the computational geometry literature). A Delaunay drawing of order
h (usually called a higher order Delaunay triangulation in the computational geometry
literature [GHvK02]) is a (3, h)-proximity drawing of a planar triangulated graph, where
for every triplet of vertices connected into a triangle the closed disk through the triplet
contains at most h other points of P (for a given integer h ≥ 0).

Related to Delaunay triangulations is another well-known proximity graph, namely, the
Voronoi diagram (see, e.g., [PS90]). A Voronoi diagram of a set of points P is the geometric
dual of the Delaunay triangulation of P , i.e., it is the straight-line drawing whose edges are
the perpendicular bisectors of the edges of the Delaunay triangulation and whose vertices are
the intersection points of these perpendicular bisectors. Equivalently, the Voronoi diagram
of P , for a given metric, is a subdivision of the plane into regions such that each region is
associated with a distinct point p of P and it contains all points of the plane that are closer
to p than to any other elements of P . We can therefore define a new type of proximity
drawing: A Voronoi drawing [LM03] of a graph G is a straight-line drawing of G that is
also the Voronoi diagram of some set of points (also called sites).

Figures 4.5 (a) and (b) show examples of Voronoi drawings in the Euclidean and in the
Manhattan metric, respectively. In the figure, the white points are the sites; for display
purposes, the edges of infinite length of the Voronoi diagram have been replaced by edges
of finite length and endvertices have been added.

(a) (b)

Figure 4.5 Voronoi drawings: (a) in the Euclidean metric and (b) in the Manhattan
metric.

122 CHAPTER 4. PROXIMITY DRAWINGS

In our definition of (k, n)-proximity drawings, we have required that the sets S to which
we associate proximity regions contain at least two points, since otherwise no edges can be
formed. There is, however, a way in which proximity regions associated with single points
can be used to create proximity drawings: pairs of points can be connected by an edge if the
regions corresponding to the points intersect. We call such drawings intersection drawings .
An example of such a proximity drawing would be a sphere of influence drawing of a graph.
To produce this type of drawing, each point x ∈ P has, as its proximity region, its sphere of
influence [Tou88], namely, the disk centered at x of radius rx = min{d(x, y) : y ∈ P −{x}}.
One can consider either open or closed sphere of influence drawings. An example of a sphere
of influence graph is depicted in Figure 4.6; the drawing is valid for both the open and the
closed model of proximity.

Figure 4.6 A sphere of influence drawing.

4.2.2 Global Proximity

Several graph drawing algorithms are designed to produce a representation of a graph that
is as small as possible in some sense. For example, given a resolution rule (i.e., a minimum
acceptable distance between any pair of graphic features in the drawing) one may want to
optimize the area of the drawing or aim for minimum edge lengths. A proximity drawing
that adopts a global measure of proximity is, in a sense, the smallest possible representation
of a graph because it globally maximizes the closeness of adjacent vertices and the reciprocal
distances of those pairs that are not adjacent.

The weight of a drawing of a graph is defined to be the sum of the lengths of the edges
of the drawing. Frequently, drawings of graphs are required to satisfy some set of aesthetic
criteria such as planarity or orthogonality. For a graph G, a set P of points in the plane,
and a set E of aesthetic criteria, the weight of G with respect to P , denoted by wP (G),
is defined as follows: wP (G) is the minimum taken over the weights of all drawings of G
having P as the vertex set and satisfying E ; if no such drawing exists, then wP (G) = ∞.
Now let C be a class of graphs. A graph G ∈ C is minimum weight drawable (for C) if there
exists a set P of points such that wP (G) is finite and G minimizes wP () over all graphs in
C. Any drawing of G that achieves this minimum value is called a minimum weight drawing
of G with respect to P . Two well-known examples of such drawings are given below (see,
e.g., [PS90]).

A minimum spanning tree of a set P of points is a connected, straight-line drawing that
has P as its vertex set and that minimizes the total edge length. So, letting C be the class

4.3. RESULTS 123

of all trees, and letting E denote straight-line planar drawings, a tree G is minimum weight
drawable for C if there exists a set P of points in the plane such that G minimizes wP () over
all trees. This is equivalent to saying that G is isomorphic to a minimum spanning tree of
P . Figure 4.7 shows a minimum weight drawing of a tree. A minimum weight triangulation
of a set P is a triangulation of P having minimum total edge length. Letting C be the class
of all planar triangulations, and letting E be as above, a planar triangulation G is minimum
weight drawable for C if there exists a set P of points in the plane such that G is isomorphic
to a minimum weight triangulation of P .

Figure 4.7 A minimum weight drawing of a tree.

We conclude this section by remarking that there are strong relations between global
and region-based proximity rules. For example, it is well known that every minimum span-
ning tree on a set P of points is a subgraph of the Delaunay triangulation of P (see,
e.g., [PS90]). Also, a significant research effort can be found in the computational geome-
try literature devoted to studying the relationships between (2, k)-proximity and minimum
weight triangulations (see, e.g., [Kei94, WY01, CX01]).

4.3 Results

In this section, we survey some of the most relevant results on the proximity drawability
problem for the types of proximity drawings described in the previous section.

4.3.1 Minimum Weight Drawings

If a graph admits a minimum weight drawing, it is called minimum-weight drawable; oth-
erwise, it is called minimum-weight forbidden. As already mentioned above, most research
on minimum weight drawings has focused on trees and on planar triangulated graphs.

The problem of testing whether a tree can be drawn as a Euclidean minimum spanning
tree in the plane is essentially solved. Monma and Suri [MS92] proved that each tree with
maximum vertex degree at most five can be drawn as a minimum spanning tree of some set
of vertices by providing a linear-time (real RAM) algorithm. In the same paper, it is shown
that every tree having at least one vertex with degree greater than six is minimum weight
forbidden. As for trees having maximum degree equal to six, Eades and Whitesides [EW96b]
showed that it is NP-hard to decide whether such trees can be drawn as minimum spanning
trees.

124 CHAPTER 4. PROXIMITY DRAWINGS

One of the most challenging questions in the seminal paper by Monma and Suri [MS92]
was about the area required by a minimum weight drawing of a tree. Namely, the construc-
tion by Monma and Suri used a grid of size O(2n

2

) × O(2n
2

) and the authors conjectured
an exponential lower bound for minimum weight drawings of trees with maximum vertex
degree five (i.e., the existence of a tree T with n vertices such that any minimum weight
drawing of T requires area at least cn×cn for some constant c > 1). This long-standing con-
jecture was only recently proved to be correct by Angelini et al. [ABC+11], who describe
a tree T with n vertices having maximum degree five such that in any minimum weight
drawing of T the ratio between the longest and the shortest edge is 2Ω(n), which implies
that the drawing requires exponential area.

On the other hand, Frati and Kaufmann [FK11] proved that the exponential area lower
bound of minimum weight drawings of trees does not hold for maximum vertex degree
smaller than five. More precisely, let T be any tree with n vertices and maximum vertex
degree four; Frati and Kaufmann show how to compute a minimum weight drawing of T with
the following area upper bounds: (i) O(n4.3) if T is a complete binary tree; (ii) O(n11.3875)
if T is an arbitrary binary tree; (iii) O(n3.73) if T is a complete ternary tree; (iv) O(n21.252)
if T is an arbitrary ternary tree. The area bound for complete binary tree has been further
reduced to O(n3.8) by Di Giacomo et al. [DDLM12] (see also Section 4.4.3).

The 3-dimensional question about characterizing those trees that can be drawn as a
Euclidean minimum spanning tree is not yet completely solved. In [LD95], it is shown
that every tree having at least one vertex with degree greater than twelve is minimum
weight forbidden in 3-dimensional space while all trees with vertex degree at most nine are
drawable. King [Kin06] improved this last result by showing that all trees whose vertices
have vertex degree at most ten can be realized as a Euclidean minimum spanning tree in
3-dimensional space. In general, the maximum vertex degree of a minimum weight drawable
tree is bounded by the kissing number , i.e., by the maximum number of disjoint unit spheres
that can be simultaneously tangent to a given unit sphere [RS95].

A significant research effort has also been devoted to drawing a planar triangulated graph
G as a minimum weight triangulation of the points representing the vertices. However, the
problem is still far from being solved. It may be worth recalling that, while computing a
Euclidean minimum spanning tree of a set of points in the plane is solvable in polynomial
time (see, e.g. [PS90]), the problem of computing a Euclidean minimum weight triangulation
of a set of points in the plane is NP-hard [MR08].

In [LL96], it is shown that all maximal outerplanar triangulations are minimum-weight
drawable, and a linear time (real RAM) drawing algorithm for constructing such a drawing
is given. This naturally leads to investigation of the internal structure of minimum-weight
drawable planar triangulated graphs. In [LL02] the authors examined the endoskeleton—
or skeleton, for short—of planar triangulated graphs, that is, the subgraph induced by
the internal vertices of the triangulation. They constructed skeletons that cannot appear
in any minimum weight drawable triangulation and skeletons that guarantee minimum
weight drawability. More precisely, the known results about of minimum weight drawable
triangulations are as follows.

• In [LL02], the authors showed that any forest can be realized as the skeleton
of some minimum weight triangulation. On the other end, Wang, Chin, and
Yang [WCY00] gave examples of triangulations that do not admit a minimum
weight drawing even if their skeleton is acyclic.

• In [LL02], it is also shown that any traingulation containing either the graph of
Figure 4.8 (a) or the graph of Figure 4.8 (b) is not minimum weight drawable.

4.3. RESULTS 125

(a) (b)

Figure 4.8 Two examples of triangulations that cannot be drawn as minimum-weight
triangulations.

Another contribution of [LL02] is to study the relationship between Delaunay drawability
and minimum weight drawability. The authors described graphs that do not admit a De-
launay drawing but do have a minimum weight drawing. One such example is the minimum
weight drawing of Figure 4.9: As explained in the next section,the depicted graph violates
a necessary condition for Delaunay drawability (see also Figure 4.11 (b)).

Figure 4.9 A minimum weight drawing of a Delaunay forbidden graph (see also Fig-
ure 4.11 (b).

4.3.2 Delaunay and Voronoi Drawings

The study of the combinatorial properties of Delaunay triangulations and of Voronoi di-
agrams (i.e., the Delaunay and the Voronoi drawability problems) has a long tradition in
the computational geometry literature and is of particular interest because it is closely re-

126 CHAPTER 4. PROXIMITY DRAWINGS

lated to the design of topologically consistent algorithms for computing Delaunay/Voronoi
diagrams in finite precision (see, e.g., [SI92, SH97, SIII00]).

The problem of characterizing which graphs admit Voronoi drawings has been studied
in [LM03] both for the Euclidean and for the Manhattan metric. It is shown that every
tree, independently of its maximum vertex degree, can be drawn as the Voronoi diagram
of some set of points in the Euclidean metric. It is also proved that the maximum vertex
degree of a Voronoi drawable tree in the Manhattan metric is at most five and that this
bound is tight. Finally, the family of those binary trees that admit a Voronoi drawing in
the Manhattan metric is characterized. Figure 4.10 shows examples of Voronoi drawings of
trees in the Euclidean and in the Manhattan metric.

(a) (b)

Figure 4.10 Two Voronoi drawings of trees: (a) a Euclidean Voronoi drawing and (b) a
Manhattan Voronoi drawing. The white circles are sites and the black circles are vertices
of the drawing. For display purposes, the edges of infinite length of the Voronoi diagrams
have been replaced by edges of finite length and endvertices have been added.

An exact characterization of those graphs that admit Delaunay drawings remains a chal-
lenging open problem; however, some sufficient conditions and some necessary conditions for
Delaunay drawability are known. Dillencourt [Dil90a] proved that if a graph G is maximal
outerplanar, then G is Delaunay drawable. In a different paper, Dillencourt [Dil90b] studied
the relationship between Delaunay drawability and 1-toughness. A graph G is 1-tough if
for any non-empty set S of vertices of G, the number of components obtained from G by
removing the vertices of S and their incident edges is at most |S|. For example, the graph
of Figure 4.11 (a) is not 1-tough because the removal of the four white vertices and of their
incident edges results in a graph with five components. Dillencourt showed in [Dil90b] that
every Delaunay drawable graph either (a) is 1-tough or (b) for any set S of vertices of G,
the number of interior components obtained from G by removing the vertices of S and their
incident edges is at most |S|−2 (an interior component is a component that has no vertices
in the outerface of G). This necessary condition is used by Dillencourt to construct exam-
ples of graphs that are nor Delaunay drawable. For example, neither graph of Figure 4.11 is
Delaunay drawable: as already explained, the one of Figure 4.11 (a) violates the 1-toughness

4.3. RESULTS 127

condition; the one of Figure 4.11 (b), violates the second necessary condition stated above
because removing the four white vertices gives rise to three interior components. Another
interesting property proved in [Dil90b] is that any Delaunay drawable graph has a perfect
matching.

Based on the strict connection between the convex hull of a set of non-coplanar points on
the surface of a sphere and a (2-dimensional) Delaunay triangulation [Bro79], the following
equivalent definition of Delaunay drawable graphs was also given by Dillencourt [Dil96]: A
planar triangulated graph G with triangular outerface is Delaunay drawable if and only if
it is inscribable, i.e., it can be drawn in 3-dimensional space as the convex hull of a set of
non-coplanar points on the surface of a sphere. If the outerface f of G is not triangulated,
then G is Delaunay drawable if and only if the graph obtained from G by “stellating” f (i.e.,
by adding a vertex in f and connecting it to all vertices of f) is inscribable. Dillencourt and
Smith [DS95] showed that every planar triangulated graph whose vertices all have degree
three is inscribable (after having possibly stellated the outerface) and therefore Delaunay
drawable. The same authors showed in [DS94] that any 4-connected planar graph is in-
scribable and that any triangulated graph with triangular outerface and without chords or
non-facial triangles is Delaunay drawable.

The question whether Delaunay drawable graphs are Hamiltonian was posed by Math-
ieu [Mat87] and by O’Rourke [O’R87]. Examples of Delaunay drawable graphs that are
not Hamiltonian can be found in papers by Dillencourt [Dil87, Dil89] and by Kantabu-
tra [Kan83]. These examples suggested the question of the computational complexity of
the Hamiltonicity of Delaunay drawable graphs. The question was answered by Dillen-
court [Dil96], who proved that determining whether a Delaunay drawable graph is Hamilto-
nian is NP-complete. In the same paper it is also shown that there exist Delaunay drawable
graphs that do not have a 2-factor (a 2-factor of a graph is a spanning collection of disjoint
cycles). Finally, in the papers by Di Battista and Vismara [DV96], and by Sugihara and
Hiroshima [SH97], the angles of Delaunay drawings were characterized.

(a) (b)

Figure 4.11 Two graphs that are not Delaunay drawable: (a) The graph is not 1-tough:
removing the white vertices produces five components. (b) Removing the four white vertices
produces three internal components.

128 CHAPTER 4. PROXIMITY DRAWINGS

4.3.3 Rectangle of Influence Drawings

The rectangle of influence drawability problem was first defined in [LLMW98], where both
the case that the rectangle of influence is an open set and the case that it is a closed set
are investigated. For both cases, characterization results are presented concerning cycles,
wheels, trees, outerplanar graphs, and cliques. As already observed, the set of representable
graphs can be quite different, depending on whether the open or the closed rectangle of
influence is used to define the proximity drawing. For example, Figure 4.12 (a) shows a
closed rectangle of influence drawing of a 4-cycle, which is not an open rectangle of influence
drawable graph. Figure 4.12 (b) gives an open rectangle of influence drawing of K5 (i.e.,
the complete graph on five vertices), which is not a closed rectangle of influence drawable
graph.

(a) (b)

Figure 4.12 Examples of rectangle of influence drawings: (a) a closed rectangle of influ-
ence drawing of a 4-cycle; (b) an open rectangle of influence drawing of K5. Note that a
4-cycle does not admit an open rectangle of influence drawings and that k5 is not closed
rectangle of influence drawable.

4.3.4 Nearest Neighbor Drawings

Paterson and Yao [PY92] started the investigation of the combinatorial properties of nearest
neighbor graphs. Among other basic results, they proved that a nearest neighbor drawable
tree cannot branch too much: if the depth of the tree is high, then the tree contains some
long paths. More precisely, Paterson and Yao showed that if a tree of depth D is nearest
neighbor drawable, then it can have at most O(D9) vertices. The upper bound was reduced
to O(D6) by Eppstein [Epp92] and to O(D5) by Eppstein, Paterson, and Yao [EPY97]; this
last upper bound is tight since Paterson and Yao [PY92] had shown the existence of nearest
neighbor drawable graphs of depth D and Ω(D5) vertices.

A precise characterization of nearest neighbor drawable graphs is still unknown. Epp-
stein, Paterson, and Yao [EPY97] conjectured that deciding whether a given graph is nearest
neighbor drawable is hard. The truth of the conjecture was proved by Eades and White-
sides [EW96a] who show that it is NP-hard to determine whether a graph G is nearest
neighbor drawable by using a mechanical device, called “logic engine,” that simulates the
well-known NP-complete problem NOT-ALL-EQUAL-3SATISFIABILITY [GJ79] and that
provides a proof paradigm based on an approach first used by Bhatt and Cosmodakis [BC87].
Kitching and Whitesides [KW04] extend the technique to 3-dimensional space and, by using
a “3-dimensional” logic engine, prove that the mutual nearest neighbor drawability problem
is NP-hard in 3-dimensional space. It may be worth recalling that the logic engine paradigm
can be used to prove the hardness of other graph drawing problems such as, for example,

4.3. RESULTS 129

determining whether a graph is a subgraph of the hexagonal tiling or an induced subgraph
of the square or hexagonal tilings [Epp09].

4.3.5 Sphere of Influence Drawings

Basic properties of sphere of influence drawable graphs are discussed by Harary et al. [HJLM93].
Harary et al. showed that if a graph G is open/closed sphere of influence drawable, an in-
duced subgraph of G may not necessarily be open/closed sphere of influence drawable. This
nonhereditary property greatly complicates the problem of characterizing sphere of influ-
ence drawable graphs. The conjecture of Harary et al. that K9 does not admit an open
sphere of influence drawing remains, to date, an open problem.

On the positive side, Jacobson, Lipman, and McMorris [JLM95] proved that if G is
triangle-free and admits a sphere of influence drawing, then any subgraph of G is also
drawable. Jacobson, Lipman, and McMorris exploited this result to characterize those trees
that admit an open/closed sphere of influence drawing: A tree is open sphere of influence
drawable if and only if it has a perfect matching; a tree is closed sphere of influence drawable
if and only if it contains a {P2, P3}-factor (see, e.g., [Har69] for a definition of {P2, P3}-
factor).

The number of edges of sphere of influence drawable graphs was independently studied
by several researchers. Avis and Horton [AH82] proved that the number of edges of an open
sphere of influence drawable graph cannot be larger than 29n, where n is the number of ver-
tices. An upper bound of 21n had also been already proven by Besicovitch [Bes45] in 1945,
although he was not aware of the application of his result to the sphere of influence drawa-
bility problem. The bound of Besicovitch had later been improved by Reifenberg [Rei48]
in 1948 and independently by Bateman and Erdös [BE51] in 1951, who showed an upper
bound of 18n for the problem. Michael and Quint [MQ94b] had lowered the bound to 17.5n.
The best-known upper bound is due to Soss [Sos99a], who showed that any open/closed
sphere of influence drawable graph can have at most 15n edges.
The study of sphere of influence drawings has also been extended to d-dimensional space

and/or to different metrics (see, e.g., [GPS94, Sos99b, MQ99, MQ03]). The interested
reader is also referred to the papers by Michael and Quint [MQ94a, MQ03] and to the
work of Boyer, Lister, and Shader [BLS00] for more references and a list of open problems
concerning the sphere of influence drawabality problem.

4.3.6 β-Drawings

Kirkpatrick and Radke [KR85, Rad88] defined the open and closed β-regions (R(x, y, β),
R[x, y, β]) discussed in the previous section. From the graph drawing perspective, the cen-
tral problem is that of determining, for a given graph G, the values of β such that G
admits a β-drawing. For example, for β < 2, only connected graphs admit β-drawings; for
β > 1, only planar graphs do. As mentioned previously, the open and closed β-drawings
include several well-studied proximity drawings, including Gabriel, Modified Gabriel, rela-
tive neighborhood, and relatively closest drawings; indeed, the Gabriel region is the closed
β-region for β = 1, the modified Gabriel region is the open β-region for β = 1, the relative
neighborhood region is the open β-region for β = 2, and the relatively closest region is the
closed β-region for β = 2. Some papers about these types of drawings are described below.
Toussaint [Tou80] studied the relationship between the graphs produced by relative neigh-

borhood drawings and other proximity drawings. He showed that the relative neighborhood
drawing on a set P of points is a supergraph of every minimum spanning tree of P and
a subgraph of the Delaunay triangulation of P . Agarwal and Matoušek [AM92] showed

130 CHAPTER 4. PROXIMITY DRAWINGS

that the number of edges of an n-vertex graph that has a relative neighborhood drawing
in 3-dimensional space is O(n4/3). Chazelle, Edelsbrunner, Guibas, Hershberger, Seidel,
and Sharir [CEG+94] showed that the maximum number of edges of an n-vertex graph
that has a Gabriel drawing in d-dimensional space (d ≥ 3) is Ω(n2). In [MS80], [Tou80],
and [Lan69], the planarity of Gabriel drawable graphs, relative neighborhood graphs, and
relatively closest drawable graphs were shown, respectively. Furthermore, in [Cim92] it was
shown that a cycle with three vertices is not relatively closest drawable.

Particular attention has been devoted in the literature to β-drawings of trees. Matula and
Sokal [MS80] gave a partial characterization of trees that admit Gabriel drawings. They
proved that every tree with vertex degree at most three admits a Gabriel drawing, while no
tree with vertex degree greater than six does. Urquhart [Urq83] gave the same two bounds
on the vertex degree of relative neighborhood drawable trees. Cimikowski [Cim92] further
extended the bounds to both modified Gabriel drawable and relatively closest drawable
trees. Matula and Sokal [MS80] also conjectured that Gabriel drawable trees cannot have
vertices of degree greater than four and cannot have two adjacent vertices of degree four.

The gaps left open in the above papers between the smallest and the largest vertex degree
of a representable tree were the subject of a paper by Bose et al. [BLL96], who presented
a complete characterization of those trees that admit Gabriel, Modified Gabriel, relative
neighborhood, and relatively closest drawings. They showed that a tree admits a relative
neighborhood and a relatively closest drawing if and only if its maximum vertex degree
is at most five; also, a tree has a modified Gabriel drawing if and only if its maximum
vertex degree is at most three. As for Gabriel drawability, they proved the truth of the
conjecture by Matula and Sokal and characterized the family of representable trees by
exhibiting families of forbidden subtrees and by showing that every tree that does not
contain members of these families is Gabriel drawable. In the same paper, Bose et al. also
presented linear-time algorithms to test whether a tree admits one of the above proximity
drawings; it is shown that if such a drawing exists, one can be constructed in linear time in
the real-RAM model.

As for other β-neighborhoods, Kirkpatrick and Radke [KR85] studied open strip drawable
graphs (i.e., graphs that have β-drawings that use the open β-region R(x, y,∞)) and showed
that neither non-planar graphs nor triangulated planar graphs admit open strip drawings.
A characterization of closed strip drawable graphs (i.e., proximity graphs that use the
R[x, y,∞] region) can be found in the work by Bose et al. [BDLL95], where it is shown
that a graph admits a closed strip drawing if and only if it is a binary forest other than
one of the following: two non-adjacent vertices, a vertex and a non-adjacent edge, or two
non-adjacent edges.

Bose et al. [BDLL95] also studied the proximity drawability of trees in the whole spectrum
of β-proximity regions. Let T (β) (T [β]) be the class of trees that have a proximity drawing
where the proximity region is the open (closed) β-region and let Tk be the set of all finite trees
of maximum vertex degree at most k. In [BDLL95], a complete characterization of T (β)
for all β values such that 0 ≤ β ≤ 1

1−cos(2π

5
)
≃ 1.45 or such that 3.23 ≃ 1

cos(2π

5
)
< β < ∞ is

given. Also, a complete characterization of T [β] for all β values such that 0 ≤ β < 1
1−cos(2π

5
)

or such that 1
cos(2π

5
)
≤ β ≤ ∞ is presented. For all β values not in the above intervals, the

authors give a partial characterization: They show that all trees in T4 and only trees in T5
belong to T (β) and T [β].

Table 4.1 summarizes the known results about families of trees that admit a β-drawing for
different values of β in 2-dimensional space (for proofs and detailed description of recognition
and drawing algorithms, see [BDLL95, BLL96]). In the table, T denotes the family of

4.3. RESULTS 131

trees that have at least two adjacent vertices of degree three and T denotes the family of
“forbidden” graphs defined in [BLL96]. Figure 4.13 shows a β-drawing of a tree with all non-
leaf vertices having degree four; the drawing is computed with the technique of [BDLL95]
and assumes the value β = 4.

Figure 4.13 A β-drawing of a tree for β = 4 computed with the technique of [BDLL95].

The study of β-drawings of trees was also extended to 3-dimensional space. The def-
inition of β-region recalled in the previous section can be straightforwardly extended to
3-dimensional space by considering open and closed 3-dimensional spheres instead of open
and closed 2-dimensional spheres. In [LD95] it is shown that by using the third dimension
the class of β-drawable trees becomes larger in many cases. For example, all trees having
maximum vertex degree at most 4 are Gabriel drawable in 3-dimensional space, while this
is not the case in the plane (see also Row 5 of Table 4.1); for β = 2 every tree having max-
imum vertex degree at most nine is drawable. The known results on β-drawability of trees
in 3-dimensional space are summarized in Table 4.2, where the same notation of Table 4.1
is adopted; in the table, K1 and K2 denote the tree consisting of a single vertex and of a
single edge, respectively.

Returning now to β-drawings in 2-dimensional space, the study of the β-drawability
problem was extended from trees to outerplanar graphs by Lubiw and Sleumer [LS93], who
showed that all maximal outerplanar graphs admit both a relative neighborhood drawing
and a Gabriel drawing. They also proved that every biconnected outerplanar graph admits
a relative neighborhood drawing. Lubiw and Sleumer also conjectured that any biconnected
outerplanar graph admits a Gabriel drawing. This conjecture was settled in the affirmative
in [LL97], where it is proved that indeed every biconnected outerplanar graph admits a
β-drawing for all values of β such that 1 ≤ β ≤ 2. In the same paper, the investigation was

132 CHAPTER 4. PROXIMITY DRAWINGS

value of β T (β) T [β]

1 β = 0 T (β) = {K1,K2} T [β] = T2

2 0 < β <
√
3
2

T (β) = T2 T [β] = T2

3 β =
√
3
2

T (β) = T2 T [β] = T3 − T

4
√

3
2

< β < 1 T (β) = T3 T [β] = T3

5 β = 1 T [β] = T4 − T T [β] = T4 − T
6 1 < β < 1

1−cos(2π

5
)

T (β) = T4 T [β] = T4

7 β = 1

1−cos(2π

5
)

T (β) = T4 T4 ⊂ T [β] ⊂ T5

8 1

1−cos(2π

5
)
< β < 2 T4 ⊂ T (β) ⊆ T5 T4 ⊂ T [β] ⊆ T5

9 β = 2 T [β] = T5 T [β] = T5

10 2 < β < 1

cos(2π

5
)

T4 ⊂ T (β) ⊆ T5 T4 ⊂ T [β] ⊆ T5

11 β = 1

cos(2π

5
)

T4 ⊂ T (β) ⊂ T5 T [β] = T4

12 1

cos(2π

5
)
< β < ∞ T (β) = T4 T [β] = T4

13 β = ∞ T3 ⊂ T (β) ⊂ T4 T [β] = T3

Table 4.1 β-drawability of trees for 0 ≤ β ≤ ∞, 2-dimensional space.

extended to simply connected outerplanar graphs (notice that the family of these graphs
includes trees as a special case); the authors show an upper bound on the number of
biconnected components sharing a cutvertex in a β-drawable graph, for all possible values
of β, which gives rise to partial characterization of the families of representable outerplanar
graphs.

Table 4.3 summarizes the characterization results about the β-drawability of outerplanar
graphs that can be found in [LS93, LL97]. All other entries describe results from this paper.
CO, BO, and MO are the set of all connected outerplanar, biconnected outerplanar, and
maximal outerplanar graphs, respectively. GCO(β), GBO(β), and GMO(β) are the classes
of connected outerplanar, biconnected outerplanar, and maximal outerplanar (β)-drawable
graphs, respectively. Similarly, GCO[β], GBO[β], and GMO[β] are the classes of connected
outerplanar, biconnected outerplanar, and maximal outerplanar [β]-drawable graphs, re-
spectively. Gk denotes the class of graphs such that the number of biconnected components
sharing a cut-vertex is at most k.

Little is known about the β-drawability of graphs that are not outerplanar. Irfan and
Rahman [IR07] gave a sufficient condition for the β-drawability of 2-outerplanar graphs
for values of β in the interval 1 < β < 2; they also described examples of 2-outerplanar
graphs that do not admit a β-drawing for 1 < β < 2. In the same paper, Irfan and
Rahman described and O(n2)-time algorithm to test their sufficient condition on a given
2-outerplanar graph with n vertices. The time complexity of this test was later improved
to O(n) by Samee, Irfan, and Rahman [SIR08].

4.4 Variations of Proximity Drawings

Some generalizations and relaxations of proximity drawings have been described in the
literature. This section recalls three of them.

4.4. VARIATIONS OF PROXIMITY DRAWINGS 133

β T (β) 3-D T [β] 3-D

1 β = 0 T (β) = {K1,K2} T [β] = T2

2 0 < β < 2
3

T (β) = T2 T [β] = T2

3 β = 1
2 sin2(π

3
)
= 2

3
T (β) = T2 T [β] = T3 − T ′

4 2
3
< β < 1

2 sin2(arcsin

√

2

3
)

T (β) = T3 T [β] = T3

5 β = 0.75 T (β) = T3 T3 ⊂ T [β] ⊆ T4

6 3
4
< β < 1

2 sin2(π

4
)
= 1 T (β) = T4 T [β] = T4

7 β = 1 T (β) = T4 T4 ⊂ T [β] ⊂ T6

8 1 < β < 1

2 sin2(7π

30
)

T (β) = T6 T [β] = T6

9 1

2 sin2(7π

15
)
≤ β < 1

2 sin2(13π

60
)

T6 ⊆ T (β) ⊆ T7 T6 ⊆ T [β] ⊆ T7

10 1

2 sin2(13π

60
)
≤ β < 1

2 sin2(37π

180
)

T6 ⊆ T (β) ⊆ T8 T6 ⊆ T [β] ⊆ T8

11 1

2 sin2(37π

180
)
≤ β < 1

2 sin2(π

5
)

T6 ⊆ T (β) ⊆ T9 T6 ⊆ T [β] ⊆ T9

12 β = 1
2 sin2(π

5
)

T6 ⊆ T (β) ⊆ T9 T6 ⊆ T [β] ⊆ T9

13 1
2 sin2(π

5
)
< β ≤ 1

2 sin2(7π

36
)

T7 ⊆ T (β) ⊆ T9 T7 ⊆ T [β] ⊆ T9

14 1

2 sin2(7π

36
)
< β ≤ 1

2 sin2(67π

360
)

T7 ⊆ T (β) ⊆ T10 T7 ⊆ T [β] ⊆ T10

15 1

2 sin2(67π

360
)
< β ≤ 1

2 sin2(16π

90
)

T7 ⊆ T (β) ⊆ T11 T7 ⊆ T [β] ⊆ T11

16 1

2 sin2(16π

90
)
< β ≤ 1

2 sin2(61π

360
)

T7 ⊆ T (β) ⊆ T12 T7 ⊆ T [β] ⊆ T12

17 1

2 sin2(61π

360
)
< β < 1

2 sin2(π

6
)

T7 ⊆ T (β) ⊆ T13 T7 ⊆ T [β] ⊆ T13

18 β = 2 T9 ⊆ T (β) ⊆ T13 T9 ⊆ T [β] ⊆ T13

19 2 < β < 1

cos(61π

180
)

T7 ⊆ T (β) ⊆ T13 T7 ⊆ T [β] ⊆ T13

20 1

cos(61π

180
)
≤ β < 1

cos(16π

45
)

T7 ⊆ T (β) ⊆ T12 T7 ⊆ T [β] ⊆ T12

21 1

cos(16π

45
)
≤ β < 1

cos(67π

180
)

T7 ⊆ T (β) ⊆ T11 T7 ⊆ T [β] ⊆ T11

22 1

cos(67π

180
)
≤ β < 1

cos(7π

18
)

T7 ⊆ T (β) ⊆ T10 T7 ⊆ T [β] ⊆ T10

23 1

cos(7π

18
)
≤ β < 1

cos(2π

5
)

T7 ⊆ T (β) ⊆ T9 T7 ⊆ T [β] ⊆ T9

24 β = 1

cos(2π

5
)

T6 ⊆ T (β) ⊆ T9 T6 ⊆ T [β] ⊆ T9

25 1

cos(2π

5
)
< β < 1

cos(37π

90
)

T6 ⊆ T (β) ⊆ T9 T6 ⊆ T [β] ⊆ T9

26 1

cos(37π

90
)
≤ β < 1

cos(13π

30
)

T6 ⊆ T (β) ⊆ T8 T6 ⊆ T [β] ⊆ T8

27 1

cos(13π

30
)
≤ β < 1

cos(7π

15
)

T6 ⊆ T (β) ⊆ T7 T6 ⊆ T [β] ⊆ T7

28 1

cos(7π

15
)
< β < ∞ T (β) = T6 T [β] = T6

29 β = ∞ T4 ⊂ T (β) ⊂ T6 T [β] = T4

Table 4.2 β-drawability of trees for 0 ≤ β ≤ ∞, 3-dimensional space.

4.4.1 Witness Proximity Drawings

Witness proximity has been introduced and studied in a series of papers by Aronov, Dulieu,
and Hurtado [ADH, ADH11a, ADH11b]. These papers study both the computational ge-
ometry problem of computing witness proximity graphs on a given point set and the graph
drawing question of defining a set of points whose witness proximity drawing represents
a given combinatorial graph. We recall here only those results relative to the proximity
drawability problem.

Witness proximity drawings are region of influence based proximity drawings where the
adjacency between pairs of vertices depends on whether the proximity region of these ver-
tices contains or does not contain a point form a second set, called the witness points.

134 CHAPTER 4. PROXIMITY DRAWINGS

β Connected Biconnected Maximal

1 β = 1 G2 6⊆ GCO[1] ⊂ G4 GBO[1] = {BO} GMO[1] = {MO}
2 1 < β < 1

1−cos(2π

5
)

GCO(β) ⊂ G4 GBO(β) = {BO} GMO(β) = {MO}

GCO[β] ⊂ G4 GBO[β] = {BO} GMO[β] = {MO}
3 β = 1

1−cos(2π

5
)

GCO(β) ⊂ G4 GBO(β) = {BO} GMO(β) = {MO}

G4 6⊆ GCO[β] ⊂ G5 GBO[β] = {BO} GMO[β] = {MO}
4 1

1−cos(2π

5
)
< β < 2 G4 6⊆ GCO(β) ⊂ G5 GBO(β) = {BO} GMO(β) = {MO}

G4 6⊆ GCO[β] ⊂ G5 GBO[β] = {BO} GMO[β] = {MO}
5 β = 2 G4 6⊆ GCO(2) ⊂ G5 GBO(2) = {BO} GMO(2) = {MO}

Table 4.3 β-drawability of outerplanar graphs for 1 ≤ β ≤ 2, 2-dimensional space.

Therefore, in a witness proximity drawing, we look at a set of points that represent the ver-
tices and at a set of points that play the role of the witnesses. The existence/absence of an
edge in the drawing depends on the location of the witness points (the set of witness points
and the set of points representing the vertices of the graph in drawing may not coincide).

In a positive witness proximity drawing Γ, two vertices (x, y) are adjacent if and only
if the proximity region of x and y contains at least one vertex that belongs to the set of
witness points. In a negative witness proximity drawing , x and y are adjacent if and only if
their region of influence does not contain any of the witness points (it may however contain
other vertices of the graph that are not witnesses). It is worth noticing that the definition of
witness proximity drawing includes the notion of (h, 0)-proximity drawing as a special case:
A negative proximity drawing where the set of witness points coincides with the vertex set
is in fact an (h, 0)-proximity drawing.

The computation of a witness proximity drawing requires to define the set of points
representing the vertices and the set of witness points. For example, Figure 4.14 (a) shows
a positive witness Gabriel drawing and Figure 4.14 (b) a negative witness Gabriel drawing;
the two drawings have the same witness point q and the same set of vertices. In the figures,
the Gabriel disk of u and v contains the witness point q, which makes u and v adjacent in
the positive witness Gabriel drawing.

In [ADH11a], Aronov, Dulieu, and Hurtado studied witness Delaunay drawings . More
specifically, they consider negative witness Delaunay drawings, which are proximity draw-
ings where two vertices x and y are adjacent if and only if there exists an open disk whose
boundary passes through x and y and does not contain any point of the witness set. It is
proved that every tree admits a negative witness Delaunay drawing for suitable set of witness
points and that the drawing can be computed in linear time, adopting the real RAM model
of computation. As for forbidden graphs, it is proved that non-planar bipartite graphs never
admit a negative witness Delaunay drawing. In the same paper, positive witness Delaunay
drawings in the L∞ metric are studied. These drawings, also called square drawings , are
such that two vertices x and y are adjacent if and only if there exists an axis-aligned square
whose boundary passes through x and y and that contains at least one witness point. It is
proved in [ADH11a] that a graph admits a square drawing if and only if it is a permutation
graph and that a square drawing of a permutation graph can be computed by using at most
one witness point.

The witness generalization of Gabriel drawings is studied in [ADH]. The paper describes
both graphs that do not admit a negative witness Gabriel drawing and graphs that are
negative witness Gabriel drawable. It is proved that all graphs containing K3,3,3,3 as an

4.4. VARIATIONS OF PROXIMITY DRAWINGS 135

(a) (b)

u

q

vu

q

v

Figure 4.14 Two witness Gabriel drawings where q is the witness point: (a) Positive
witness Gabriel drawing. (b) Negative witness Gabriel drawing.

induced subgraph do not have a negative witness Gabriel drawing. It is also proved that
all trees are negative witness Gabriel drawable.

Positive witness rectangle of influence drawings are explored in [ADH11b]. In this pa-
per, Aronov, Dulieu, and Hurtado show that a tree admits a positive witness rectangle of
influence drawing if and only if it has no three independent edges. The paper also gives
necessary conditions for positive witness rectangle of influence drawability of general graphs.
Namely, a graph that has a positive witness rectangle of influence drawing has at most two
non-trivial connected components (a connected component is non-trivial if its number of
vertices is larger than one). If the graph has exactly two components, then each component
has diameter three; if the graph has one component, it has diameter six. Finally, a charac-
terization of the positive witness rectangle of influence drawable graphs having exactly two
non-trivial components is given: A graph belongs to this family if and only if it is a disjoint
union of zero or more isolated vertices and two co-interval graphs.

4.4.2 Weak Proximity Drawings

We recall that, a (2, 0)-proximity drawing Γ is a straight-line drawing such that: (i) for each
edge (x, y) of Γ, the proximity region of x and y does not contain any other vertex, and (ii)
for each pair of non-adjacent vertices x, y of Γ, the proximity region of x and y contains
at least one other vertex. In this section, we shall call such drawings strong proximity
drawings.

A relaxation of strong proximity drawings, called weak proximity drawings , was first
introduced and studied in [DLW06]. A weak proximity drawing of a graph G is one that
ignores requirement (ii). In other words, if x, y is not an edge of the graph, then no
requirement is placed on the proximity region of x and y in the weak drawing. For example,
Figure 4.15 (a) shows a weak proximity drawing of a tree. Here, the proximity region of any
two points x and y is the disk having x and y as antipodal points. Note that the drawing is
not a strong drawing, as no edges between neighbors of the degree six vertex are included.

136 CHAPTER 4. PROXIMITY DRAWINGS

The strong proximity drawing with the same proximity region and on the same set of points
is shown in Figure 4.15 (b).

(b)(a)

Figure 4.15 (a) A weak proximity drawing and (b) a strong proximity drawing.

For purposes of graph visualization, there are several reasons for studying weak proximity
drawings. We summarize the ones that, in our opinion, are the most relevant.

• Strong proximity drawability may appear too restrictive for graph drawing pur-
poses. By relaxing (ii), a graph G can no longer be reconstructed from the
locations of its vertices in a weak drawing; however, many graphs that do not
admit strong drawings can be drawn weakly. For example, a tree that has a
vertex of degree greater than five has no strong 2-dimensional β-drawing for any
β (see also Table 4.1). Thus, the drawing in Figure 4.15 (a) illustrates a graph
that is weak but not strong drawable for the Gabriel region.

• A visibility drawing of a graph is a drawing such that (e.g., see [DETT99, KW01])
vertices are mapped to horizontal segments and edges are mapped to vertical
segments that intersect only adjacent vertex segments. Of course, a necessary
condition for drawing an edge is that the vertex segments corresponding to its
end-vertices are visible in the vertical direction. If this condition is also sufficient,
then we have a strong visibility drawing ; otherwise, we have a weak visibility
drawing . In the field of visibility drawing, the coordinated study of both strong
and weak types of drawings led to deep and practical results.

• Weak proximity can be considered as an “edge-vertex resolution rule” in the sense
that a vertex cannot enter the region of influence of an edge. Thus, the study
of weak proximity can contribute to the body of drawing strategies that adopt a
resolution rule (e.g., see [DETT99, KW01]).

• The weak proximity model may well be sufficient for many drawing applications,
particularly ones that do not require recovery of the graph solely from the posi-
tions of its vertices. For example, weak proximity drawings have been receiving
increasing interest for their applications to wireless network design, where dis-

4.4. VARIATIONS OF PROXIMITY DRAWINGS 137

tributed topology control can be based on proximity structures constructed from
given geometric graphs by deleting those edges that do not satisfy a given prox-
imity rule. The resulting graph is a weak proximity drawing because its edges
satisfy the given proximity rule, whereas pairs of non-adjacent vertices may or
may not contain other vertices in their proximity region. Papers devoted to the
study of weak proximity graphs defined in the context of sensor networks in-
clude [CWL02, LCWW03, PS04, KL10]. See also Section 4.5 for more discussion
and some other references about proximity and wireless ad-hoc networks.

In particular the research in [DLW06] focused on 2-dimensional weak β-drawing; the
following results were proved.

General graphs: Any graph G is weak β-drawable for all β in the range 0 to some upper
bound that is a function either of the number of vertices or of the maximum vertex
degree of G.

Planar graphs: For any value of β such that 1 < β ≤ ∞, strong and weak β-drawings
of triangulated planar graphs coincide. It was also shown how to interpret any
straight-line drawing algorithm for planar triangulated graphs as an algorithm
for constructing weak proximity drawings.

Trees: An algorithm was presented to draw any tree as a weak β-drawing for any value
of β less than two. It was shown that for 2 ≤ β < ∞, the weak and the strong
proximity models give rise approximately to the same class of 2-dimensional β-
drawable trees. Finally, the NP-hardness of deciding whether a tree has a weak
proximity drawing for β = ∞, where the region of influence is an open strip, was
proved.

Table 4.4 schematically compares the known results on weak β-drawability against those
on strong β-drawability for trees. Each row corresponds to a different interval of β and
reports the maximum vertex degree k that a tree can have to admit a strong or weak β-
drawing for some values of β in the interval. Of particular interest is the value β = 2, where
remarkable differences in the drawable trees can be noticed, depending on whether the
region of influence is an open set (in which case it coincides with the relative neighborhood
region) or a closed set (in which case it coincides with the relatively closest region).

value of β strong β-drawability weak β-drawability
1 0 ≤ β < 2 k ≤ 5 k = ∞
2 β = 2 k = 5 k = ∞ (w-(β)-draw.), k = 5 (w-[β]-draw.)
3 2 < β ≤ ∞ k ≤ 5 k ≤ 5

Table 4.4 Comparing weak β-drawability of trees vs. strong β-drawability of trees. In
the table, w-(β)-drawable means that the tree has a weak β-drawing where the β-region
is an open set and w-[β]-drawable means that the tree has a weak β-drawing where the
β-region is a closed set.

The advantage of using a weak model of proximity was also highlighted in [LL97], where
it was proved that, in contrast with the results in Table 4.3, every connected outerplanar
graph admits a weak Gabriel drawing, a weak relative neighborhood drawing, and a weak
β-drawing for any given β such that 1 < β < 2.

138 CHAPTER 4. PROXIMITY DRAWINGS

A comparison of strong and weak β-drawings in terms of area requirement can be found
in [LTTV97] and in the work by Penna and Vocca [PV04]. Penna and Vocca [PV04]
extended the study of weak proximity β-drawings to 3-dimensional space and proved several
polynomial area/volume bounds for families of graphs for which a strong proximity drawing
is either not admitted or requires exponential area. In general however, there exist families
of graphs for which a Gabriel drawing in 2-dimensional space requires exponential area both
for the strong and the weak model of proximity [LTTV97].

Weak nearest neighbor graphs were studied by Eades and Whitesides [EW96a], who
showed that the problem of deciding whether a graph admits a weak nearest neighbor
drawing is NP-hard. Thus, nearest neighbor drawability is NP-hard both in the weak and
in the strong proximity model (see also Section 4.3.4).

Weak rectangle of influence drawings were first studied by Biedl, Bretscher, and Mei-
jer [BBM99]. They showed that a planar graph admits a weak closed rectangle of influence
drawing if and only if it admits a planar embedding where the outerface is not a 3-cycle
and such that there is no separating 3-cycle; they call a separating 3-cycle a filled triangle
and call the family of graphs with no filled triangles NF3-graphs . In the same paper, Biedl,
Bretscher, and Meijer also showed that every NF3-graph admits an open weak rectangle of
influence drawing but left as open the question of characterizing the open weak rectangle of
influence drawable graphs. There are several subsequent papers that present partial answers
to this question.

Miura, Matsuno, and Nishizeki [MMN09] characterize those triangulated plane graphs
(i.e., maximal planar graph with a given planar embedding) that admit an open weak rect-
angle of influence drawing; the characterization gives rise to a linear time testing algorithm.
In addition, the paper gives a sufficient condition for the weak open rectangle of influence
drawability of inner triangulated plane graphs (i.e., planar graphs with a given planar em-
bedding and all triangular faces, except the external face that has more than three vertices).
This sufficient condition is expressed in terms of labeling of angles of a suitable subgraph,
called frame graph. The frame graph of an inner triangulated plane graph G is obtained
by removing all vertices and edges in the proper inside of every maximal filled triangle of
G. Testing the sufficient condition, and eventually constructing an open rectangle of influ-
ence drawing of G, can be executed in O(n1.5 log n) time. The computed drawing has area
(n − 1) × (n − 1) and it has the property that every edge of the frame graph is oblique,
i.e., it is neither vertical nor horizontal. Alamdari and Biedl [AB12] further elaborate on
the ideas by Miura, Matsuno, and Nishizeki and characterize the inner triangulated plane
graphs that admit a weak open rectangle of influence drawing such that no two vertices of
the frame graph have the same x-coordinate or the same y-coordinate. The characterization
by Alamdari and Biedl yields an O(n1.5 log n)-time testing and drawing algorithm. A recent
paper by Alamdari and Biedl [AB] generalizes the characterization for non-aligned frames
to all planar graphs with a fixed planar embedding. The paper also shows that if the planar
embedding is not fixed, then deciding if a given planar graph has an open weak rectangle
of influence drawing is NP-complete. NP-completeness holds even for open weak rectangle
of influence drawings with non-aligned frames.

A significant research effort has also been devoted to the area required by weak open
and closed rectangle of influence drawings. The construction by Biedl, Bretscher, and
Meijer [BBM99] gives rise to weak closed and open rectangle of influence drawings with n
vertices on an integer grid of size (n− 1)× (n− 1). Sadavisam and Zhang [SZ11] show that
an integer grid of size at most (n− 3)× (n− 3) is always sufficient and sometimes necessary
to compute a weak closed rectangle of influence drawing of an irreducible triangulation,
i.e., a maximal NF3-graph. In the same paper, they also proved an expected area of
(22n27 +

√
n) × (22n27 +

√
n) for a weak closed rectangle of influence drawing of a random

4.4. VARIATIONS OF PROXIMITY DRAWINGS 139

irreducible triangulation. Miura and Nishizeki [MN05] prove that the convex grid drawing
computed by the algorithm of Miura, Nakano, and Nishizeki [MNN00, MNN06] is in fact a
weak open rectangle of influence drawing; this result implies that a four connected planar
graph with n vertices has a weak open rectangle of influence drawing in area ⌈n−1

2 ⌉×⌊n−1
2 ⌋.

Zhang and Vaidya [ZV09a, ZV09b] further improve this bound as follows: (i) An irreducible
triangulation with n vertices taken uniformly at random has a weak open rectangle of
influence drawing whose area is asymptotically 11n

27 × 11n
27 with high probability, up to an

additive error of O(
√
n); (ii) A quadriangulation with n vertices taken uniformly at random

has a weak open rectangle of influence drawing whose area is asymptotically 13n
27 × 13n

27 with
high probability, up to an additive error of O(

√
n). Both results are proved as applications

of previous techniques by Fusy [Fus06, Fus09].

4.4.3 Approximate Proximity Drawings

As discussed in Section 4.3, proximity drawability imposes severe restrictions on the families
of the representable graphs; for example, the tables of Section 4.3.6 show families of β-
drawable graphs whose maximum vertex degrees are all bounded by small constant values.
In order to overcome these restrictions on the combinatorial structure of the drawable
graphs, recent papers study straight-line drawings of graphs that are “good approximations”
of proximity drawings.

Di Giacomo et al. [DDLM12] investigate drawings that approximate the global proximity
rule; in particular, they study approximate minimum weight drawings of trees in the 2-
dimensional space. A (1+ ε)-EMST drawing is a planar straight-line drawing of a tree such
that, for any fixed ε > 0, the distance between any two vertices is at least 1

1+ε the length of
the longest edge in the path connecting them. Therefore, (1 + ε)-EMST drawings are good
approximations of Euclidean minimum spanning trees. Figure 4.16 shows a (1 + ε)-EMST
drawing of a tree for ε = 0.5. In the figure, the ratio between the distance d(u, v) and

the length of the longest edge along the path between u and v is d(u,v)
|eT (u,v)| = 0.714, which

is larger than 1
1+ε = 0.667. Note that the tree of the figure does not admit a minimum

weight drawing (a Euclidean minimum spanning tree cannot have two adjacent vertices
both having degree six).

While it is known that all trees with maximum vertex degree five have a Euclidean
minimum spanning tree realization [MS92] and it is NP-hard deciding whether trees of
maximum vertex degree six admit one [EW96b], in [DDLM12] it is shown that every tree
T has a (1+ ε)-EMST drawing for any given ε > 0 and that this drawing can be computed
in linear time in the real RAM model of computation.

Also, while Angelini et al. [ABC+11] have proved that EMST drawings of trees with vertex
degree at most five may require exponential area, Di Giacomo et al. describe polynomial area
approximation schemes for (1+ε)-EMST drawings: Any tree with n vertices and maximum
vertex degree ∆ admits a (1 + ε)-EMST drawing whose area is O(nc+f(ε,∆)), where c is a
positive constant and f(ε,∆) is a polylogarithmic function that tends to infinity as ε tends
to zero. As already mentioned in Section 4.3.1, a byproduct of the techniques of [DDLM12]
ia that the polynomial area upper bound for minimum weight drawings of complete binary
trees by Frati and Kaufmann [FK11] is improved from O(n4.3) to O(n3.8).

Evans et al. [EGK+12], introduce and study approximations of (h, 0)-proximity drawings
called (ε1, ε2)-proximity drawings. Intuitively, given a definition of proximity region and
two real numbers ε1 ≥ 0 and ε2 ≥ 0, an (ε1, ε2)-proximity drawing of a graph is a planar
straight-line drawing Γ such that: (i) For every pair of adjacent vertices u, v, their proximity
region “shrunk” by the multiplicative factor 1

1+ε1
does not contain any vertices of Γ; and

140 CHAPTER 4. PROXIMITY DRAWINGS

d(u, v)

u v

eT (u, v)

Figure 4.16 A (1+ ε)-EMST drawing Γ of a tree with maximum vertex degree 6 for ε =

0.5. For the two highlighted vertices u and v, we have that d(u,v)
|eT (u,v)| = 0.714 ≥ 1

1+ε = 0.667.

(ii) For every pair of non-adjacent vertices u, v, their proximity region “blown-up” by the
factor (1 + ε2) contains some vertices of Γ other than u and v. More formally, let D be a
disk with center c and radius r, and let ε1 and ε2 be two nonnegative real numbers. The
ε1-shrunk disk of D is the disk centered at c and having radius r

1+ε1
; the ε2-expanded disk

of D is the disk centered at c and having radius (1+ ε2)r. An (ε1, ε2)-proximity drawing is
a planar straight-line drawing where the proximity region of two adjacent vertices is defined
by using ε1-shrunk disks, while the region of influence of two non-adjacent vertices uses
ε2-expanded disks.

Figure 4.17 is an example of an (ε1, ε2)-Gabriel drawing for ε1 = 0 and ε2 = 0.7. Note
that the drawing is not a Gabriel drawing: For example, the dotted disk in the figure is a
Gabriel disk (and its emptiness would imply an edge), while the solid one is its 0.7-expanded
version. In fact, the tree of Figure 4.17 is not Gabriel drawable (see also Table 4.1).
In [EGK+12], it is proved that one can arbitrarily approximate a proximity drawing of

any planar graph for some of the most-studied definitions of proximity. Namely, it is shown
that for any positive values of ε1, ε2 an embedded planar graph admits both an (ε1, ε2)-
Gabriel drawing and an (ε1, ε2)-Delaunay drawing and an (ε1, ε2)-β-drawing (1 ≤ β ≤ ∞)
that preserve the given embedding. These results are proved to be, in a sense, tight since
it is shown that for each of the above types of proximity rules there are embedded planar
graphs that do not have an embedding preserving (ε1, ε2)-proximity drawing with either
ε1 = 0 or ε2 = 0.

Note that both the strong and the weak proximity drawings described in Sections 4.2.1
and 4.4.2 are special cases of (ε1, ε2)-proximity drawings. Namely, an (ε1, ε2)-proximity
drawing is a strong proximity drawing if ε1 = ε2 = 0; also, an (ε1, ε2)-proximity drawing
is a weak proximity drawing if ε1 = 0 and ε2 = ∞. Therefore, (0, ε2)-proximity drawings
make it possible to study weak and strong proximity drawability in a unified framework:
As the value of ε2 increases, (0, ε2)-proximity drawings approach weak proximity drawings.

Several questions can be asked within this unifying framework. For example, not all trees
have a Gabriel drawing [BLL96], while all trees have a weak Gabriel drawing [DLW06].

4.4. VARIATIONS OF PROXIMITY DRAWINGS 141

Figure 4.17 A ((0,0.7)-Gabriel drawing of a tree that does not have a Gabriel drawing.

What is the minimum threshold value such that if ε2 is larger than this threshold all trees
are drawable? Evans et al. [EGK+12] answer this question by proving that every tree has
a (0, ε2)-Gabriel drawing for any given value of ε2 such that ε2 ≥ 2. In the same paper, it
is also proved that for each value of ε2 such that 0 ≤ ε2 < 2, there exists a tree T such that
T does not have a (0, ε2)-Gabriel drawing.

All biconnected outerplanar graphs have a Gabriel drawing [LL97], while a connected
outerplanar graph where a cut vertex is shared by more than four biconnected components
is not Gabriel drawable (see also Section 4.3). For a contrast, it is shown in [EGK+12] that
every outerplanar graph without vertices of degree one admits a (0, ε2)-Gabriel drawings
for any arbitrarily chosen positive value of ε2.

The study of approximate rectangle of influence drawings has also been recently initiated
in [DLM], where it is proved that all planar graphs have an open/closed (ε1, ε2)-rectangle
of influence drawing for ε1 > 0 and ε2 > 0, while there are planar graphs that do not admit
an open/closed (ε1, 0)-rectangle of influence drawing and planar graphs that do not admit
a (0, ε2)-rectangle of influence drawing. In the same paper, it is shown that all outerplanar
graphs have an open/closed (0, ε2)-rectangle of influence drawing for any ε2 ≥ 0. Concerning
area bounds, it is shown that if ε2 > 2 an open/closed (0, ε2)-rectangle of influence drawing
of an outerplanar can be computed in polynomial area. For values of ε2 such that ε2 ≤ 2,
a drawing algorithm is described that computes (0, ε2)-rectangle of influence drawings of
binary trees in area O(nc+f(ε2)), where c is a positive constant, f(ε2) is a polylogarithmic
function that tends to infinity as ε2 tends to zero, and n is the number of vertices of the
input tree.

We conclude the section by recalling a different approach, studied by Hurtado et al. [HLW10],
to approximate a proximity drawing. Given a graph G, the idea is to first partition G into
subgraphs such that each subgraph is proximity drawable and then compute a drawing Γ of
G such that each subdrawing of Γ representing a subgraph of the partition is a proximity
drawing. In particular, Hurtado et al. showed different drawing techniques that receive as
input a tree T with a partition into subtrees of bounded degree and produce as output a
drawing of T such that the subdrawing of each subtree is a minimum spanning tree. In a

142 CHAPTER 4. PROXIMITY DRAWINGS

companion paper, Wood [Woo10] studied how to efficiently partition a tree into subtrees of
bounded degree.

4.5 Open Problems

To date, a full understanding of the combinatorial properties of the vast majority of proxim-
ity drawable graphs is still an elusive goal and the results presented in the previous sections
can be regarded as just the first steps moved into this fascinating wide-open research area.
We list below some of the possible research directions that in our opinion are among the
most interesting.

Minimum Weight Drawings: Characterizing minimum weight drawable triangulations
seems to be a serious challenge; a probably less ambitious goal could be to char-
acterize those minimum weight drawable triangulations whose skeleton is a tree.
Another interesting open problem for these types of proximity drawings is de-
termining the computational complexity of deciding whether a tree with vertices
of degree at most twelve can be drawn as a Euclidean minimum spanning tree
in 3-dimensional space. Also, as described in Section 4.3.1, the algorithm by
Monma and Suri [MS92] requires O(2n

2

)×O(2n
2

) area for a 2-dimensional min-
imum weight drawing of a tree with n vertices and vertex degree at most five.
Angelini et al. [ABC+11] establish an Ω(2n)×Ω(2n) lower bound for these trees

and conjecture that there is a tree requiring Ω(2n
2

)×Ω(2n
2

). Proving/disproving
this conjecture is a fascinating question.

Delaunay and Voronoi Drawings: Characterizing Delaunay drawable graphs is one of the
oldest open problems in this area. It would also be interesting to better under-
stand the combinatorial relationship between minimum weight and Delaunay
drawable triangulations. Indeed, while Figure 4.9 shows a Delaunay forbidden
graph that is minumum weight drawable, it is not known whether there exist
Delaunay drawable graphs that are minimum weight forbidden. Another re-
search direction is to study graphs that admit a Delaunay drawing of order h
for some h > 0; good starting points for this problem are the papers by Abrego
et al. [ÁMFM+11] and by Bose et al. [BCH+10], devoted to the combinatorial
properties of higher-order proximity graphs. Finally, a complete characterization
of (positive or negative) witness Delaunay drawable graphs is another fascinating
question.

β-Drawings: The entries of Tables 4.1, 4.2, and 4.3 show gaps in the characterization
of strong β-drawable trees and outerplanar graphs. Each of these gaps moti-
vates further research. Also, little is known about the β-drawability properties
of general graphs; for example, finding a complete characterization of β drawable
k-outerplanar graphs for a given constant k such that k ≥ 2 is an interesting prob-
lem. It would be also interesting to investigate area/volume bounds for strong
and weak proximity drawings, also in the unifying framework of (0, ε2)-proximity
drawings. Finally, a natural question is to extend the study of (positive/negative)
witness proximity drawability to the whole spectrum of possible β values.

Sphere of Influence Drawings: There are examples of non-planar graphs that admit a
sphere of influence drawing. However, the result by Soss [Sos99a] proves that a
sphere of influence drawable graph always has a number of edges that is linear
in the number of the vertices. It is however not known whether the upper bound
of 15n by Soss is tight; Toussaint [Tou05] reports on a conjecture of Avis, who

4.6. BEYOND THIS CHAPTER 143

claims that such a tight upper bound could be 9n. What about approximate
sphere of influence drawings? Or witness sphere of influence drawings?

Rectangle of Influence Drawings: Except for the classes of graphs described in [LLMW98],
very little is known about recognizing which graphs have admit an (open or
closed) strong rectangle of influence drawing. Also, as mentioned in the previous
section, it would be interesting to characterize which planar graphs have a weak
open rectangle of influence drawing. Similar characterizations can also be studied
either in the witness proximity or in the approximate proximity models.

Other Proximity Rules: Several well-known proximity rules are still unexplored from a
graph drawing point of view. For example, one could study the γ-drawability
problem (see Section 4.2.1) or other proximity rules, not mentioned in the pre-
vious sections. A very limited list includes α-complexes (see, e.g., [Ede95] and
also [SLL+08] for preliminary results on α-drawability), sphere-of-attraction graphs
(see, e.g., [MW00]), class-cover catch digraphs (see, e.g., [PMDS03]), and maxi-
mum weight triangulations (see, e.g., [WCY99, QW04, QW06]).

4.6 Beyond this Chapter

We conclude this chapter by briefly pointing at two research directions in the areas of sensor
networks and of robust geometric computing where proximity graphs and drawings have
received some attention in the last few years.

Proximity Drawings and Ad-Hoc Networks: Different types of proximity graphs have at-
tracted the interest of network engineers. Indeed, topology control and manage-
ment, i.e., how to maintain network connectivity while consuming the minimum
possible power, has emerged as one of the most important issues in wireless net-
works.
A wireless sensor network can be modeled as a set of points in the plane where
each sensor s can communicate directly with each other sensor that is within its
power range; this model gives rise to a proximity graph called a unit distance
graph, where the proximity region for a sensor s is a circle of radius one centered
at s, and there is an edge connecting s to another sensor t if and only if t is
within the power range of S. However, the unit distance graph may be too dense
for the limited memory of the sensors in the network; also, in order to reduce
energy consumption, it is desirable that each sensor communicates directly with
only a few of the sensors that are within its range.
An increasing number of topology control algorithms have thus been presented
in the literature that are based on proximity graphs that are sparser than the
unit distance graph, have small vertex degree, can be computed locally in a dis-
tributed manner, and are good spanners (a straight-line drawing Γ of a graph
G is a k-spanner if for every pair of vertices u and v of G their geometric dis-
tance in Γ is at most k times the graph theoretic distance of u and v in G). A
limited list of these structures includes k-localized Delaunay triangulations (see,
e.g., [LCWW03]), local minimum spanning trees (see, e.g., [LHS03, CISRS05]),
partial Delaunay triangulations (see, e.g., [LSW04]), directed relative neighbor-
hood graphs , and directed local minimum spanning trees [LH04]. The interested
reader is also referred to [BM04, BDEK06, BDL+11, CKLS10, CKX11, GLN02,
Kan09, KPX10, NS07, Li04] for a limited list of references on geometric spanners
and applications of proximity graphs to wireless networks. See also [CBF+06]

144 CHAPTER 4. PROXIMITY DRAWINGS

for a paper that studies the drawability of a graph as a local minimum spanning
tree.
We only remark here that all the proximity graphs mentioned above are con-
structed by pruning those edges of the unit distance graph which do not satisfy
a given proximity rule; hence, the resulting proximity drawing guarantees close-
ness among adjacent vertices while there is no constraint on pairs of non-adjacent
vertices. In other words, these structures inherently adopt a weak model of prox-
imity.
Finally, there is general consensus that the knowledge of the combinatorial prop-
erties of the communication network is a basic requirement for the design of effi-
cient localized routing algorithms (see, e.g., [BMSU01, KWZ03, LSW05]). Unlike
traditional wired and cellular networks, the movement of wireless devices during
the communication could change the network topology to some extent: Under-
standing what types of networks (proximity drawings) can result is therefore a
natural question to ask. See, for example, [PS04], where the edge complexity of
locally Delaunay triangulations is studied.

Proximity Drawings and Geometric Checkers: The intrinsic structural complexity of the
implementation of geometric algorithms makes the problem of formally proving
the correctness of the code unfeasible in most of the cases. This has been moti-
vating research on checkers . A checker is an algorithm that receives as input a
geometric structure and a predicate stating a property that should hold for the
structure. The task of the checker is to verify whether the structure satisfies or
not the given property. Here, the expectation is that it is often easier to evaluate
the quality of the output than the correctness of the software that produces it.
Different papers (see, e.g., [DLPT98, MNS+99]) have agreed on the basic features
that a “good” checker should have:

Correctness: The checker should be correct beyond any reasonable doubt. Oth-
erwise, one would incur into the problem of checking the checker.

Simplicity: The implementation should be straightforward.

Efficiency: The expectation is to have a checker that is not less efficient than the
algorithm that produces the geometric structure.

Robustness: The checker should be able to handle degenerate configurations of
the input and should not be affected by errors in the flow of control due to
round-off approximations.

Geometric checkers can be quite naturally studied in the context of proximity
drawings. Suppose one is given a straight-line drawing Γ of a graph together
with some proximity rule R. A proximity drawing checker for Γ is an algorithm
that either certifies that Γ satisfies the proximity rule R or reports evidence that
Γ does not satisfy R.
One possible approach to solve this problem is to compute the proximity graph on
the vertex set of Γ by applying the proximity rule R and then verify whether the
computed drawing coincides with Γ. For example, suppose that Γ is a drawing
of a binary tree and one wants to check whether Γ is a minimum weight drawing.
One could compute the Euclidean minimum spanning tree of the vertices of Γ
in O(n log n) time [PS90] and verify whether the computed graph coincides with
Γ. However, can one perform the check in o(n log n) time? Also, what if the
proximity graph on the vertex set of Γ is not unique? Linear-time checkers for
Delaunay and Voronoi drawings can be found in [DLPT98, MNS+99]. Aronov,

4.6. BEYOND THIS CHAPTER 145

Dulieu, and Hurtado [ADH] show an O(n2 logm)-time algorithm that receives as
input a straight-line drawing Γ with n vertices and m edges and checks whether
Γ is a negative witness Gabriel drawing for some set of witness points. If the
answer is affirmative, the algorithm also returns the witness points.

Acknowledgments

This chapter extends and updates an early survey on proximity drawings co-authored by
Giuseppe Di Battista, William Lenhart, and me [DLL95]. I thank Boris Aronov, Ferran
Hurtado, and Sue H. Whitesides for their insights and constructive comments on earlier
versions of this chapter. Work supported in part by MIUR of Italy under project AlgoDEEP
prot. 2008TFBWL4.

146 CHAPTER 4. PROXIMITY DRAWINGS

References

[AB] Soroush Alamdari and Therese Bied. Open rectangle-of-influence draw-
ings of non-triangulated planar graphs. In W. Didimo and M. Patrignani,
editors, Graph Drawing (Proc. 20th International Symposium, GD 2012),
Lecture Notes Comput. Sci. to appear.

[AB12] Soroush Alamdari and Therese C. Biedl. Planar open rectangle-of-
influence drawings with non-aligned frames. In Marc J. van Kreveld
and Bettina Speckmann, editors, Graph Drawing (Proc. 19th Interna-
tional Symposium, GD 2011), volume 7034 of Lecture Notes Comput.
Sci., pages 14–25. Springer-Verlag, 2012.

[ABC+11] Patrizio Angelini, Till Bruckdorfer, Marco Chiesa, Fabrizio Frati, Michael
Kaufmann, and Claudio Squarcella. On the area requirements of Eu-
clidean minimum spanning trees. In Frank Dehne, John Iacono, and
Jörg-Rüdiger Sack, editors, Algorithms and Data Structures (Proc. 12th
International Symposium, WADS 2011), volume 6844 of Lecture Notes
Comput. Sci., pages 25–36. Springer-Verlag, 2011.

[ADH] Boris Aronov, Muriel Dulieu, and Ferran Hurtado. Witness Gabriel
graphs. Computational Geometry. to appear.

[ADH11a] Boris Aronov, Muriel Dulieu, and Ferran Hurtado. Witness (Delaunay)
graphs. Comput. Geom., 44(6-7):329–344, 2011.

[ADH11b] Boris Aronov, Muriel Dulieu, and Ferran Hurtado. Witness rectangle
graphs. In Frank Dehne, John Iacono, and Jörg-Rüdiger Sack, editors,
Algorithms and Data Structures (Proc. 12th International Symposium,
WADS 2011), volume 6844 of Lecture Notes Comput. Sci., pages 73–85.
Springer-Verlag, 2011.

[AH82] D. Avis and J. Horton. Remarks on the sphere of influence graphs. Ann.
New York Acad. Sci., 440:323–327, 1982.

[AM92] Pankaj K. Agarwal and J. Matoušek. Relative neighborhood graphs in
three dimensions. Comput. Geom. Theory Appl., 2(1):1–14, 1992.

[ÁMFM+11] Bernardo M. Ábrego, Ruy Fabila Monroy, Silvia Fernández-Merchant,
David Flores-Peñaloza, Ferran Hurtado, Vera Sacristan, and Maria
Saumell. On crossing numbers of geometric proximity graphs. Comput.
Geom., 44(4):216–233, 2011.

[BBM99] T. Biedl, A. Bretscher, and H. Meijer. Rectangle of influence drawings
of graphs without filled 3-cycles. In Graph Drawing (Proc. GD ’99),
volume 1731 of Lecture Notes Comput. Sci., pages 359–368. Springer-
Verlag, 1999.

[BC87] S. Bhatt and S. Cosmadakis. The complexity of minimizing wire lengths
in VLSI layouts. Inform. Process. Lett., 25:263–267, 1987.

[BCH+10] Prosenjit Bose, Sébastien Collette, Ferran Hurtado, Matias Korman, Ste-
fan Langerman, Vera Sacristan, and Maria Saumell. Some properties of
higher order Delaunay and Gabriel graphs. In Proceedings of the 22nd
Annual Canadian Conference on Computational Geometry, CCCG 2010,
pages 13–16, 2010.

[BDEK06] Prosenjit Bose, Luc Devroye, William S. Evans, and David G. Kirk-
patrick. On the spanning ratio of Gabriel graphs and beta-skeletons.
SIAM J. Discrete Math., 20(2):412–427, 2006.

REFERENCES 147

[BDL+11] Prosenjit Bose, Luc Devroye, Maarten Löffler, Jack Snoeyink, and Vishal
Verma. Almost all Delaunay triangulations have stretch factor greater
than pi/2. Comput. Geom., 44(2):121–127, 2011.

[BDLL95] P. Bose, G. Di Battista, W. Lenhart, and G. Liotta. Proximity constraints
and representable trees. In R. Tamassia and I. G. Tollis, editors, Graph
Drawing (Proc. GD ’94), volume 894 of Lecture Notes Comput. Sci.,
pages 340–351. Springer-Verlag, 1995.

[BE51] P. Bateman and P. Erdös. Geometrical extrema suggested by a lemma
of Besicovitch. American Mathematical Monthly, 58:306–314, 1951.

[Bes45] A.S. Besicovitch. A general form of the covering principle and relative
differentiation of additive functions. Proceedings of the Cambridge Philo-
sophical Society, 41:103–110, 1945.

[BLL96] P. Bose, W. Lenhart, and G. Liotta. Characterizing proximity trees.
Algorithmica, 16:83–110, 1996. (special issue on Graph Drawing, edited
by G. Di Battista and R. Tamassia).

[BLS00] E. Boyer, L. Lister, and B. Shader. Sphere of influence graphs using
the sup-norm. Mathematical and Computer Modelling, 32(10):1071–1082,
2000.

[BM04] Prosenjit Bose and Pat Morin. Online routing in triangulations. SIAM
J. Comput., 33(4):937–951, 2004.

[BMSU01] Prosenjit Bose, Pat Morin, Ivan Stojmenovic, and Jorge Urrutia. Routing
with guaranteed delivery in ad hoc wireless networks. Wireless Networks,
7(6):609–616, 2001.

[Bro79] K. Q. Brown. Voronoi diagrams from convex hulls. Inform. Process.
Lett., 9(5):223–228, 1979.

[CBF+06] Pier Francesco Cortese, Giuseppe Di Battista, Fabrizio Frati, Luca Grilli,
Katharina Anna Lehmann, Giuseppe Liotta, Maurizio Patrignani, Ioan-
nis G. Tollis, and Francesco Trotta. On the topologies of local minimum
spanning trees. In Thomas Erlebach, editor, Combinatorial and Algorith-
mic Aspects of Networking, Third Workshop, CAAN 2006, volume 4235
of Lecture Notes in Computer Science, pages 31–44. Springer, 2006.

[CCL09] Jean Cardinal, Sébastien Collette, and Stefan Langerman. Empty region
graphs. Comput. Geom., 42(3):183–195, 2009.

[CEG+94] B. Chazelle, H. Edelsbrunner, L. Guibas, J. Hershberger, R. Seidel, and
M. Sharir. Selecting heavily covered points. SIAM J. Comput., 23:1138–
1151, 1994.

[Cim92] R. J. Cimikowski. Properties of some Euclidian proximity graphs. Pattern
Recogn. Lett., 13(6):417–423, June 1992.

[CISRS05] Julien Cartigny, François Ingelrest, David Simplot-Ryl, and Ivan Stoj-
menovic. Localized LMST and RNG based minimum-energy broadcast
protocols in ad hoc networks. Ad Hoc Networks, 3(1):1–16, 2005.

[CKLS10] Siu-Wing Cheng, Christian Knauer, Stefan Langerman, and Michiel
H. M. Smid. Approximating the average stretch factor of geometric
graphs. In Otfried Cheong, Kyung-Yong Chwa, and Kunsoo Park,
editors, Algorithms and Computation - 21st International Symposium,
ISAAC 2010, volume 6506 of Lecture Notes in Computer Science, pages
37–48. Springer, 2010.

148 CHAPTER 4. PROXIMITY DRAWINGS

[CKX11] Shiliang Cui, Iyad A. Kanj, and Ge Xia. On the stretch factor of Delaunay
triangulations of points in convex position. Comput. Geom., 44(2):104–
109, 2011.

[CPZ04] Miguel Á. Carreira-Perpiñán and Richard S. Zemel. Proximity graphs
for clustering and manifold learning. In Neural Information Processing
Systems, NIPS 2004, 2004.

[CTL92] M. S. Chang, C. Y. Tang, and C. T. Lee. Solving the Euclidean bottle-
neck matching problem by k-relative neighborhood graphs. Algorithmica,
8:177–194, 1992.

[CWL02] G. Calinescu, P. Wan, and X. Li. Distributed construction of planar
spanners and routing for ad hoc wireless networks. In Proc. 21st Annual
Joint Conference of the IEEE Computer and Communication Societies
(INFOCOM 02), 2002.

[CX01] Siu-Wing Cheng and Yin-Feng Xu. On β-skeleton as a subgraph of the
minimum weight triangulation. Theoretical Computer Science, 262:459–
471, 2001.

[DDLM12] Emilio Di Giacomo, Walter Didimo, Giuseppe Liotta, and Henk Meijer.
Drawing a tree as a minimum spanning tree approximation. J. Comput.
Syst. Sci., 78(2):491–503, 2012.

[Del34] B. Delaunay. Sur la sphère vide. A la memoire de Georges Voronoi.
Izv. Akad. Nauk SSSR, Otdelenie Matematicheskih i Estestvennyh Nauk,
7:793–800, 1934.

[DETT99] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing.
Prentice Hall, Upper Saddle River, NJ, 1999.

[Dil87] M. B. Dillencourt. A non-Hamiltonian, nondegenerate Delaunay trian-
gulation. Inform. Process. Lett., 25:149–151, 1987.

[Dil89] M. B. Dillencourt. An upper bound on the shortness exponent of in-
scribable polytopes. J. Combin. Theory Ser. B, 46(1):66–83, February
1989.

[Dil90a] M. B. Dillencourt. Realizability of Delaunay triangulations. Inform.
Process. Lett., 33(6):283–287, February 1990.

[Dil90b] M. B. Dillencourt. Toughness and Delaunay triangulations. Discrete
Comput. Geom., 5:575–601, 1990.

[Dil96] M. B. Dillencourt. Finding Hamiltonian cycles in Delaunay triangulations
is NP-complete. Discrete Applied Mathematics, 64(3):207–217, 1996.

[DLL95] G. Di Battista, W. Lenhart, and G. Liotta. Proximity drawability: a
survey. In R. Tamassia and I. G. Tollis, editors, Graph Drawing (Proc. GD
’94), volume 894 of Lecture Notes Comput. Sci., pages 328–339. Springer-
Verlag, 1995.

[DLM] Emilio Di Giacomo, Giuseppe Liotta, and Henk Meijer. The approximate
rectangle of influence drawability problem. In W. Didimo and M. Patrig-
nani, editors, Graph Drawing (Proc. 20th International Symposium, GD
2012), Lecture Notes Comput. Sci. to appear.

[DLPT98] Olivier Devillers, Giuseppe Liotta, Franco P. Preparata, and Roberto
Tamassia. Checking the convexity of polytopes and the planarity of sub-
divisions. Comput. Geom. Theory Appl., 11:187–208, 1998.

REFERENCES 149

[DLW06] Giuseppe Di Battista, Giuseppe Liotta, and SueWhitesides. The strength
of weak proximity. J. Discrete Algorithms, 4(3):384–400, 2006.

[DS94] M. B. Dillencourt and W. D. Smith. Graph-theoretical conditions for in-
scribability and Delaunay realizability. In Proc. 6th Canad. Conf. Com-
put. Geom., pages 287–292, 1994.

[DS95] M. B. Dillencourt and W. D. Smith. A linear-time algorithm for testing
the inscribability of trivalent polyhedra. Internat. J. Comput. Geom.
Appl., 5:21–36, 1995.

[DV96] G. Di Battista and L. Vismara. Angles of planar triangular graphs. SIAM
J. Discrete Math., 9(3):349–359, 1996.

[Ede95] Herbert Edelsbrunner. The union of balls and its dual shape. Discrete
& Computational Geometry, 13:415–440, 1995.

[EGK+12] William Evans, Emden R. Gansner, Michael Kaufmann, Giuseppe Liotta,
Henk Meijer, and Andreas Spillner. Approximate proximity drawings. In
Marc J. van Kreveld and Bettina Speckmann, editors, Graph Drawing
(Proc. 19th International Symposium, GD 2011), volume 7034 of Lecture
Notes Comput. Sci., pages 166–78. Springer-Verlag, 2012.

[Epp92] D. Eppstein. The diameter of nearest neighbor graphs. Tech. Report
92-76, Dept. Inform. Comput. Sci., Univ. California, Irvine, CA, July
1992.

[Epp09] David Eppstein. Isometric diamond subgraphs. In Ioannis G. Tollis and
Maurizio Patrignani, editors, Graph Drawing (Proc. 16th International
Symposium, GD 2008), volume 5417 of Lecture Notes in Computer Sci-
ence, pages 384–389, 2009.

[EPY97] David Eppstein, Mike Paterson, and F. Frances Yao. On nearest-neighbor
graphs. Discrete & Computational Geometry, 17(3):263–282, 1997.

[EW96a] P. Eades and S. Whitesides. The logic engine and the realization problem
for nearest neighbor graphs. Theoret. Comput. Sci., 169:23–37, 1996.

[EW96b] P. Eades and S. Whitesides. The realization problem for Euclidean min-
imum spanning trees is NP-hard. Algorithmica, 16:60–82, 1996. (special
issue on Graph Drawing, edited by G. Di Battista and R. Tamassia).

[FK11] Fabrizio Frati and Michael Kaufmann. Polynomial area bounds for mst
embeddings of trees. Comput. Geom., 44(9):529–543, 2011.

[Fus06] Éric Fusy. Counting d-polytopes with d+3 vertices. Electr. J. Comb.,
13(1), 2006.

[Fus09] Éric Fusy. Transversal structures on triangulations: A combinatorial
study and straight-line drawings. Discrete Mathematics, 309(7):1870–
1894, 2009.

[GHvK02] Joachim Gudmundsson, Mikael Hammar, and Marc J. van Kreveld.
Higher order Delaunay triangulations. Comput. Geom., 23(1):85–98,
2002.

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman, New York, NY,
1979.

[GLN02] Joachim Gudmundsson, Christos Levcopoulos, and Giri Narasimhan.
Fast greedy algorithms for constructing sparse geometric spanners. SIAM
J. Comput., 31(5):1479–1500, 2002.

150 CHAPTER 4. PROXIMITY DRAWINGS

[GO04] J. E. Goodman and J. O’Rourke, editors. Handbook of Discrete and
Computational Geometry, 2nd Edition. CRC Press, 2004.

[GPS94] L. Guibas, J. Pach, and M. Sharir. Sphere of influence graphs in higher
dimensions. Colloquia Mathematica Societatis János Bolyai, 63:131–137,
1994.

[GS69] K. R. Gabriel and R. R. Sokal. A new statistical approach to geographic
variation analysis. Systematic Zoology, 18:259–278, 1969.

[Har69] F. Harary. Graph Theory. Addison-Wesley, Reading, Mass., 1969.

[HJLM93] F. Harary, M.S. Jacobson, M.J. Lipman, and F.R. Morris. On ab-
stract sphere of influence graphs. Mathematical and Computer Modelling,
17(11):77–83, 1993.

[HLW10] Ferran Hurtado, Giuseppe Liotta, and David R. Wood. Proximity draw-
ings of high-degree trees. CoRR, abs/1008.3193, 2010.

[IR07] Mohammad Tanvir Irfan and Md. Saidur Rahman. Computing beta-
drawings of 2-outerplane graphs. In M. Kaykobad and Md. Saidur Rah-
man, editors, Workshop on Algorithms and Computation 2007 - Proceed-
ings of First WALCOM, pages 46–61. Bangladesh Academy of Sciences
(BAS), 2007.

[IS85] M. Ichino and J. Sklansky. The relative neighborhood graph for mixed
feature variables. Pattern Recognition, 18(2):161–167, 1985.

[JLM95] M.S. Jacobson, M.J. Lipman, and F.R. Morris. Trees that are sphere of
influence graphs. Appl. Math. Letters, 8(6):89–93, 1995.

[JT92] J. W. Jaromczyk and G. T. Toussaint. Relative neighborhood graphs
and their relatives. Proc. IEEE, 80(9):1502–1517, September 1992.

[Kan83] V. Kantabutra. Traveling salesman cycles are not always subgraphs of
Voronoi duals. Inform. Process. Lett., 16:11–12, 1983.

[Kan09] Iyad A. Kanj. On spanners of geometric graphs. In Jianer Chen and
S. Barry Cooper, editors, Theory and Applications of Models of Com-
putation, 6th Annual Conference, TAMC 2009, volume 5532 of Lecture
Notes in Computer Science, pages 49–58. Springer, 2009.

[Kei94] M. Keil. Computing a subgraph of the minimum weight triangulation.
Comput. Geom. Theory Appl., 4:13–26, 1994.

[Kin06] James A. King. Realization of degree 10 minimum spanning trees in
3-space. In Proceedings of the 18th Annual Canadian Conference on
Computational Geometry, CCCG 2006, 2006.

[KL10] Sanjiv Kapoor and Xiang-Yang Li. Proximity structures for geometric
graphs. Int. J. Comput. Geometry Appl., 20(4):415–429, 2010.

[KPX10] Iyad A. Kanj, Ljubomir Perkovic, and Ge Xia. On spanners and
lightweight spanners of geometric graphs. SIAM J. Comput., 39(6):2132–
2161, 2010.

[KR85] D. G. Kirkpatrick and J. D. Radke. A framework for computational
morphology. In G. T. Toussaint, editor, Computational Geometry, pages
217–248. North-Holland, Amsterdam, Netherlands, 1985.

[KW01] M. Kaufmann and D. Wagner, editors. Drawing Graphs, volume 2025 of
Lecture Notes in Computer Science. Springer-Verlag, 2001.

[KW04] Matthew Kitching and Sue Whitesides. The three dimensional logic en-
gine. In János Pach, editor, Graph Drawing (Proc. 12th International

REFERENCES 151

Symposium, GD 2004), volume 3383 of Lecture Notes in Computer Sci-
ence, pages 329–339. Springer, 2004.

[KWZ03] Fabian Kuhn, Roger Wattenhofer, and Aaron Zollinger. Worst-case op-
timal and average-case efficient geometric ad-hoc routing. In Proceedings
of the 4th ACM Interational Symposium on Mobile Ad Hoc Networking
and Computing, MobiHoc 2003, pages 267–278. ACM, 2003.

[Lan69] P. M. Lankford. Regionalization: theory and alternative algorithms. Ge-
ogr. Anal., 1:196–212, 1969.

[LCWW03] X.Y. Li, G. Calinescu, P.J. Wan, and Y. Wang. Localized Delaunay trian-
gulation with application in ad hoc wireless networks. IEEE Transactions
on Parallel and Distributed Systems, 14:1035–1047, 2003.

[LD95] Giuseppe Liotta and Giuseppe Di Battista. Computing proximity draw-
ings of trees in the 3-dimensional space. In Proc. 4th Workshop Algo-
rithms Data Struct., volume 955 of Lecture Notes Comput. Sci., pages
239–250. Springer-Verlag, 1995.

[LH04] Ning Li and Jennifer C. Hou. Topology control in heterogeneous wireless
networks: Problems and solutions. In INFOCOM, 2004.

[LHS03] Ning Li, Jennifer C. Hou, and Lui Sha. Design and analysis of an mst-
based topology control algorithm. In INFOCOM, 2003.

[Li04] X.Y. Li. Applications of computational geometry in wireless networks. In
X. Cheng, X. Huang, and D.-Z. Du, editors, Ad Hoc Wireless Networking,
pages 197–264. Kluwer Academic Publisher, 2004.

[LL96] W. Lenhart and G. Liotta. Drawing outerplanar minimum weight trian-
gulations. Inform. Process. Lett., 57(5):253–260, 1996.

[LL97] W. Lenhart and G. Liotta. Proximity drawings of outerplanar graphs. In
S. North, editor, Graph Drawing (Proc. GD ’96), volume 1190 of Lecture
Notes Comput. Sci., pages 286–302. Springer-Verlag, 1997.

[LL02] W. Lenhart and G. Liotta. The drawability problem for minimum weight
triangulations. Theoretical Computer Science, 270:261–286, 2002.

[LLMW98] G. Liotta, A. Lubiw, H. Meijer, and S.H. Whitesides. The rectangle of
influence drawability problem. Comput. Geom. Theory and Applications,
10(1):1–22, 1998.

[LM03] G. Liotta and H. Meijer. Voronoi drawings of trees. Comput. Geom.
Theory and Applications, 24(3):147–178, 2003.

[LS93] A. Lubiw and N. Sleumer. Maximal outerplanar graphs are relative neigh-
borhood graphs. In Proc. 5th Canad. Conf. Comput. Geom., pages 198–
203, 1993.

[LSW04] Xiang-Yang Li, Ivan Stojmenovic, and Yu Wang. Partial Delaunay tri-
angulation and degree limited localized bluetooth scatternet formation.
IEEE Transactions on Parallel and Distributed Systems, 15(4):350–361,
2004.

[LSW05] Xiang-Yang Li, Wen-Zhan Song, and Weizhao Wang. A unified energy
efficient topology for unicast and broadcast. In Proc. MobiCom’05, 2005.

[LTTV97] G. Liotta, R. Tamassia, I. G. Tollis, and P. Vocca. Area requirement
of Gabriel drawings. In Algorithms and Complexity (Proc. CIAC’ 97),
volume 1203 of Lecture Notes Comput. Sci., pages 135–146. Springer-
Verlag, 1997.

152 CHAPTER 4. PROXIMITY DRAWINGS

[Mat87] C. Mathieu. Some problems in computational geometry. Algorithmica,
2:131–134, 1987.

[MMN09] Kazuyuki Miura, Tetsuya Matsuno, and Takao Nishizeki. Open
rectangle-of-influence drawings of inner triangulated plane graphs. Dis-
crete & Computational Geometry, 41(4):643–670, 2009.

[MN05] Kazuyuki Miura and Takao Nishizeki. Rectangle-of-influence drawings
of four-connected plane graphs. In Seok-Hee Hong, editor, Asia-Pacific
Symposium on Information Visualisation, APVIS 2005, volume 45 of
CRPIT, pages 75–80, 2005.

[MNN00] Kazuyuki Miura, Takao Nishizeki, and Shin-Ichi Nakano. Convex grid
drwaings of four-connected plane graphs. In D. T. Lee and Shang-Hua
Teng, editors, Algorithms and Computation, 11th International Confer-
ence, ISAAC 2000, volume 1969 of Lecture Notes in Computer Science,
pages 254–265. Springer, 2000.

[MNN06] Kazuyuki Miura, Shin-Ichi Nakano, and Takao Nishizeki. Convex grid
drawings of four-connected plane graphs. Int. J. Found. Comput. Sci.,
17(5):1031–1060, 2006.

[MNS+99] K. Mehlhorn, S. Näher, M. Seel, R. Seidel, T. Schilz, S. Schirra, and
C. Uhrig. Checking geometric programs or verification of geometric struc-
tures. Comput. Geom. Theory Appl., 12(1–2):85–103, 1999.

[MQ94a] T.S. Michael and T. Quint. Sphere of influence graphs: a survey. Con-
gressus Numerantium, 105:153–160, 1994.

[MQ94b] T.S. Michael and T. Quint. Sphere of influence graphs: Edge density and
clique size. Mathematical and Computer Modelling, 127(7):19–24, 1994.

[MQ99] T.S. Michael and T. Quint. Sphere of influence graphs in general metric
spaces. Mathematical and Computer Modelling, 29(7):45–53, 1999.

[MQ03] T.S. Michael and T. Quint. Sphere of influence graphs and the l∞ metric.
Discrete Applied Mathematics, 127:447–460, 2003.

[MR08] Wolfgang Mulzer and Günter Rote. Minimum-weight triangulation is
NP-hard. J. ACM, 55(2), 2008.

[MS80] D. W. Matula and R. R. Sokal. Properties of Gabriel graphs relevant
to geographic variation research and clustering of points in the plane.
Geogr. Anal., 12(3):205–222, 1980.

[MS92] C. Monma and Subhash Suri. Transitions in geometric minimum span-
ning trees. Discrete Comput. Geom., 8:265–293, 1992.

[MW00] F. R. McMorris and C. Wang. Sphere of attraction graphs. Congressus
Numerantium, 142:149–160, 2000.

[NS07] Giri Narasimhan and Michiel H. M. Smid. Geometric spanner networks.
Cambridge University Press, 2007.

[OBS92] Atsuyuki Okabe, Barry Boots, and Kokichi Sugihara. Spatial Tessella-
tions: Concepts and Applications of Voronoi Diagrams. John Wiley &
Sons, Chichester, UK, 1992.

[O’R87] J. O’Rourke. Computational geometry column 2. SIGACT News,
18(2):10–12, 1987. Also in Computer Graphics 21(1987), 155–157.

[PMDS03] C. E. Priebe, D. J. Marchette, J. DeVinney, and D.A. Socolinsky. Classifi-
cation using class cover catch digraphs. Journal of Classification, 20(1):3–
23, 2003.

REFERENCES 153

[PS90] F. P. Preparata and M. I. Shamos. Computational Geometry: An Intro-
duction. Springer-Verlag, 3rd edition, October 1990.

[PS04] R. Pinchasi and S. Smorodinsky. On locally Delaunay geometric graphs.
In Proc. 20th ACM Symposium on Computational Geometry (SoCG’04),
pages 378–382, 2004.

[PV04] Paolo Penna and Paola Vocca. Proximity drawings in polynomial area
and volume. Comput. Geom. Theory and Applications, 29(2):91–116,
2004.

[PY92] M. S. Paterson and F. F. Yao. On nearest-neighbor graphs. In Proc. 19th
Internat. Colloq. Automata Lang. Program., volume 623 of Lecture Notes
Comput. Sci., pages 416–426. Springer-Verlag, 1992.

[QW04] Jianbo Qian and Cao An Wang. A linear-time approximation scheme
for maximum weight triangulation of convex polygons. Algorithmica,
40(3):161–172, 2004.

[QW06] Jianbo Qian and Cao An Wang. Progress on maximum weight triangu-
lation. Comput. Geom., 33(3):99–105, 2006.

[Rad88] J. D. Radke. On the shape of a set of points. In G. T. Toussaint, editor,
Computational Morphology, pages 105–136. North-Holland, Amsterdam,
Netherlands, 1988.

[Rei48] E.R. Reifenberg. A problem on circles. Mathematical Gazette, 32:290–
292, 1948.

[RS95] G. Robins and J. S. Salowe. Low-degree minimum spanning trees. Dis-
crete Comput. Geom., 14:151–165, 1995.

[SH97] Kokichi Sugihara and Tetsuya Hiroshima. How to draw a Delaunay di-
agram with a given topology. In Abstracts 13th European Workshop
Comput. Geom., pages 13–15. Universität Würzburg, 1997.

[SI92] K. Sugihara and M. Iri. Construction of the Voronoi diagram for ‘one mil-
lion’ generators in single-precision arithmetic. Proc. IEEE, 80(9):1471–
1484, September 1992.

[SIII00] K. Sugihara, M. Iri, H. Inagaki, and T. Imai. Topology-oriented imple-
mentation - an approach to robust geometric algorithms. Algorithmica,
27(1):5–20, 2000.

[SIR08] Md. Abul Hassan Samee, Mohammad Tanvir Irfan, and Md. Saidur Rah-
man. Computing beta -drawings of 2-outerplane graphs in linear time.
In Shin-Ichi Nakano and Md. Saidur Rahman, editors, Algorithms and
Computation, Second International Workshop, WALCOM 2008, volume
4921 of Lecture Notes in Computer Science, pages 81–87. Springer, 2008.

[SLL+08] Svetlana Stolpner, Jonathan Lenchner, Giuseppe Liotta, David Brem-
ner, Christophe Paul, Marc Pouget, and Stephen K. Wismath. A note
on alpha-drawable k-trees. In Proceedings of the 20th Annual Canadian
Conference on Computational Geometry, 2008.

[Sos99a] M. Soss. On the size of the Euclidean sphere of influence graph. In Proc.
11th Canad. Conf. Comput. Geom., 1999.

[Sos99b] M. Soss. The size of the open sphere of influence graph in L∞ metric
spaces. In Graph Drawing (Proc. GD ’98), volume 1547 of Lecture Notes
Comput. Sci., pages 458–459. Springer-Verlag, 1999.

154 CHAPTER 4. PROXIMITY DRAWINGS

[SZ11] Sadish Sadasivam and Huaming Zhang. Closed rectangle-of-influence
drawings for irreducible triangulations. Comput. Geom., 44(1):9–19,
2011.

[Tou80] G. T. Toussaint. The relative neighbourhood graph of a finite planar set.
Pattern Recogn., 12:261–268, 1980.

[Tou88] G. T. Toussaint. A graph-theoretical primal sketch. In G. T. Toussaint,
editor, Computational Morphology, pages 229–260. North-Holland, Ams-
terdam, Netherlands, 1988.

[Tou05] G. Toussaint. Geometric proximity graphs for improving nearest neigh-
bor methods in instance-based learning and data mining. International
Journal of Comput. Geom. and Applications, 15(2):101–150, 2005.

[Urq83] R. B. Urquhart. Some properties of the planar Euclidean relative neigh-
bourhood graph. Pattern Recogn. Lett., 1:317–332, 1983.

[Vel92] R. C. Veltkamp. The γ-neighborhood graph. Comput. Geom. Theory
Appl., 1(4):227–246, 1992.

[Vel94] R. C. Veltkamp. Closed Object Boundaries from Scattered Points, volume
885 of Lecture Notes Comput. Sci. Springer-Verlag, 1994.

[Vel95] R. C. Veltkamp. Boundaries through scattered points of unknown density.
Graphics Models and Image Processing, 57(6):441–452, November 1995.

[WCY99] Cao An Wang, Francis Y. L. Chin, and Bo-Ting Yang. Maximum weight
triangulation and graph drawing. Inf. Process. Lett., 70(1):17–22, 1999.

[WCY00] C. An Wang, F. Y. Chin, and B. Yang. Triangulations without minimum
weight drawing. Information Processing Letters, 74(5–6):183–189, 2000.

[Woo10] David R. Wood. Partitions and coverings of trees by bounded-degree
subtrees. CoRR, abs/1008.3190, 2010.

[WY01] C. A. Wang and B. Yang. A lower bound for β-skeleton belonging to
minimum weight triangulations. Comput. Geom. Theory Appl., 19:35–
46, 2001.

[ZV09a] Huaming Zhang and Milind Vaidya. On open rectangle-of-influence and
rectangular dual drawings of plane graphs. Discrete Mathematics, Algo-
rithms and Applications, 1(3):319–333, 2009.

[ZV09b] Huaming Zhang and Milind Vaidya. On open rectangle-of-influence draw-
ings of planar graphs. In Ding-Zhu Du, Xiaodong Hu, and Panos Parda-
los, editors, Combinatorial Optimization and Applications, volume 5573
of Lecture Notes in Computer Science, pages 123–134. Springer Berlin /
Heidelberg, 2009.

5
Tree Drawing Algorithms

Adrian Rusu
Rowan University

5.1 Introduction . 155
Drawing Conventions • Aesthetics

5.2 Level-Based Approach . 158
5.3 H-V Approach . 160
5.4 Path-Based Approach . 160
5.5 Ringed Circular Layout Approach . 162
5.6 Separation-Based Approach . 162
5.7 Algorithms for Drawing Binary Trees 163

Theoretical Results • Experimental Analysis • Unordered
Trees • Ordered Trees

5.8 Algorithms for Drawing General Trees 178
Theoretical Results • Unordered Trees • Ordered Trees

5.9 Other Tree Drawing Methods . 183
References . 188

5.1 Introduction

Tree drawing is concerned with the automatic generation of geometric representations of
relational information, often for visualization purposes. The typical data structure for
modeling hierarchical information is a tree whose vertices represent entities and whose
edges correspond to relationships between entities. Visualizations of hierarchical structures
are only useful to the degree that the associated diagrams effectively convey information to
the people that use them. A good diagram helps the reader understand the system, but a
poor diagram can be confusing.

The automatic generation of drawings of trees finds many applications, such as software
engineering (program nesting trees, object-oriented class hierarchies), business administra-
tion (organization charts), decision support systems (activity trees), artificial intelligence
(knowledge-representation isa hierarchies), logic programming (SLD-trees), website design
and browsing (structure of a website), biology (evolutionary trees), and chemistry (molec-
ular drawings).

Algorithms for drawing trees are typically based on some graph-theoretic insight into the
structure of the tree. The input to a tree drawing algorithm is a tree T that needs to be
drawn. The output is a drawing Γ, which maps each node of T to a distinct point in the
plane, and each edge (u, v) of T to a simple Jordan curve with endpoints u and v.

T is an ordered tree if the children of each node are assigned a fixed left-to-right order.
For any node u in T , its leftmost child (rightmost child) is the one that comes first (last) in
the left-to-right ordering of the children of u in T . The leftmost path p of T is the maximal
path consisting of nodes that are leftmost children, except the first one, which is the root

155

156 CHAPTER 5. TREE DRAWING ALGORITHMS

of T . The last node of p is called the leftmost node of T . Two nodes of T are siblings if
they have the same parent. The subtree of T rooted at a node v consists of v and all the
descendants of v. T is the empty tree if it has zero nodes in it.

Let v be a node of an ordered tree. Then n(v), p(v), l(v), r(v), and s1(v), . . . , si(v), are
the number of nodes in the subtree rooted at v, parent, leftmost child, rightmost child, and
siblings of v, respectively.

The rest of the chapter is organized as follows. After motivating the need for tree drawing
algorithms and providing drawing conventions and aesthetics in this section, we describe
the main approaches for tree drawing algorithms in subsequent sections. We then present
some of the most representative algorithms for drawing binary and general trees.

5.1.1 Drawing Conventions

A drawing convention is a basic rule that a drawing must satisfy to be admissible [DETT99].
A list of the most used drawing conventions for drawing trees and their significance is given
below (see Figure 5.1):

Polyline Drawings

A polyline drawing is a drawing in which each edge is drawn as a connected sequence
of one or more line segments, where the meeting point of consecutive line segments is called
a bend (see Figure 5.1(a)).

Orthogonal Drawings

An orthogonal drawing is one in which each edge is drawn as a chain of alternating
horizontal and vertical segments (see Figure 5.1(b)).

Upward and Non-Upward Drawings

An upward drawing is defined as a drawing where no child is placed higher in the
y-direction than its parent (see Figure 5.1(a),(c)). A non-upward drawing is a drawing that
is not upward (see Figure 5.1(b),(d)).

Grid Drawings

A grid drawing is one in which each vertex is placed at integer coordinates. Assuming
that the plane is covered by horizontal and vertical channels, with unit distance between
two consecutive channels, the meeting point of a horizontal and a vertical channel is called
a grid-point. The computer screen can be viewed as a grid of pixels placed at integer
coordinates. Grid drawings guarantee at least unit distance separation between the nodes
of the tree, and the integer coordinates of the nodes and edge-bends allow the drawings
to be rendered in a (large-enough) grid-based display surface, such as a computer screen,
without any distortions due to truncation and round-off errors. The smallest rectangle with
horizontal and vertical sides parallel to the axes that covers the entire grid drawing is called
the enclosing rectangle.

Planar Drawings

A planar drawing is a drawing in which edges do not intersect each other in the
drawing (for example, the drawings (a), (b), and (c) in Figure 5.1 are planar drawings,
and the drawing (d) is a non-planar drawing). Planar drawings are normally easier to
understand than non-planar drawings, i.e., drawings with edge-crossings. Since any tree

5.1. INTRODUCTION 157

(a) (b) (c) (d)

Figure 5.1 Various kinds of drawings of the same tree: (a) polyline, (b) orthogonal, (c)
straight-line, (d) non-planar. Also note that the drawings shown in Figures (a) and (c) are
upward drawings, whereas the drawings shown in Figures (b) and (d) are not. The root of
the tree is shown as a shaded circle, whereas other nodes are shown as black circles.

admits a planar drawing, it is desirable to obtain planar drawings for trees.

Straight-line Drawings

The so-called straight-line tree drawings have each edge drawn as a straight-line seg-
ment (see Figure 5.1(c)). It is natural to draw each edge of a tree as a straight-line between
its end-nodes. Straight-line drawings are easier to understand than polyline drawings.
The experimental study of the human perception of graph drawings has concluded that

minimizing the number of edge crossings and minimizing the number of bends increases
the understandability of drawings of graphs [TDB88, Pur97, PCJ97, Pur00]. Ideally, the
drawings should have no edge crossings, i.e., they should be planar drawings and should
have no edge-bends, i.e., they should be straight-line drawings.

5.1.2 Aesthetics

Aesthetics specify graphic properties of the drawing that we would like to apply as much
as possible. Most of the tree drawing algorithms have concentrated on drawing trees in
as small as possible area with user-controlled aspect ratio. A list of the most important
aesthetics of drawings of trees is given below:

• Area: The area of a grid drawing is defined as the number of grid points con-
tained in its enclosing rectangle. Drawings with small area can be drawn with
greater resolution on a fixed-size page. Note that we cannot discuss the area of
non-grid drawings (i.e., drawings that have the nodes placed at real coordinates),
since, by placing the nodes closer or farther, such a drawing can be scaled down
or up by any value.

• Aspect Ratio: The aspect ratio of a grid drawing is defined as the ratio of
the length of the shortest side to the length of the longest side of its enclosing
rectangle. An aspect ratio is considered optimal if it is equal to 1. Giving the
users control over the aspect ratio of a drawing allows them to display the drawing
in different kinds of displays surfaces with different aspect ratios. The optimal
use of the screen space is achieved by minimizing the area of the drawing and by
providing user-controlled aspect ratio.

• Subtree Separation: Let T [v] be the subtree rooted at node v of tree T . T [v]
consists of v and all the descendants of v. A drawing of T has the subtree-

158 CHAPTER 5. TREE DRAWING ALGORITHMS

separation property [CGKT97] if, for any two node-disjoint subtrees T [u] and
T [v] of T , the enclosing rectangles of the drawings of T [u] and T [v] do not overlap
with each other. Focus+context [SB94] is a style in which part of the information
is presented in detail (the focus) while the rest is still available, but at a smaller
size (the context). The subtree-separation property allows for a focus+context
style rendering of a drawing, so that if the tree has too many nodes to fit in
the given drawing area, then the subtrees closer to focus can be shown in detail,
whereas those farther away from the focus can be contracted and simply shown
as filled-in rectangles.

• Closest Leaf: The closest leaf is defined as the smallest euclidean distance
between the root of the tree and a leaf in the drawing [RS08].

• Farthest Leaf: The farthest leaf is defined as the largest euclidean distance
between the root of the tree and a leaf in the drawing [RS08].

The aesthetics closest leaf and farthest leaf help determine whether the algorithms place
leaves close or far from the root. It is important to minimize the distance between the root
and the leaves of the tree, especially in the case when the user needs to visually analyze the
information contained in the levels close to the root and levels close to the leaves, without
the information in between. Such a case appears in particular for algorithms where a change
at the top level (root) of the tree generates modifications at the bottom levels (leaves) of
the tree (for example, usual operations—find, insert, remove—on binary search trees, splay
trees, or B+ trees).

Other well-known aesthetics that have been used in various tree drawing studies are as
follows [DETT99]:

• Size: the longest side of the smallest rectangle with horizontal and vertical sides
covering the drawing.

• Total Edge Length: the sum of the lengths of the edges in the drawing.

• Average Edge Length: the average of the lengths of the edges in the drawing.

• Maximum Edge Length: the maximum among the lengths of the edges in the
drawing.

• Uniform Edge Length: the variance of the edge lengths in the drawing.

• Angular Resolution: the smallest angle formed by two edges incident on the
same node.

• Symmetry: visual identification of symmetries in the drawing.

It is widely accepted [DETT94, DETT99, Pur97, PCJ97] that small values of the size,
total edge length, average edge length, maximum edge length, and uniform edge length
are related to the perceived aesthetic appeal and visual effectiveness of the drawing. High
angular resolution is desirable in visualization applications and in the design of optical
communication networks. For binary trees, the degree of a node is at most three, hence
a trivial upper bound on the angular resolution is 120◦. Given a symmetric drawing, a
conceptual understanding of the entire tree can be built up from that of a smaller subtree,
replicated a number of times.

5.2 Level-Based Approach

The level-based approach can be used on both binary and general trees, and it is characterized
by the fact that in the drawings produced, the nodes at the same distance from the root are

5.2. LEVEL-BASED APPROACH 159

horizontally aligned. Algorithms based on this approach are usually simple to understand
and implement and produce intuitive drawings that exhibit clear display of symmetries.
However, these algorithms have two disadvantages: the drawing has an area of Ω(n2) and,
for balanced trees with many nodes, the width is much larger than the height.

Level-based algorithms have been designed previously [Blo93, RT81, BJL02, Wal90]. The
algorithms described in [BJL02, Wal90] achieve better area, but they do not exhibit the
subtree separation property.

A recursive algorithm for binary trees [RT81], which exhibits the subtree separation
property, uses the following steps: draw the subtree rooted at the left child, draw the
subtree rooted at the right child, place the drawings of the subtrees at horizontal distance
2, and place the root one level above and halfway between the children. If there is only one
child, place the root at horizontal distance 1 from the child. A drawing produced by this
algorithm is provided in Figure 5.2.

Figure 5.2 Drawing of the Fibonacci tree with 88 nodes, generated by the level-based
algorithm of [RT81].

By using a geometric transformation (cartesian → polar), level drawings yield radial
drawings , where nodes are placed on concentric circles by level (see Figure 5.3).

Figure 5.3 Example of a transformation from a level drawing to a radial drawing. Figure
taken from [CT].

Radial drawings are often used in drawing graphs, even though they do not always guar-
antee planarity. Several algorithms for radial drawings of trees have been designed, and
some of them have also been used in various applications [Ber81, Ead92, CPM+98, CPP00,
BM03, Bac07].

160 CHAPTER 5. TREE DRAWING ALGORITHMS

5.3 H-V Approach

The horizontal-vertical approach can be used on both binary and general trees. In this
approach, a divide-and-conquer strategy is used to recursively construct an upward, or-
thogonal, and straight-line drawing of a tree, by placing the root of the tree in the top-left
corner, and the drawings of its left and right subtrees one next to the other (horizontal
composition) or one below the other (vertical composition) (see Figure 5.4). The resulting
drawing also exhibits the subtree separation property within an O(n log n) area.

(a) (b)

Figure 5.4 General H-V approach. (a) Horizontal composition: the drawings of the sub-
trees rooted at the children of o are placed one next to the other. (b) Vertical composition:
the drawings of the subtrees rooted at the children of o are placed one below the other.

Various H-V algorithms can be obtained, depending on which layout is used and what
other conditions are imposed on the drawing. An algorithm using this approach has been
developed for binary trees [CDP92]. This algorithm places the drawing of the subtree
with the greater width one unit below the drawing of the subtree with the smaller width
(see Figure 5.4(b)). A modification of this algorithm, in which vertical and horizontal
combinations are used alternatively, produces area-efficient drawings of complete, AVL,
and Fibonacci trees. The algorithm can easily be extended to general trees.

5.4 Path-Based Approach

The path-based approach uses a recursive winding paradigm to draw a binary tree T by laying
down a small chain of nodes monotonically in the x-direction leading to a distinguished node
v, and then “winding” by recursively laying out the subtrees rooted at the children of v in
the opposite direction.

Several path-based algorithms have been designed [CGKT02, GR03a, SKC00].
Recursively, for every subtree rooted at a node v, a parameter A is fixed, so that, if

n(v) ≤ A, then the drawings of the subtrees rooted at the children of v are placed one next
to the other, as in Figure 5.5 (a). Otherwise, the subtree looks like Figure 5.5 (b), where
v1 is the root of the subtree, vi+1 = r(vi) for i ≥ 1, k ≥ 1 is the first index for which
n(vk) > n − A and n(vk+1) ≤ n − A, Ti is the subtree rooted at l(vi), T

′ = l(vk), and
T ′′ = r(vk). In the second case, depending on whether an upward or a non-upward drawing
is to be obtained, the drawings are placed as in Figures 5.6(a) and 5.6(b), respectively.
The user controls the aspect ratio by modifying parameter A.

5.4. PATH-BASED APPROACH 161

(a) (b)

Figure 5.5 (a) When n(v) ≤ A, the subtrees are placed one next to the other. (b) When
n(v) > A, the tree is divided into subtrees T1, T2, . . . , Tk−2, Tk−1, T

′, T ′′.

(a) (b)

Figure 5.6 (a) Upward drawing of binary tree T . (b) Non-upward drawing of binary
tree T .

A drawing of the Fibonacci tree with 88 nodes produced by the algorithm of Chan et
al. [CGKT02], with the value for the parameter A at one of the extremes, is provided in
Figure 5.7. This algorithm produces the best worst-case theoretical bound on area for
path-based algorithms: O(n log log n).

Figure 5.7 Drawing of Fibonacci tree with 88 nodes produced by the path-based algo-
rithm [CGKT02], with parameter A at one of the extremes: A = 88.

162 CHAPTER 5. TREE DRAWING ALGORITHMS

5.5 Ringed Circular Layout Approach

In these algorithms, children are placed on the circumference or the interior of a circle cen-
tered at their parents [GADM04, CC99, Ead92, MH98, MMC99, TM02, RSJ07]. In general,
these algorithms are used to draw high-degree trees. However, the resulting drawings are
often not planar. An example of the general idea of the approach is provided in Figure 5.8.

Figure 5.8 General idea for the ringed circular layout approach.

Cone trees [RMC91] are a 3D extension of the 2D ringed circular layout approach. In
cone trees, the parent is located at the tip of a cone, and its children are spaced equally on
the bottom circle of the cone.

5.6 Separation-Based Approach

The separation-based approach can be used on both binary and general trees. Separation-
based algorithms have been designed [GR02, GR03b, GR03c, RS07]. In this approach, a
divide-and-conquer strategy is used to recursively construct a drawing of a tree, by per-
forming the following actions at each recursive step:

• Find a Separator Edge or a Separator Node: A separator edge (node) of a tree T
with degree(T) = d is an edge (node), which, if removed, divides T into at most
d smaller, partial, trees. It has been shown that every tree contains a separator
edge or a separator node [GR03c, Val81].

• Split Tree: Split T into at most d partial trees by removing a separator edge or
a separator node.

• Assign Aspect Ratios: Preassign a desirable aspect ratio to each partial tree.

• Draw Partial Trees: Recursively construct a drawing of each partial tree using
its preassigned aspect ratio.

• Compose Drawings: Arrange the drawings of the partial trees, and draw the
nodes and edges that were removed from the tree to divide it, such that the
drawing of the tree thus obtained meets certain aesthetics.

5.7. ALGORITHMS FOR DRAWING BINARY TREES 163

5.7 Algorithms for Drawing Binary Trees

A binary tree is one where each node has at most two children. Most of the research on
drawing trees targets binary trees; hence, in this section, several algorithms for drawing
binary trees are presented.

Binary trees have a strong connection to real-life applications. For instance, binary
trees represent programs in combinatory logic, which is under investigation as an approach
to nanostructure synthesis and control [Mac03]. The idea is to use molecular processes
to implement the combinatory logic tree substitution operations, so that the molecular
reorganization of the trees results in the desired structure or process. Visualization of
these binary trees could improve the investigator’s ability in interpreting the substitution
operations involved in combinatory logic.

5.7.1 Theoretical Results

We summarize some known theoretical results on planar grid drawings of binary trees. (See
Table 5.1.)

Drawing Type Area Aspect Ratio Reference

upward orthogonal
polyline O(n log log n) Θ(log2 n/(n log log n)) [GGT96]

(non-upward) orthogonal
polyline O(n) Θ(1) [Lei80, Val81]

upward orthogonal
straight-line O(n log n) [1, n/ log n] [CDP92, CGKT02]

(non-upward) orthogonal
straight-line O(n log log n) Θ(log2 n/(n log log n)) [CGKT02, SKC00]

upward polyline O(n) [n−ǫ, nǫ] [GGT96]
upward straight-line O(n log log n) Θ(log2 n/(n log log n)) [SKC00]

(non-upward) straight-line O(n) [n−ǫ, nǫ] [GR04]

Table 5.1 Bounds on the areas and aspect ratios of various kinds of planar grid drawings
of an n-node unordered binary tree. Here, ǫ is an arbitrary constant, such that 0 < ǫ < 1.

Let T be an n-node binary tree. Garg et al. [GGT96] present an algorithm for constructing
an upward polyline drawing of T with O(n) area, and any user-specified aspect ratio in the
range [n−ǫ, nǫ], where ǫ is any constant, such that 0 < ǫ < 1. It also shows that n log log n
is a tight bound for the area of upward orthogonal polyline drawings, i.e., any binary tree
can be drawn in this fashion in O(n log log n) area, and there exists a family of binary trees
that requires Ω(n log log n) area in any such drawing. Leiserson [Lei80] and Valiant [Val81]
present algorithms for constructing a (non-upward) orthogonal polyline drawing of T with
O(n) area. Chan et al. [CGKT02] give an algorithm for constructing an upward orthogonal
straight-line drawing of T with O(n log n) area, and any user-specified aspect ratio in the
range [1, n/ log n]. It also shows that n log n is a tight bound for such drawings. Shin et
al. [SKC00] give an algorithm for constructing an upward straight-line drawing of T with
O(n log log n) area. Chan et al. [CGKT02] and Shin et al. [SKC00] show that T admits
a non-upward planar straight-line orthogonal grid drawing with height O(n/A) logA and
width O(A+ log n), where 2 ≤ A ≤ n is any user-specified number. This result also implies

164 CHAPTER 5. TREE DRAWING ALGORITHMS

that we can draw any binary tree in this fashion in area O(n log log n) (by setting A = log n).
If T is a Fibonacci tree (AVL tree and complete binary tree), then Crescenzi et al. [CDP92]
and Trevisan [Tre96] (Crescenzi et al. [CPP98, CDP92], respectively) give algorithms for
constructing an upward straight-line drawing of T with O(n) area. Garg and Rusu [GR04]
present an algorithm for constructing a (non-upward) straight-line drawing of T with O(n)
area, and any user-specified aspect ratio in the range [n−ǫ, nǫ], where ǫ is any constant, such
that 0 < ǫ < 1. This is trivially a tight bound, as any straight-line drawing of a binary tree
with n nodes requires Ω(n) area.

Table 5.2 summarizes the results for order-preserving algorithms.

Drawing Type Area Aspect Ratio Ref.

Complete tree

upward straight-line order-
preserving

Θ(n) O(1) [CDP92]

Fibonacci tree

upward straight-line order-
preserving

Θ(n) O(1) [Tre96]

Special balanced binary tree such as red-black

upward straight-line order-
preserving

O(n(log log n)2) n/ log2 n [SKC00]

Logarithmic tree

upward straight-line order-
preserving

Θ(n) O(1) [CP98]

Binary tree

upward orthogonal
polyline order-preserving

O(n log n) Θ(log2 n/(n log log n)) [Kim95, GGT96]

non-upward orthogonal
polyline order-preserving

O(n) (9a+ 8)/(9b+ 8) [DT81]

upward orthogonal
straight-line
order-preserving

Θ(n2) O(1) [CDP92, Fra07]

non-upward orthogonal
straight-line
order-preserving

O(n1.5) O(
√

(n)/n) [Fra07]

upward polyline
order-preserving

O(n log n) log n/n [Kim04]

O(n log n) Θ(log2 n/(n log log n)) [GGT96, CDP92]
non-upward polyline
order-preserving

O(n log log n) (n log log n)/ log2 n [GR03a]

upward straight-line
order-preserving

Θ(n log n) n/ log n [GR03a]

non-upward straight-line
order-preserving

O(n log n) [1, n/ log n] [GR03a]

O(n log log n) (n log log n)/ log2 n [GR03a]

Table 5.2 Bounds on the areas and aspect ratios of various kinds of order-preserving
planar grid drawings of an n-node ordered tree. Here, ab ≤ kn, where k is some constant.

Shin et al. [SKC00] have shown that a special class of balanced binary trees, which in-
cludes k-balanced, red-black, BB[α], and (a, b) trees, admits order-preserving planar upward

5.7. ALGORITHMS FOR DRAWING BINARY TREES 165

straight-line grid drawings with area O(n(log log n)2). Crescenzi et al. [CDP92], Crescenzi
and Penna [CP98], and Trevisan [Tre96] give order-preserving planar upward straight-line
grid drawings of complete, logarithmic, and Fibonacci trees, respectively, with area O(n).
Dolev and Trickey [DT81] prove that binary trees admit Θ(n) area order-preserving or-
thogonal drawings. Kim [Kim95] shows an upper bound of O(n log n) area for upward
order-preserving orthogonal drawings of ternary trees (trees whose nodes have at most
three children), result that immediately extends to binary trees. This area bound is opti-
mal, as Garg et al. [GGT96] demonstrate a lower bound of O(n log n) area for such drawings
of binary trees. Crescenzi et al. [CDP92] give an algorithm that achieves O(n2) area for
upward orthogonal straight-line order-preserving drawings of binary trees. Frati [Fra07]
proves that this bound is optimal. Frati [Fra07] also gives the best known upper bound of
O(n1.5) area for non-upward orthogonal straight-line order-preserving drawings of binary
trees. It is unknown whether this is an optimal bound, as the trivial O(n) is the lower bound
currently known. Garg et al. [GGT96] provides an algorithm that constructs an upward
polyline order-preserving drawing of a binary tree with O(n log n) area, which is the opti-
mal bound for such drawings [CDP92]. Kim [Kim04] improves the number of bends from
O(n) to O(n/ log n), while matching the area bound. Garg and Rusu [GR03a] show that a
binary tree admits an order-preserving planar straight-line grid drawing with O(n log log n)
area. In addition, they show that a binary tree admits an order-preserving upward planar
straight-line drawing with optimal O(n log n) area.

A variety of results exist for other kinds of drawings. Di Battista et al. [DETT99] and
Frati [Fra09] have given a survey of these results.

5.7.2 Experimental Analysis

Experimental studies provide insight into the behavior of tree drawing algorithms beyond
their targetted aesthetic criteria. In a comprehensive experimental study [RS08], separation-
based algorithm by Garg and Rusu [GR04], path-based algorithm by Chan et al. [CGKT02],
level-based algorithm by Reingold and Tilford [RT81], and ringed circular layout algorithm
by Teoh and Ma [TM02] were compared on a large suite of seven types of binary trees
of various sizes, based on ten quality measures: area, aspect ratio, size, total edge length,
average edge length, maximum edge length, uniform edge length, angular resolution, closest
leaf, and farthest leaf. As the specific algorithms compared are intended to be representa-
tive of their respective approaches, it is expected that the results generally apply to other
algorithms using the same approach and even extend to trivial extensions to general trees.

This experimental analysis includes some interesting findings:

• The performance of a drawing algorithm on a tree-type is not a good predic-
tor of the performance of the same algorithm on other tree-types: some of the
algorithms perform best on a tree-type, and worst on other tree-types.

• Reingold-Tilford algorithm [RT81] scores worse in comparison to the other chosen
algorithms for almost all ten aesthetics considered.

• The intuition that low average edge length and area go together is contradicted
in only one case.

• The intuitions that average edge length and maximum edge length, uniform edge
length and total edge length, and short maximum edge length and close farthest
leaf go together are contradicted for unbalanced binary trees.

• With regards to area, of the four algorithms studied, three perform best on
different types of trees.

166 CHAPTER 5. TREE DRAWING ALGORITHMS

• With regards to aspect ratio, of the four algorithms studied, three perform well
on trees of different types and sizes.

• Not all algorithms studied perform best on complete binary trees even though
they have one of the simplest tree structures.

• The level-based algorithm of Reingold-Tilford [RT81] produces much worse as-
pect ratios than algorithms designed using other approaches.

• The path-based algorithm of Chan et al. [CGKT02] tends to construct drawings
with better area at the expense of worse aspect ratio.

5.7.3 Unordered Trees

In this section, we present the algorithm of [GR04] in more detail. This algorithm uses a
separation-based approach (therefore, we call it Separation), and achieves optimal linear
area for planar straight-line grid drawings, while at the same time, giving the user control
over the aspect ratio. In addition, the drawings produced by this algorithm exhibit the
subtree separation property.

Let T be a tree with root o. Let n be the number of nodes in T . A partial tree of T is a
connected subgraph of T .

For some trees, the algorithm designates a special link node u∗ that has at most one child.

Let T be a tree with link node u∗. A planar straight-line grid drawing Γ of T is a feasible
drawing of T , if it has the following three properties:

• Property 1: The root o is placed at the top-left corner of Γ.

• Property 2: If u∗ 6= o, then u∗ is placed at the bottom boundary of Γ. Moreover,
u∗ can move downward in its vertical channel by any distance without causing
any edge-crossings in Γ.

• Property 3: If u∗ = o, then no other node or edge of T is placed on or crosses the
vertical and horizontal channels occupied by o. Moreover, u∗ (i.e., o) can move
upward in its vertical channel by any distance without causing any edge-crossings
in Γ.

Let A and ǫ be two numbers, where ǫ is a constant, such that 0 < ǫ < 1, and n−ǫ ≤ A ≤ nǫ.
A is called the desirable aspect ratio for T .

Theorem 5.1 [Separator Theorem [Val81]] Every binary tree T with n nodes, where n ≥ 2,
contains an edge e, called a separator edge, such that removing e from T splits it into two
non-empty trees with n1 and n2 nodes, respectively, such that for some x, where 1/3 ≤ x ≤
2/3, n1 = xn, and n2 = (1− x)n. Moreover, e can be found in O(n) time.

The algorithm takes ǫ, A, and T as input and uses a divide-and-conquer strategy to
recursively construct a feasible drawing Γ of T , by performing the following actions at each
recursive step:

• Split Tree: Split T into at most five partial trees by removing at most two nodes
and their incident edges from it. Each partial tree has at most (2/3)n nodes.
Based on whether the separator edge is on the leftmost path of T or not, there
are two general cases, which are shown in Figure 5.9.

• Assign Aspect Ratios: Correspondingly, assign a desirable aspect ratio Ak to each
partial tree Tk. The value of Ak is based on the value of A and the number of
nodes in Tk.

5.7. ALGORITHMS FOR DRAWING BINARY TREES 167

• Draw Partial Trees: Recursively construct a feasible drawing of each partial tree
Tk with Ak as its desirable aspect ratio.

• Compose Drawings: Arrange the drawings of the partial trees, and draw the
nodes and edges that were removed from T to split it, such that the drawing Γ
of T is a feasible drawing. Note that the arrangement of these drawings is done
based on the cases shown in Figure 5.9. In each case, if A < 1, then the drawings
of the partial trees are stacked one above the other, and if A ≥ 1, then they are
placed side-by-side.

Remark: The drawing Γ constructed by the algorithm may not have aspect ratio exactly
equal to A, but it fits inside a rectangle with area O(n) and aspect ratio A.

(a)

(b)

Figure 5.9 (a) Drawing T in Case 1 (when the separator (u, v) is not in the leftmost
path of T). (b) Drawing T in Case 2 (when the separator (u, v) is in the leftmost path of
T). For each case, first the structure of T for that case is shown, then its drawing when
A < 1, and then its drawing when A ≥ 1. For simplicity, p(a) and p(u) are shown to be in
the interior of ΓA, but actually, either they are the same as o, or if A < 1 (A ≥ 1), then
they are placed at the bottom (right) boundary of ΓA. For simplicity, ΓA, ΓB , and ΓC are
shown as identically sized boxes, but in actuality, they may have different sizes.

Figure 5.10 (a) shows a drawing of a complete binary tree with 63 nodes constructed by
algorithm Separation, with A = 1 and ǫ = 0.5. Figure 5.10 (b) shows a drawing of a tree
with 63 nodes, consisting of a single path, constructed by algorithm Separation, with A = 1
and ǫ = 0.5.

Split Tree

The splitting of tree T into partial trees is done as follows:

168 CHAPTER 5. TREE DRAWING ALGORITHMS

(a) (b)

Figure 5.10 (a) Drawing of the complete binary tree with 63 nodes constructed by Algo-
rithm Separation, with A = 1 and ǫ = 0.5. (b) Drawing of a tree with 63 nodes, consisting
of a single path, constructed by Algorithm Separation, with A = 1 and ǫ = 0.5.

• Order the children of each node such that u∗ becomes the leftmost node of T .

• Using Theorem 5.1, find a separator edge (u, v) of T , where u is the parent of v.

• Based on whether (u, v) is in the leftmost path of T , there are two general cases
(each with several subcases—not covered here):

– Case 1: The separator edge (u, v) is not in the leftmost path of T . Let o
be the root of T . Let a be the last node common to the path o ❀ v, and
the leftmost path of T . Let partial trees TA, TB , TC , Tα, Tβ , T1, and T2 be
defined as follows (see Figure 5.9 (a)):

∗ If o 6= a, then TA is the maximal partial tree with root o, that contains
p(a), but does not contain a. If o = a, then TA = ∅.

∗ TB is the subtree rooted at r(a).

∗ If u∗ 6= a, then TC is the subtree rooted at l(a). If u∗ = a, then TC = ∅.
∗ If s(v) exists, i.e., if v has a sibling, then T1 is the subtree rooted at
s(v). If v does not have a sibling, then T1 = ∅.

∗ T2 is the subtree rooted at v.

∗ If u 6= a, then Tα is the subtree rooted at u. If u = a, then Tα = T2.
Note that Tα is a subtree of TB .

∗ If u 6= a and u 6= r(a), then Tβ is the maximal partial tree with root
r(a), that contains p(u), but does not contain u. If u = a or u = r(a),
then Tβ = ∅. Again, note that Tβ belongs to TB .

Nodes a and u and their incident edges are being removed to split T into
at most five partial trees TA, TC , Tβ , T1, and T2. p(a) is designated as the
link node of TA, p(u) as the link node of Tβ , and u∗ as the link node of TC .
Arbitrarily select a leaf of T1, and a leaf of T2, and designate them as the
link nodes of T1 and T2, respectively.

– Case 2: The separator edge (u, v) is in the leftmost path of T . Let o be
the root of T . Let partial trees TA, TB , and TC be defined as follows (see
Figure 5.9 (b)):

∗ If o 6= u, then TA is the maximal partial tree with root o, that contains
p(u), but does not contain u. If o = u, then TA = ∅.

5.7. ALGORITHMS FOR DRAWING BINARY TREES 169

∗ If r(u) exits, i.e., u has a right child, then TB is the subtree rooted at
r(u). If u does not have a right child, then TB = ∅.

∗ TC is the subtree rooted at v.

Node u and its incident edges are being removed to split T into at most
three partial trees TA, TB , and TC . p(u) is designated as the link node
of TA, and u∗ as the link node of TC . Arbitrarily select a leaf of TB and
designate it as the link node of TB .

Assign Aspect Ratios

Let Tk be a partial tree of T , where for Case 1, Tk is either TA, TC , Tβ , T1, or T2, and
for Case 2, Tk is either TA, TB , or TC . Let nk be the number of nodes in Tk.

Definition: Tk is a large partial tree of T if:

• A ≥ 1 and nk ≥ (n/A)1/(1+ǫ), or

• A < 1 and nk ≥ (An)1/(1+ǫ),

and is a small partial tree of T otherwise.
In Step Assign Aspect Ratios, a desirable aspect ratio Ak is assigned to each non-empty

Tk as follows: Let xk = nk/n.

• If A ≥ 1: If Tk is a large partial tree of T , then Ak = xkA, otherwise (i.e., if Tk

is a small partial tree of T) Ak = n−ǫ
k .

• If A < 1: If Tk is a large partial tree of T , then Ak = A/xk, otherwise (i.e., if Tk

is a small partial tree of T) Ak = nǫ
k.

Intuitively, the above assignment strategy ensures that each partial tree gets a good
desirable aspect ratio.

Draw Partial Trees

If A ≥ 1, then the values of AA and Aβ (AA and Aβ are the desirable aspect ratios
for TA and Tβ , respectively) are being changed to 1/AA and 1/Aβ , respectively. This is
done so because later in Step Compose Drawings, when constructing Γ, if A ≥ 1, then the
drawings of TA and Tβ are rotated by 90◦. Drawing TA and Tβ with desirable aspect ratios
1/AA and 1/Aβ , respectively, compensates for the rotation, and ensures that the drawings
of TA and Tβ that eventually get placed within Γ are those with desirable aspect ratios AA

and Aβ , respectively.
Next, each non-empty partial tree Tk, k ∈ {A,B,C, α, β, 1, 2}, is drawn recursively with

Ak as its desirable aspect ratio. The base case for the recursion happens when Tk contains
exactly one node, in which case, the drawing of Tk is simply the one consisting of exactly
one node.

Compose Drawings

Let Γk denote the drawing of a partial tree Tk constructed in Step Draw Partial
Trees. We now describe the construction of a feasible drawing Γ of T from the drawings of
its partial trees in Case 1.

In Case 1, first a drawing Γα of the partial tree Tα is constructed by composing Γ1 and
Γ2 as shown in Figure 5.11, then a drawing ΓB of TB is constructed by composing Γα and
Γβ as shown in Figure 5.12, and finally Γ is constructed by composing ΓA, ΓB , and ΓC as
shown in Figure 5.9 (a).

In the general case (u 6= a and T1 6= ∅), Γα is constructed as follows (see Figure 5.11):

170 CHAPTER 5. TREE DRAWING ALGORITHMS

Figure 5.11 Drawing Tα in the general case (u 6= a and T1 6= ∅). First, the structure
of Tα is shown, then its drawing when A < 1, and then its drawing when A ≥ 1. For
simplicity, Γ1 and Γ2 are shown as identically sized boxes, but in actuality, their sizes may
be different.

• If A < 1, then Γ1 is placed above Γ2 such that the left boundary of Γ1 is one unit
to the right of the left boundary of Γ2; u is placed in the same vertical channel
as v and in the same horizontal channel as s(v).

• If A ≥ 1, then Γ1 is placed one unit to the left of Γ2, such that the top boundary
of Γ1 is one unit below the top boundary of Γ2; u is placed in the same vertical
channel as s(v) and in the same horizontal channel as v.

Draw edges (u, s(v)) and (u, v).

Figure 5.12 Drawing TB in the general case (Tβ 6= ∅). First, the structure of TB is
shown, then its drawing when A < 1, and then its drawing when A ≥ 1. For simplicity,
p(u) is shown to be in the interior of Γβ , but actually, it is either same as r(a), or if A < 1
(A ≥ 1), then is placed on the bottom (right) boundary of Γβ . For simplicity, Γβ and Γα

are shown as identically sized boxes, but in actuality, their sizes may be different.

In the general case (Tβ 6= ∅), ΓB is constructed as follows (see Figure 5.12):

• if A < 1, then Γβ is placed one unit above Γα such that the left boundaries of
Γβ and Γα are aligned.

• If A ≥ 1, then first Γβ is rotated clockwise by 90◦ and then flipped right-to-left,
then Γβ is placed one unit to the left of Γα such that the top boundaries of Γβ

and Γα are aligned.

Draw edge (p(u), u).
In general Case 1, Γ is constructed from ΓA, ΓB , and ΓC as follows (see Figure 5.9 (a)):

• If A < 1, then ΓA, ΓB , and ΓC are stacked one above the other, such that they
are separated by unit distance from each other, and the left boundaries of ΓA

and ΓC are aligned with each other and are placed one unit to the left of the left
boundary of ΓB ; a is placed in the same vertical channel as o and l(a), and in
the same horizontal channel as r(a).

• If A ≥ 1, then first ΓA is rotated clockwise by 90◦ and flipped right-to-left.
Then, ΓA, ΓC , and ΓB are placed from left-to-right in that order, separated by

5.7. ALGORITHMS FOR DRAWING BINARY TREES 171

unit distances, such that the top boundaries of ΓA and ΓB are aligned with each
other, and are one unit above the top boundary of ΓC . Then, ΓC is moved down
until u∗ becomes the lowest node of Γ; a is placed in the same vertical channel
as l(a) and in the same horizontal channel as o and r(a).

Draw edges (p(a), a), (a, r(a)), and (a, l(a)).

In general Case 2, Γ is constructed by composing ΓA, ΓB , and ΓC , using a procedure similar
to the one of Case 1 (see Figure 5.9(b)).

Theorem 5.2 Let T be a binary tree with n nodes. Given two numbers A and ǫ, where
ǫ is a constant, such that 0 < ǫ < 1, and n−ǫ ≤ A ≤ nǫ, a planar straight-line grid drawing
of T with O(n) area and aspect ratio A, can be constructed in O(n log n) time. Moreover,
Γ has the subtree-separation property.

Proof: Designate any leaf of T as its link node. Construct a drawing Γ of T by invoking
Algorithm Separation with T , A, and ǫ as input. Γ will be a planar straight-line grid drawing
contained entirely within a rectangle with O(n) area and aspect ratio A, and which exhibits
the subtree separation property. ✷

5.7.4 Ordered Trees

In this Section, we present two algorithms of [GR03a] in detail. The first algorithm (we
call it Fixed Spine) shows that a binary tree admits an order-preserving upward planar
straight-line grid drawing with optimal O(n log n) area. The second algorithm (we call it
Arbitrary Spine), shows that a binary tree admits an order-preserving planar straight-line
grid drawing with width O(A+ log n), height O((n/A) logA), and area O(n log n), for any
given 2 ≤ A ≤ n. Setting A = log n, it results in an area of O(n log log n). Both algorithms
take O(n) time to construct the drawings.

Let T be an ordered tree. Each node of T has at most two children, called its left and
right children, respectively.

Let α be a positive integer. An order-preserving planar straight-line grid drawing of T is
an α-drawing of T , if it has the following two properties:

• Property 1: No node is placed to the left of, or above the root of, T .

• Property 2: The vertical and horizontal separations between the root and its
rightmost child are equal to α and one units, respectively.

A left-corner drawing of an ordered tree is an order-preserving planar straight-line grid
drawing, where no node of the tree is placed to the left of, or above its root. Note that an
α-drawing is also a left-corner drawing.

The mirror-image of T is the ordered tree obtained by reversing the counterclockwise
order of edges incident on each node.

A spine of T is a path v0v1v2 . . . vm, where v0, v1, v2, . . . , vm are nodes of T , that is defined
recursively as follows (see Figure 5.13):

• v0 is the same as the root of T ;

• vi+1 is a child of vi, such that the subtree rooted at vi+1 has the maximum
number of nodes among all the subtrees that are rooted at the children of vi.

A non-spine node of T is one that does not belong to its spine.

172 CHAPTER 5. TREE DRAWING ALGORITHMS

(a) (b)

Figure 5.13 (a) A binary tree T with spine v0v1 . . . v13. (b) The order-preserving planar
upward straight-line grid drawing of T constructed by fixed spine algorithm.

Algorithm Fixed Spine

For simplicity, throughout this section, it is assumed that each non-leaf node has
exactly two children. The algorithm can be simply extended to cover the case where a
non-leaf node has only one child.

The fixed spine drawing algorithm uses a path-based approach to obtain an order-preserving
upward planar straight-line grid drawing with optimal (O(n log n)) area of an ordered bi-
nary tree T . In each recursive step, it breaks T into several subtrees, draws each subtree
recursively, and then combines their drawings to obtain an upward α-drawing D(T) of T ,
where α is a positive integer given as a parameter to the algorithm.

Let P = v0v1v2 . . . vm be a spine of T .
There are two cases (see Figures 5.14 and 5.15):

• Case 1: v1 is the left child of v0 (see Figure 5.14(a)).
Let L be the subtree rooted at v1, s be the non-spine child of v0, and R be the

5.7. ALGORITHMS FOR DRAWING BINARY TREES 173

subtree rooted at s. v0 is placed at the origin. 1-drawings D(L) and D(R) of
L and R are recursively constructed. D(R) is placed such that s is one unit to
the right of, and α units below v0. D(L) is placed such that v1 is in the same
vertical channel as v0, and is one unit below D(R) (see Figure 5.14(b)).

(a) (b)

Figure 5.14 (a) The structure of a binary tree T in Case 1, where v1 is the left child of
v0. (b) The drawing of T in Case 1. For simplicity, D(L) and D(R) are shown as identically
sized boxes, but in actuality, they may have different sizes.

• Case 2: v1 is the right child of v0 (see Figure 5.15(a)).
Let k ≥ 1 be the smallest integer, such that vk is either a leaf, or has a non-spine
node as its left child.
There are two subcases:

– vk has a non-spine node as its left child: Let s0, s1, . . . , sk be the non-spine
children of v0, v1, . . . , vk, respectively. Let L, A, and B be the subtrees
rooted at s0, sk, and vk+1, respectively. Let R1, R2, . . . , Rk−1 be the sub-
trees rooted at s1, s2, . . . , sk−1, respectively. T is drawn as shown in Fig-
ure 5.15(b). v0 is placed at the origin. v1 is placed one unit to the right of,
and α units below, v0. 1-drawings D(L), D(A), D(R1), D(R2), . . . , D(Rk−1)
of L,A,R1, R2, . . . , Rk−1, respectively, are recursively constructed. D(R1)
is placed one unit to the right of, and one unit below, v1. For each i, where
2 ≤ i ≤ k−1, vi and D(Ri) are placed such that vi is in the same horizontal
channel as the bottom of D(Ri−1) and is in the same vertical channel as
vi−1, and D(Ri) is one unit to the right of, and one unit below, vi. Node
vk is placed in the same vertical channel as vk−1, and in the same hori-
zontal channel as the bottom of D(Rk−1). D(A) is placed one unit below
vk, such that sk is in the same vertical channel as vk. D(L) is placed one
unit below D(A), such that s0 is in the same vertical channel as v0. Let
β = h(D(A))+h(D(L))+2, where h(D(A)) and h(D(L)) denote the heights
of D(A) and D(L), respectively. Let G be the drawing with the maximum
width amongD(L), D(A), D(R1), D(R2), . . . , D(Rk−1). LetW be the width
of G. A β-drawing of the mirror image of B is recursively constructed, and
then flipped right-to-left to obtain a drawing D(B) of B. D(B) is placed
such that vk+1 is one unit below vk, and max{W +3, width of D(B)} units
to the right of v0.

– vk is a leaf: T is drawn in a similar fashion as in the previous subcase,
except that D(A) and D(B) do not exist.

174 CHAPTER 5. TREE DRAWING ALGORITHMS

(a) (b)

Figure 5.15 The structure of a binary tree T in Case 2, where v1 is the right child of
v0: (a) vk has a non-spine node as its left child; (b) the drawing of T , when vk has a
non-spine node as its left child. For simplicity, D(A), D(L), D(R1), . . . , D(Rk−1) are shown
as identically sized boxes, but in actuality, they may have different sizes.

Theorem 5.3 An ordered binary tree with n nodes admits an order-preserving up-
ward planar straight-line grid drawing with height at most n, width O(log n), and optimal
O(n log n) area, which can be constructed in O(n) time.

Proof: Let T be an n-node ordered binary tree. Using the above algorithm, construct a
1-drawing D(T) of T in O(n) time. As discussed above, D(T) will be an order-preserving
upward planar straight-line grid drawing of T with height at most n, width O(log n), and
optimal O(n log n) area. ✷

LEMMA 5.1 A left-corner drawing of an n-node ordered binary tree with area O(n log n),
height O(log n), and width at most n, can be constructed in O(n) time.

Proof: First a 1-drawing of the mirror image of T is constructed using Theorem 5.3,
then it is rotated clockwise by 90◦, and then it is flipped right-to-left. ✷

Algorithm Arbitrary Spine

For any user-defined number A, where 2 ≤ A ≤ n, algorithm Arbitrary Spine uses a
path-based approach to construct an order-preserving planar straight-line grid drawing of
T with O((n/A) logA) height and O(A + log n) width. Thus, by setting the value of A,
users can control the aspect ratio of the drawing. This implies that, by setting A = log n,
such a drawing can be constructed with area O(n log log n).

An order-preserving planar straight-line grid drawing of a binary tree T is called a feasible
drawing, if the root of T is placed on the left boundary and no node of T is placed between
the root and the upper-left corner of the enclosing rectangle of the drawing. Note that a
left-corner drawing is also a feasible drawing.

5.7. ALGORITHMS FOR DRAWING BINARY TREES 175

Let n be the number of nodes in T . Let 2 ≤ A ≤ n be any number given as a parameter
to the algorithm.

Figure 5.16 shows the drawing of the tree of Figure 5.13(a) constructed by algorithm
Arbitrary Spine with A =

√
n, using Lemma 5.1.

Figure 5.16 Drawing of the tree with n = 57 nodes of Figure 5.13(a) constructed by the
Algorithm Arbitrary Spine with A =

√
n =

√
57 = 7.55, using Lemma 5.1.

In each recursive step, the algorithm constructs a feasible drawing of a subtree T ′ of T . If
T ′ has at most A nodes in it, then it constructs a left-corner drawing of T ′ using Lemma 5.1
such that the drawing has width at most m and height O(logm), where m is the number of
nodes in T ′. Otherwise, i.e., if T ′ has more than A nodes in it, then it constructs a feasible
drawing of T ′ as follows:

1. Let P = v0v1v2 . . . vq be a spine of T ′.

2. Let mi denote the number of nodes in the subtree of T ′ rooted at vi, where
0 ≤ i ≤ q. Let vk be the node of P with the value for k such that mk > m − A
and mk+1 ≤ m − A (since T ′ has more than A nodes in it, and m0,m1, . . . ,mq

is a strictly decreasing sequence of numbers, such a k exists).

3. See Figures 5.17 and 5.18. Let Ti denote the subtree rooted at the non-spine
child of vi, where 0 ≤ i ≤ k− 1. Assume, for simplicity, that vk and vk+1 are not
leaves (the algorithm can be easily extended to handle the case, where vk or vk+1

is a leaf). Let T ∗ and T+ denote the subtrees rooted at the non-spine children
of vk and vk+1, respectively. Let T

′′ denote the subtree rooted at vk+1. Let T
′′′

denote the subtree rooted at vk+2.

4. Place v0 at the origin.

5. There are two cases:

• k = 0: Recursively construct a feasible drawing D∗ of T ∗. Recursively
construct a feasible drawing D+ of the mirror image of T+. Recursively
construct a feasible drawing D′′′ of the mirror image of T ′′′. Let s0 be the
root of T ∗ and s1 be the root of T+.

T ′ is drawn as shown in Figure 5.17. If s0 is the left child of v0, then D∗

is placed one unit below v0, with its left boundary aligned with v0 (see

176 CHAPTER 5. TREE DRAWING ALGORITHMS

(a) (b)

(c) (d)

Figure 5.17 Case k = 0: (a) s0 is the left child of v0, and s1 is the left child of v1; (b) s0
is the right child of v0, and s1 is the left child of v1; (c) s0 is the left child of v0, and s1 is
the right child of v1; (d) s0 is the right child of v0, and s1 is the right child of v1.

Figure 5.17(a,c)). If s0 is the right child of v0, then D∗ is placed one unit
above, and one unit to the right of v0 (see Figure 5.17(b,d)). Let W ∗,
W+, and W ′′′ be the widths of D∗, D+, and D′′′, respectively. Place v1 in
the same horizontal channel as v0 to its right at the distance max{W ∗ +
2,W++2,W ′′′} from it. Let B0 and C0 be the lowest and highest horizontal
channels, respectively, occupied by the subdrawing consisting of v0 and D∗.
If s1 is the left child of v1, then D+ is flipped right-to-left, and placed one
unit below B0, and one unit to the left of v1 (see Figure 5.17(a,b)). If s1 is
the right child of v1, then D+ is flipped right-to-left, and placed one unit
above C0, and one unit to the left of v1 (see Figure 5.17(c,d)). Let B1 be
the lowest horizontal channel occupied by the subdrawing consisting of v0,
D∗, v1 and D+. Flip D′′′ right-to-left, and place it one unit below B1, such
that its right boundary is aligned with v1 (see Figure 5.17).

• k > 0: For each Ti, where 0 ≤ i ≤ k− 1, construct a left-corner drawing Di

of Ti using Lemma 5.1.

Recursively construct feasible drawings D∗ and D′′ of the mirror images of
T ∗ and T ′′, respectively.

T ′ is drawn as shown in Figure 5.18. If T0 is rooted at the left child of v0,
then D0 is placed one unit below v0, with its left boundary aligned with v0.
If T0 is rooted at the right child of v0, then D0 is placed one unit above,
and one unit to the right of v0. Place each Di and vi, where 1 ≤ i ≤ k − 1,
such that:

– vi is in the same horizontal channel as vi−1 and is one unit to the right
of Di−1, and

– if Ti is rooted at the left child of vi, then Di is placed one unit below
vi, with its left boundary aligned with vi, otherwise (i.e., if Ti is rooted
at the right child of vi) Di is placed one unit above, and one unit to the
right of vi.

5.7. ALGORITHMS FOR DRAWING BINARY TREES 177

(a) (b)

(c) (d)

Figure 5.18 Case k > 0: Here k = 4, s0, s1, and s3 are the left children of v0, v1, and
v3, respectively, s2 is the right child of v2, T0, T1, T2, T3, and T ′′ are the subtrees rooted
at v0, v1, v2, v3, and v5, respectively, s4 is the non-spine child of v4, and T ∗ is the subtree
rooted at s4; (a) s4 is the left child of v4; (c) s4 is the right child of v4. For simplicity, boxes
D0, D1, D2, D3 are drawn with same size, but in actuality, they may have different sizes.

Let Bk−1 and Ck−1 be the lowest and highest horizontal channels, respec-
tively, occupied by the subdrawing consisting of v0, v1, v2, . . . , vk−1 and
D0, D1, D2, . . . , Dk−1. Let d be the width of the subdrawing consisting
of v0, v1, v2, . . . , vk−1 and D0, D1, D2, . . . , Dk−1. Let W ∗ and W ′′ be the
widths of D∗ and D′′, respectively.

Place vk to the right of and in the same horizontal channel as vk−1, such that
the horizontal distance between vk and v0 is equal to max{d+1,W ∗+2,W ′′}.
If T ∗ is rooted at the left-child of vk, then D∗ is flipped right-to-left, and
placed one unit below Bk−1, and one unit left of vk (see Figure 5.18(b)).
If T ∗ is rooted at the right-child of vk, then D∗ is flipped right-to-left,
and placed one unit above Ck−1, and one unit to the left of vk (see Fig-
ure 5.18(d)). Let Bk be the lowest horizontal channel occupied by the sub-
drawing consisting of v1, v2, . . . , vk, and D0, D1, D2, . . . , Dk−1, D

∗. Flip D′′

right-to-left, and place it one unit below Bk, such that its right boundary
is aligned with vk (see Figure 5.18(b,d)).

Theorem 5.4 Let T be an ordered binary tree with n nodes. Let 2 ≤ A ≤ n be any
number. T admits an order-preserving planar straight-line grid drawing with width O(A +
log n), height O((n/A) logA), and area O((A + log n)(n/A) logA) = O(n log n), which can
be constructed in O(n) time.

178 CHAPTER 5. TREE DRAWING ALGORITHMS

Setting A = log n, it is obtained that:

COROLLARY 5.1 An n-node ordered binary tree admits an order-preserving planar
straight-line grid drawing with area O(n log log n), which can be constructed in O(n) time.

5.8 Algorithms for Drawing General Trees

In a general tree, a node may have more than two children. This makes it more difficult
to draw a general tree than a binary tree. The degree of a tree is equal to the maximum
number of edges incident on a node.

5.8.1 Theoretical Results

We summarize known theoretical results on planar grid drawings of general trees. Chan
[Cha02] has shown an upper bound of O(n1+ǫ), where ǫ > 0 is any user-defined constant,
on the area of an order-preserving planar upward straight-line grid drawing of a general
tree. Garg et al. [GGT96] have given an upper bound of O(n log n) on order-preserving
planar upward polyline grid drawings. As for the lower bound on the area-requirement of
order-preserving drawings, Garg et al. [GGT96] have shown a lower bound of Ω(n log n) for
order-preserving planar upward grid drawings. There is no known lower bound for non-
upward order-preserving planar grid drawings other than the trivial Ω(n) bound. Garg et
al. [GGT96] show that any tree with degree d admits a non-order-preserving planar upward
polyline grid drawing with height h = O(n1−α) and area O(n+ dh log n), where 0 < α < 1
is any user-specified constant. This result implies that any tree with degree O(nβ), where
0 ≤ β < 1 is any constant, can be drawn in this fashion in O(n) area with aspect ratio
O(nγ), where γ is any user-defined constant, such that max{0, 2β − 1} < γ < 1. Garg and
Rusu [GR03c] show that any tree with degree O(nδ), where 0 ≤ δ < 1/2 is any constant,
admits a non-order-preserving planar non-upward straight-line drawing with area O(n), and
any user-specified aspect ratio in the range [1, nα], where 0 ≤ α < 1 is any constant.

Table 5.3 summarizes these results.

A variety of results are available for other kinds of drawings. Di Battista et al. [DETT99]
and Frati [Fra09] have given a survey of these results.

5.8.2 Unordered Trees

In this section, we briefly sketch a bottom-up algorithm developed using the ringed circular
layout approach [TM02]. This algorithm (called Rings) is space-efficient for high-degree
trees, however, the resulting drawing is straight-line but not planar.

The subtrees rooted at the children of the root of the tree are drawn recursively as circles
placed in concentric rings around the center of the circle to ensure efficient use of space.
The children of the root are divided into multiple categories according to their size. One
ring is assigned to each category, so the outer rings consist of the largest trees, while the
inner rings consist of the smallest ones (see Figure 5.19). In this way, a tree containing more
information is allocated more space, thus showing more distinguishable edges and allowing
more structural information to be shown in context.

The relationship below can be established between the number of children circles in the
outermost ring and the percentage of area taken up by the ring.

5.8. ALGORITHMS FOR DRAWING GENERAL TREES 179

Tree Type Drawing Type Area Aspect Ratio Ref.

Tree with non-upward
degree O(nδ), straight-line Θ(n) [1, nα] [GR03c]

for any non-order-preserving
constant

0 ≤ δ < 1/2
Tree with upward polyline

degree O(nβ), non-order-preserving Θ(n) [1, nγ] [GGT96]
for any
constant
0 ≤ β < 1
General upward polyline

order-preserving Θ(n log n) n/ log n [GGT96]
upward straight-line
order-preserving O(n1+ǫ) n [Cha02]
non-upward O(n1+ǫ) n [Cha02]
straight-line

order-preserving O(n log n) n/ log n [GR03a]

Table 5.3 Bounds on the areas and aspect ratios of various kinds of planar straight-line
grid drawings of an n-node tree. Here, α, γ, and ǫ are arbitrary user-defined constants, such
that 0 ≤ α < 1, 0 ≤ γ < 1, and 0 < ǫ < 1.

f(n) =
(R2)

2

(R1)2
=

(1− sin (θ))2

(1 + sin (θ))2
=

(1− sin (πn))
2

(1 + sin (πn))
2

(5.1)

here, f(n) is the fraction of the area left after n circles have been placed in the ring.

The basic steps of the algorithm are presented below:

Algorithm Rings

Sort the children by their number of children;

Find the smallest k for which the sum of the number of children of the first k children

expressed as a fraction of the total number of grandchildren is greater or equal to

f(k);

Place first k children in the outermost ring;

Place the rest of the children in the same way in the inner rings;

end Algorithm.

Visual cues like color and transparency are also used to enhance structural information,
as well as to highlight specific information (such as information importance or relevance).
Adjacent concentric rings are rotated in opposite directions to decrease the occlusion of a
particular branch (see Figure 5.20).

A binary tree adaptation of the Rings algorithm [RS08] places the children of a node in
either the same vertical or horizontal channel, starting with the same horizontal channel at
the root (depth 0), and alternates between vertical and horizontal channel placement for
every following depth in the tree. In addition, the length of the edge connecting a subtree
to its parent is set to depth(subtree(v)) + 1, where depth(subtree(v)) is the depth of the
subtree rooted at node v. This ensures that enough space is made available to draw the rest
of the subtree, which is consistent with other rings-based algorithms. A drawing produced
by the binary tree adaptation of the Rings algorithm is provided in Figure 5.21.

180 CHAPTER 5. TREE DRAWING ALGORITHMS

Figure 5.19 Layout of the ringed circular layout algorithm of [TM02]. The four larger
rings represent the largest children of the parent node, and the inner ring represents the
area left for the rest of the children.

Figure 5.20 Rotation strategy to decrease occlusion. Figure taken from [TM02].

In order to allow for real-time interaction, a top-down variation of the Rings algorithm,
called FastRings [RSJ07], trades space for time. In FastRings, all nodes of the tree are
considered to be equivalent and assigned same size circles. This allows the algorithm to
start drawing the tree much sooner, when only the first level of children is available. The
drawing can be refined later by filling up the circles from the first level once new information
becomes available. Experiments show that FastRings increases the speed of constructing
entire drawings by 51%, and is twelve times faster in producing first drawings.

5.8.3 Ordered Trees

In this section, we briefly sketch an algorithm for constructing a (non-upward) order-
preserving planar straight-line grid drawing of a general ordered tree with n nodes with
O(n log n) area in O(n) time [GR03a]. This algorithm uses a path-based approach.

Let T be an ordered tree with n nodes. In each recursive step, the algorithm breaks T
into several subtrees, draws each subtree recursively, and then combines their drawings to

5.8. ALGORITHMS FOR DRAWING GENERAL TREES 181

Figure 5.21 Drawing of the Fibonacci tree with 88 nodes, generated by the binary tree
adaptation of the Rings algorithm.

obtain an α-drawing D(T) of T , where α is a positive integer given as a parameter to the
algorithm.

Let P = v0v1v2 . . . vm be a spine of T (see Section 5.7.4 for the definition of spine). The
general structure of T is shown in Figure 5.22(a). Let s0, s1, . . . , si, v1, si+1, si+2, . . . , sp
be the left-to-right order of the children of v0, where the list s0, s1, . . . , si is empty if v1
is the leftmost child of v0, and the list si+1, si+2, . . . , sp is empty if v1 is the rightmost
child of v0. Let Ak denote the subtree rooted at the node sk, where 0 ≤ k ≤ p. Let
t0, t1, . . . , tj , v2, tj+1, tj+2, . . . , tr be the left-to-right order of the children of v1, where the
list t0, t1, . . . , tj is empty if v2 is the leftmost child of v1, and the list tj+1, tj+2, . . . , tr is
empty if v2 is the rightmost child of v1. Let Bk denote the subtree rooted at the node tk,
where 0 ≤ k ≤ r. Let C denote the subtree rooted at v2.

T is drawn as follows (see Figure 5.22(b)):

1. Recursively construct 1-drawings D(A0), . . . , D(Ap) of A0, . . . , Ap, respectively,
and D(B0), . . . , D(Br) of B0, . . . , Br, respectively.

2. Place v0 at the origin.

3. Place D(Ai+1), . . . , D(Ap) one above the other at unit vertical separations from
each other, such that D(Ap) is at the top, D(Ai+1) is at the bottom, si+1, . . . , sp
are in the same vertical channel, and sp is α units below, and one unit to the
right of v0.

4. Place D(Bj+1), . . . , D(Br) one above the other at unit vertical separations from
each other, such that D(Br) is at the top, D(Bj+1) is at the bottom, tj+1, . . . , tr
are in the same vertical channel, and tr is one unit below D(Ai+1), and one unit
to the right of si+1.

5. Place v1 in the same horizontal channel as the bottom of D(Bj+1), and one unit
to the right of v0.

6. Place D(B0), . . . , D(Bj) one above the other at unit vertical separations from
each other, such that D(Bj) is at the top, D(B0) is at the bottom, t0, . . . , tj are
in the same vertical channel, and tj is one unit below, and one unit to the right
of v1.

182 CHAPTER 5. TREE DRAWING ALGORITHMS

(a) (b)

Figure 5.22 (a) The structure of a general tree T . (b) The drawing of T constructed
by the algorithm of Section 5.8.3. For simplicity, D(A0), . . . , D(Ap), D(B0), . . . , D(Br) are
shown as identically sized boxes, but in actuality they may have different sizes.

7. Place D(A0), . . . , D(Ai) one above the other at unit vertical separations from
each other, such that D(Ai) is at the top, D(A0) is at the bottom, s0, . . . , si are
in the same vertical channel, and si is one unit below D(B0), and in the same
vertical channel as v1.

8. Let β = h(D(B0)) + . . . + h(D(Bj)) + h(D(A0)) + . . . + h(D(Ai)) + i + j +
2, where h(D(B0)), . . . , h(D(Bj)), h(D(A0)), . . . , h(D(Ai)) denote the heights of
D(B0), . . . , D(Bj), D(A0), . . . , D(Ai), respectively. Recursively construct a β-
drawing of the mirror image of C, and flip it right-to-left to obtain a drawing
D(C) of C. Let W be the width of G, which is the drawing with the maximum
width among D(A0), . . . , D(Ap), D(B0), . . . , D(Br). Place D(C) such that v2 is
one unit below v1, and max{W + 3, width of D(C)} units to the right of v0.

Theorem 5.5 An ordered tree with n nodes admits a (non-upward) order-preserving
planar straight-line grid drawing with O(n log n) area, O(log n) width, and height at most
n, which can be constructed in O(n) time.

Proof: Let T be an n-node ordered tree. Using the above algorithm, construct a 1-
drawing D(T) of T in O(n) time. As discussed above, D(T) is an order-preserving planar
straight-line grid drawing of T with height at most n, width O(log n), and area O(n log n).

✷

5.9. OTHER TREE DRAWING METHODS 183

LEMMA 5.2 A left-corner drawing (see Section 5.7.4 for the definition of a left-corner
drawing) of an n-node ordered tree with area O(n log n), height O(log n), and width at most
n, can be constructed in O(n) time.

Proof: First a 1-drawing of the mirror-image of T is constructed using Theorem 5.5,
then it is rotated clockwise by 90◦, and then it is flipped right-to-left. ✷

5.9 Other Tree Drawing Methods

Drawing trees is one of the best studied areas in graph drawing, initiated more than forty
years ago [Knu68]. Any tree accepts a planar drawing, hence most tree drawing algorithms
achieve this aesthetic. Several tree drawing strategies exist that allow one to create drawings
with small area, user-controlled aspect ratio, relatively high angular resolution, a small
number of bends, and in efficient time.

We conclude the chapter by introducing several algorithms and techniques that do not
fit the general approaches described in the previous sections.

Hyperbolic tree [LRP95] (see Figure 5.23) simulates the distortion effect of fisheye lens
(enlarge the focus and shrink the rest).

Figure 5.23 Screenshot of Hyperbolic tree, taken from [LRP95].

184 CHAPTER 5. TREE DRAWING ALGORITHMS

Pad++ [BHS+97] (See Figure 5.24) displays the nodes as thumbnails of pages of infor-
mation. It institutes a focus+context style by enlarging the focus node and allowing other
nodes to be in view.

Figure 5.24 Screenshot of Pad++, taken from [BHS+97].

Botanical tree [KvdWW01] (see Figure 5.25) is based on the observation that people
can easily see the branches, leaves, and their arrangement in a botanical tree, despite the
large number of elements. Non-leaf nodes are mapped to branches and child nodes to sub-
branches. Continuing branches are emphasized, long branches are contracted, and sets of
leaves are shown as fruit.

A layered drawing of a tree T is a planar straight-line drawing of T such that the ver-
tices are drawn on a set of layers. Some applications such as phylogenetic evolutions and
programming language parsing benefit from layered upward drawings of trees. Alam et
al. [ASRR08] (see Figure 5.26) provide algorithms for minimum-layer upward drawings of
both ordered and unordered trees.

Space tree [PGB02] (see Figure 5.27) allows dynamic rescaling of branches of the tree to
best fit the available screen space. Branches that do not fit on the screen are summarized
by a triangular preview.

Quad [RYC08] (see Figure 5.28) allows the user to specify a preferred angular resolution,
and then employs a best-effort delivery to generate a planar straight-line drawing in which
all angles between edges are above the specified angular coefficient. When a node has too
many children, resulting in an impossibility of achieving angles above the specified angular
coefficient, the algorithm distributes all remaining children evenly among the three quads
of the Cartesian plane.

Adaptive tree drawing [RCJ06] is a system that first analyzes the input tree to classify
it as a specific type and then selects an algorithm to draw it with respect to user-specified
quality measures. The algorithm that is selected to draw a given tree is based on an
experimental comparison [RJSC06], which orders the performance of the algorithms for
each quality measure.

5.9. OTHER TREE DRAWING METHODS 185

(a) (b)

Figure 5.25 (a) Node and link diagram (top) and corresponding strands model (bottom).
(b) Screenshot of Botanical tree, taken from [KvdWW01].

(a) (b)

Figure 5.26 (a) A tree with root r and layer-labelings. (b) A minimum-layer upward
drawing of the tree in (a). Figure taken from [ASRR08].

Hexagonal tree drawing [BBB+09] (see Figure 5.29) allows drawings of degree-6 trees on
the hexagonal grid, which consists of equilateral triangles.
Most of the tree drawing algorithms draw trees on unbounded planes, and few of them

draw trees on regions that are bounded by rectangles. However, certain applications, such
as a graphics software by which one would like to draw a tree inside a star-shaped polygon,
require trees to be drawn on regions which are bounded by general polygons [BR04] (see
Figure 5.30).

A comparative experiment with five tree visualization systems, some which do not draw
trees as node-link diagrams, was performed in [Kob04]. Subjects performed tasks relating
to the structure of a directory hierarchy and to attributes of files and directories. Task
completion times, correctness, and user satisfaction were measured, and video recordings of
subjects interaction with the systems were made. The study showed the merits of distin-
guishing structure and attribute-related tasks, for which some systems behave differently.

186 CHAPTER 5. TREE DRAWING ALGORITHMS

Figure 5.27 Screenshot of Space tree, taken from [PGB02].

(a) (b)

Figure 5.28 (a) Subtrees are distributed into three quads of the Cartesian plane when
the angular coefficient cannot be met by using only one or two quads. (b) Screenshot of
a drawing generated using Quad algorithm, with user-specified angular resolution of 45◦.
Figure taken from [RYC08].

5.9. OTHER TREE DRAWING METHODS 187

Figure 5.29 A planar straight-line drawing of a tree with outdegree five on the hexagonal
grid. Figure taken from [BBB+09].

(a) (b)

Figure 5.30 (a) Drawing of a 31-node complete binary tree inside a U-shaped rectiliniar
polygon. (b) Drawing of a 31-node complete binary tree inside a W-shaped polygon. Figure
taken from [BR04].

188 CHAPTER 5. TREE DRAWING ALGORITHMS

References

[ASRR08] M.J. Alam, M.A.H. Samee, M.M. Rabbi, and M.S. Rahman. Upward
drawing of trees on the minimum number of layers. In Proceedings of the
2nd Workshop on Algortihms and Computation, volume 4921 of Lecture
Notes in Computer Science, pages 88–99, 2008.

[Bac07] C. Bachmaier. A radial adaptation of the Sugiyama framework for vi-
sualizing hierarchical information. IEEE Transactions on Visualization
and Computer Graphics, 13(3):583–594, 2007.

[BBB+09] C. Bachmaier, F.J. Brandenburg, W. Brunner, A. Hofmeier,
M. Matzeder, and T. Unfried. Tree drawings on the hexagonal grid.
In Proceedings 16th International Symposium on Graph Drawing, pages
372–383. Springer-Verlag, 2009.

[Ber81] M. A. Bernard. On the automated drawing of graphs. In Proc. 3rd
Caribbean Conf. on Combinatorics and Computing, pages 43–55, 1981.

[BHS+97] B.B. Bederson, J.D. Hollan, J. Stewart, D. Rogers, A. Druin, D. Vick,
L. Ring, E. Grose, and C. Forsythe. A zooming web browser. In Human
Factors and Web Development, chapter 19, pages 255–266. New Jersey:
Lawrence Erlbaum, 1997.

[BJL02] C. Buchheim, M. Jünger, and S. Leipert. Improving Walker’s algorithm
to run in linear time. In Michael T. Goodrich and Stephen G. Kobourov,
editors, Graph Drawing (Proceedings of 10th International Symposium
on Graph Drawing, 2002), volume 2528 of Lecture Notes in Computer
Science, pages 344–353. Springer, 2002.

[Blo93] A. Bloesch. Aesthetic layout of generalized trees. Software Practice and
Experience, 23(8):817–827, 1993.

[BM03] M. Bernard and S. Mohammed. Labeled radial drawing of data struc-
tures. In Proceedings 7th International Conference on Information Visu-
alisation, pages 479–555. IEEE Computers Society, 2003.

[BR04] A. Bagheri and M. Razzazi. How to draw free trees inside bounded
rectilinear polygons. International Journal of Computer Mathematics,
81(11):1329–1339, 2004.

[CC99] E. A. Chi and S. K. Card. Sensemaking of evolving web sites using visu-
alization spreadsheets. In Proceedings of the Symposium on Information
Visualization (InfoViz ’99), volume 142, pages 18–25. IEEE Press, 1999.

[CDP92] P. Crescenzi, G. Di Battista, and A. Piperno. A note on optimal area
algorithms for upward drawings of binary trees. Comput. Geom. Theory
Appl., 2:187–200, 1992.

[CGKT97] T. M. Chan, M. T. Goodrich, S. R. Kosaraju, and R. Tamassia. Opti-
mizing area and aspect ratio in straight-line orthogonal tree drawings. In
S. North, editor, Graph Drawing (Proc. GD ’96), volume 1190 of Lecture
Notes Comput. Sci., pages 63–75. Springer-Verlag, 1997.

[CGKT02] T. Chan, M. Goodrich, S. Rao Kosaraju, and R. Tamassia. Optimizing
area and aspect ratio in straight-line orthogonal tree drawings. Compu-
tational Geometry: Theory and Applications, 23:153–162, 2002.

[Cha02] T. M. Chan. A near-linear area bound for drawing binary trees. Algo-
rithmica, 34(1):1–13, 2002.

REFERENCES 189

[CP98] P. Crescenzi and P. Penna. Strictly-upward drawings of ordered search
trees. Theoretical Computer Science, 203(1):51–67, 1998.

[CPM+98] E. H. Chi, J. Pitkow, J. Mackinlay, P. Pirolli, and R. Gossweiler. Vi-
sualizing the evolution of Web ecologies. In Proceedings of the Human
Factors in Computing Systems, pages 400–407, 1998.

[CPP98] P. Crescenzi, P. Penna, and A. Piperno. Linear-area upward drawings of
AVL trees. Comput. Geom. Theory Appl., 9:25–42, 1998. (special issue
on Graph Drawing, edited by G. Di Battista and R. Tamassia).

[CPP00] E.H. Chi, P. Pirolli, and J. Pitkow. The Scent of a Site: A system for
analyzing and predicting information scent, usage, and usability of a Web
site. In Proceedings of the Human Factors in Computing Systems, pages
161–168, 2000.

[CT] Isabel F. Cruz and Roberto Tamassia. Graph drawing tutorial.

[DETT94] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Algorithms
for drawing graphs: an annotated bibliography. Comput. Geom. Theory
Appl., 4:235–282, 1994.

[DETT99] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing.
Prentice Hall, Upper Saddle River, NJ, 1999.

[DT81] D. Dolev and H.W. Trickey. On linear area embedding of planar graphs.
Technical report, Stanford University, Stanford, USA, 1981.

[Ead92] P. D. Eades. Drawing free trees. Bulletin of the Institute for Combina-
torics and its Applications, 5:10–36, 1992.

[Fra07] F. Frati. Straight-line orthogonal drawings of binary and ternary trees.
In Seok-Hee Hong and Takao Nishizeki, editors, 15th International Sym-
posium on Graph Drawing, volume 4875 of Lecture Notes in Computer
Science, pages 76–87, 2007.

[Fra09] F. Frati. Small Screens and Large Graphs: Area-Efficient Drawings of
Planar Combinatorial Structures. PhD thesis, Computer Science and
Engineering, Roma Tre University, 2009.

[GADM04] S. Grivet, D. Auber, J.-P. Domenger, and G. Melancon. Bubble tree
drawing algorithm. In International Conference on Computer Vision
and Graphics, pages 633–641. Springer Verlag, 2004.

[GGT96] A. Garg, M. T. Goodrich, and R. Tamassia. Planar upward tree drawings
with optimal area. Internat. J. Comput. Geom. Appl., 6:333–356, 1996.

[GR02] A. Garg and A. Rusu. Straight-line drawings of binary trees with linear
area and arbitrary aspect ratio. In Michael T. Goodrich and Stephen G.
Kobourov, editors, Graph Drawing (Proceedings of 10th International
Symposium on Graph Drawing, 2002), volume 2528 of Lecture Notes in
Computer Science, pages 320–331. Springer, 2002.

[GR03a] A. Garg and A. Rusu. Area-efficient order-preserving planar straight-
line drawings of ordered trees. International Journal of Computational
Geometry and Applications, 13(6):487–505, 2003.

[GR03b] A. Garg and A. Rusu. A more practical algorithm for drawing binary
trees in linear area with arbitrary aspect ratio. In Giuseppe Liotta, ed-
itor, Graph Drawing (Proceedings of 11th International Symposium on
Graph Drawing, 2003), volume 2912 of Lecture Notes in Computer Sci-
ence, pages 159–165. Springer, 2003.

190 CHAPTER 5. TREE DRAWING ALGORITHMS

[GR03c] A. Garg and A. Rusu. Straight-line drawings of general trees with linear
area and arbitrary aspect ratio. In Proceedings 2003 International Con-
ference on Computational Science and Its Applications, volume 2669 of
Lecture Notes in Computer Science, pages 876–885. Springer, 2003.

[GR04] A. Garg and A. Rusu. Straight-line drawings of binary trees with lin-
ear area and arbitrary aspect ratio. Journal of Graph Algorithms and
Applications, 8(2):135–160, 2004.

[Kim95] Sung Kwon Kim. Simple algorithms for orthogonal upward drawings of
binary and ternary trees. In Proc. 7th Canad. Conf. Comput. Geom.,
pages 115–120, 1995.

[Kim04] S.K. Kim. Order-preserving, upward drawing of binary trees using fewer
bends. Discrete Applied Mathematics Journal, 143(1–3):318–323, 2004.

[Knu68] D. E. Knuth. Fundamental Algorithms, volume 1 of The Art of Computer
Programming. Addison-Wesley, Reading, MA, 1st edition, 1968.

[Kob04] Alfred Kobsa. User experiments with tree visualization systems. In Pro-
ceedings of the IEEE Symposium on Information Visualization, INFOVIS
’04, pages 9–16. IEEE Computer Society, 2004.

[KvdWW01] E. Kleiberg, H. van de Wetering, and J.J. Van Wijk. Botanical visual-
ization of huge hierarchies. In Proceedings of the IEEE Symposium on
Information Visualization, 2001.

[Lei80] C. E. Leiserson. Area-efficient graph layouts (for VLSI). In Proc. 21st
Annu. IEEE Sympos. Found. Comput. Sci., pages 270–281, 1980.

[LRP95] J. Lamping, R. Rao, and P. Pirolli. A focus+context technique based
on hyperbolic geometry for visualizing large hierarchies. In Proc. ACM
Conf. on Human Factors in Computing Systems (CHI), 1995.

[Mac03] B. MacLennan. Molecular combinatory computing for nanostructure syn-
thesis and control. In Proceedings 3rd IEEE Conference on Nanotechnol-
ogy, volume 2 of IEEE Press, pages 179–182, 2003.

[MH98] G. Melacon and I. Herman. Circular drawing of rooted trees. Technical
Report INS-9817, Netherland National Research Institute for Mathemat-
ics and Computer Sciences, 1998.

[MMC99] G. Melacon, J.D. Mackinlay, and S. K. Card. Cone trees: animated 3D
visualization of hierarchical information. In Human Factors in Comput-
ing Systems, CHI’99 Conference Proceedings, pages 189–194. ACM Press,
1999.

[PCJ97] H. C. Purchase, R. F. Cohen, and M. I. James. An experimental study of
the basis for graph drawing algorithms. ACM J. Experim. Algorithmics,
2(4), 1997.

[PGB02] C. Plaisant, J. Grosjean, and B.B. Bederson. Spacetree: supporting
exploration in large node link tree, design evolution and empirical eval-
uation. In Proceedings of the IEEE Symposium on Information Visual-
ization, pages 57–64, 2002.

[Pur97] Helen Purchase. Which aesthetic has the greatest effect on human un-
derstanding? In G. Di Battista, editor, Graph Drawing (Proc. GD ’97),
volume 1353 of Lecture Notes Comput. Sci., pages 248–261. Springer-
Verlag, 1997.

REFERENCES 191

[Pur00] Helen C. Purchase. Effective information visualisation: A study of graph
drawing aesthetics and algorithms. Interact. Comput., 13(2):147–162,
2000.

[RCJ06] A. Rusu, C. Clement, and R. Jianu. Adaptive binary trees visualiza-
tion with respect to user-specified quality measures. In Proceedings 10th
International Conference on Information Visualisation, pages 469–474.
IEEE Computers Society, 2006.

[RJSC06] A. Rusu, R. Jianu, C. Santiago, and C. Clement. An experimental study
on algorithms for drawing binary trees. In Proceedings 5th Asia Pacific
Symposium on Information Visualization, volume 60 of Conference in Re-
search and Practice in Information Technology, pages 85–88. Australian
Computer Society Inc., 2006.

[RMC91] G. G. Robertson, J. D. Mackinlay, and S. K. Card. Cone trees: Animated
3D visualizations of hierarchical information. In Proc. ACM Conf. on
Human Factors in Computing Systems, pages 189–193, 1991.

[RS07] A. Rusu and C. Santiago. A practical algorithm for planar straight-line
grid drawings of general trees with linear area and arbitrary aspect ratio.
In Proceedings 11th International Conference on Information Visualisa-
tion, pages 743–750. IEEE Computers Society, 2007.

[RS08] A. Rusu and C. Santiago. Grid drawings of binary trees: An experimental
study. Journal of Graph Algorithms and Applications, 12(2):131–195,
2008.

[RSJ07] A. Rusu, C. Santiago, and R. Jianu. Real-time interactive visualization
of information hierarchies. In Proceedings 11th International Conference
on Information Visualisation, pages 117–123. IEEE Computers Society,
2007.

[RT81] E. Reingold and J. Tilford. Tidier drawing of trees. IEEE Trans. Softw.
Eng., SE-7(2):223–228, 1981.

[RYC08] A. Rusu, C. Yao, and A. Crowell. A planar straight-line grid drawing
algorithm for high degree general trees with user-specified angular co-
efficient. In Proceedings 12th International Conference on Information
Visualisation, pages 600–609. IEEE Computers Society, 2008.

[SB94] M. Sarkar and M. H. Brown. Graphical fisheye views. Commun. ACM,
37(12):73–84, 1994.

[SKC00] C.-S. Shin, S. K. Kim, and K.-Y. Chwa. Area-efficient algorithms for
straight-line tree drawings. Comput. Geom. Theory Appl., 15:175–202,
2000.

[TDB88] R. Tamassia, G. Di Battista, and C. Batini. Automatic graph drawing
and readability of diagrams. IEEE Trans. Syst. Man Cybern., SMC-
18(1):61–79, 1988.

[TM02] S. T. Teoh and K. L. Ma. Rings: A technique for visualizing large hierar-
chies. In Michael T. Goodrich and Stephen G. Kobourov, editors, Graph
Drawing (Proceedings of 10th International Symposium on Graph Draw-
ing, 2002), volume 2528 of Lecture Notes in Computer Science, pages
268–275. Springer, 2002.

[Tre96] L. Trevisan. A note on minimum-area upward drawing of complete and
Fibonacci trees. Inform. Process. Lett., 57(5):231–236, 1996.

192 CHAPTER 5. TREE DRAWING ALGORITHMS

[Val81] L. Valiant. Universality considerations in VLSI circuits. IEEE Trans.
Comput., C-30(2):135–140, 1981.

[Wal90] J. Q. Walker II. A node-positioning algorithm for general trees. Softw.
– Pract. Exp., 20(7):685–705, 1990.

6
Planar Straight-Line Drawing

Algorithms

Luca Vismara

6.1 Introduction . 193
6.2 Preliminaries . 195

Planar Drawings • Convex Drawings • Connectivity

6.3 Real-Coordinate Drawings . 197
6.4 Grid Drawings . 198
6.5 Canonical Orderings . 199
6.6 Shift Method . 202

Construction • Implementation • Refinements and Variations

6.7 Realizer Method . 212
Realizers • Barycentric Representation • Implementation •

Refinements and Variations

Acknowledgment . 220
References . 221

6.1 Introduction

Planar straight-line drawings have been an early subject of investigation in combinatorial
mathematics. A classic result states that every planar graph admits a planar straight-line
drawing. Namely, if a graph can be drawn with no crossings using edges of arbitrary shape
(e.g., polygonal lines or curves), then it can be drawn with no crossings using only straight-
line edges (see Figure 6.1). The proof of this result was independently discovered by Steinitz
and Rademacher [SR34], Wagner [Wag36], Fary [Fár48], and Stein [Ste51].

All the above classic constructions focus on establishing the existence of planar straight-
line drawings but do not address the area of the drawing or the arithmetic precision required
for representing the coordinates of the vertices. Indeed, following the constructions in these
papers one obtains drawings of area exponential in the length of the shortest edge, which
are unsuitable in practice.

Algorithms for constructing planar straight-line grid drawings, where the edges have
integer coordinates, were developed by de Fraysseix, Pach, and Pollack [dFPP90] (shift
method) and by Schnyder [Sch90] (realizer method). They independently showed that
every n-vertex planar graph has a planar straight-line grid drawing with O(n) height and
O(n) width, resulting in O(n2) area. These bounds are asymptotically tight in the worst
case as can be shown with the example of Figure 6.2.

Convex drawings are planar straight-line drawings where all the faces are drawn as convex
polygons (see Figure 6.1(c)). We say that a planar graph is convex planar if it admits a
convex drawing. In another classic work, Tutte [Tut60, Tut63] showed how to construct a

193

194 CHAPTER 6. PLANAR STRAIGHT-LINE DRAWING ALGORITHMS

(a)

s

t

w

u

v

z

(b)

s
t

w

u

v

z

(c)

s
t

w

u

v

z

Figure 6.1 Examples of planar drawings of the same graph: (a) planar drawing with
curved edges; (b) planar straight-line drawing; (c) planar convex drawing.

convex planar drawing of every triconnected planar graph. His method places the vertices
of the external face on an arbitrary convex polygon and computes the coordinates of the
remaining vertices by solving a system of linear equations.

The rest of this chapter is organized as follows. Basic definitions are introduced in
Section 6.2. Tutte’s classic algebraic method for convex drawings is presented in Section 6.3.
Area bounds for planar straight-line grid drawings computed by the shift method and by
the realizer method are summarized in Section 6.4. Canonical orderings of planar graphs
are discussed in Section 6.5. Section 6.6 describes the shift method and Section 6.7 describes
the realizer method.

For further details on the subject of planar drawings of graphs, we refer the reader to the
book by Nishizeki and Rahman [NR04] and the survey by Di Battista and Frati [DF13].
See also the work by Cruz and Garg [CG95] for a declarative approach to the construction
of planar drawings.

6.2. PRELIMINARIES 195

Figure 6.2 Planar straight-line grid drawing of graph S5 consisting of five nested cycles
of four vertices. This drawing has height 9 and width 9. In general, graph Sk has 4k vertices
and requires height and width proportional to k in any planar-straight-line grid drawing.

6.2 Preliminaries

6.2.1 Planar Drawings

In the context of this chapter, a drawing of a graph G is a mapping of each vertex v of G
to a distinct point P (v) = (vx, vy) of the plane1 and of each edge (u, v) of G to a simple
Jordan curve with endpoints P (u) and P (v). A straight-line drawing is a drawing in which
every edge is mapped to a straight-line segment; more formally, a straight-line drawing is
an injective function f : v ∈ V → (vx, vy) ∈ R2.

A drawing is planar if no two edges intersect, except, possibly, at common endpoints.
A graph is planar if it has a planar drawing. Two planar drawings of a planar graph G
are equivalent if, for each vertex v, they have the same circular clockwise sequence of edges
incident with v. Hence, the planar drawings of G are partitioned into equivalence classes.
Each of those classes is called an embedding of G. An embedded planar graph (also plane
graph) is a planar graph with a prescribed embedding. A triconnected planar graph has a
unique embedding, up to a reflection. A planar drawing divides the plane into topologically
connected regions delimited by cycles; these cycles are called faces. The external face is
the cycle delimiting the unbounded region; all the other faces are internal. Two equivalent
planar drawings have the same faces. Hence, one can refer to the faces of an embedding. A
vertex or edge of a plane graph is said to be external if it belongs to the external face, and
internal otherwise.

A maximal planar graph is a planar graph with the maximal number of edges, i.e., adding
an edge between any two vertices destroys its planarity. Note that in a maximal planar graph
all faces consist of three edges. An outerplanar graph is a planar graph that admits a planar
drawing with all its vertices on the same (say, the external) face; such a drawing is called
an outerplanar drawing.

Let G be a plane graph; the dual graph G∗ of G is defined as follows: (i) each face f of
G has a dual vertex f∗ in G∗; (ii) each vertex v of G has a dual face v∗ in G∗; (iii) let e be

1We will use interchangeably (vx, vy) and (x(v), y(v)) to denote the coordinates of P (v).

196 CHAPTER 6. PLANAR STRAIGHT-LINE DRAWING ALGORITHMS

an edge of G and let f1 and f2 be the two faces of G incident with e (note that f1 and f2
may not be distinct); e has a dual edge e∗ = (f∗1 , f

∗
2) in G∗.

6.2.2 Convex Drawings

A polygon is a finite set of segments such that every segment endpoint is shared by exactly
two segments and no subset of segments has the same property. A polygon is simple if there
is no pair of nonconsecutive segments sharing a point. A simple polygon is convex if its
interior is a convex set. A simple polygon is strictly convex if its interior is a strictly convex
set, i.e., no 180◦ angle is allowed. A convex drawing of a planar graph G is a planar straight-
line drawing of G in which all faces are drawn as convex polygons (see Figure 6.3(a)). A
strictly convex drawing of a planar graph G is a planar straight-line drawing of G in which
all faces are drawn as strictly convex polygons (see Figure 6.3(b)). A planar graph is said
to be (strictly) convex planar if it admits a (strictly) convex drawing.

(a)

(b)

Figure 6.3 (a) A convex drawing of a biconnected planar graph G. (b) A strictly convex
drawing of a biconnected planar graph G.

6.2.3 Connectivity

We recall some basic definitions on connectivity. A separating k-set of a graph is a set
of k vertices whose removal disconnects the graph; separating 1-sets and 2-sets are called
cutvertices and separation pairs, respectively. A graph is k-connected if it contains more
than k vertices and no separating (k − 1)-set; 1-connected, 2-connected, and 3-connected

6.3. REAL-COORDINATE DRAWINGS 197

graphs are called connected , biconnected , and triconnected , respectively. A separating edge
of a graph is an edge whose removal disconnects the graph.

The biconnected components of a connected graph (also called blocks) are its maximal
biconnected subgraphs and its separating edges. The triconnected components of a bicon-
nected graph G are defined as follows [HT73].

If G is triconnected, then G itself is the unique triconnected component of G. Otherwise,
let {u, v} be a separation pair of G. We partition the edges of G into two disjoint subsets
E1 and E2, |E1| ≥ 2, |E2| ≥ 2, such that the subgraphs G1 and G2 induced by them have
only vertices u and v in common. Graphs G′1 = G1 + (u, v) and G′2 = G2 + (u, v) are
called the split graphs of G with respect to {u, v} (multiple edges are allowed); edge (u, v)
in G′1 and G′2 is called a virtual edge. Dividing G into split graphs G′1 and G′2 is called
splitting. Reassembling split graphs G′1 and G′2 into G, is called merging. Note that only
split graphs that resulted from the same splitting operation can be merged together. We
continue the splitting process recursively on G′1 and G′2 until no further splitting is possible.
Each resulting graph is either a triconnected simple graph, or a set of three multiple edges
(called “triple bond” in [HT73]), or a cycle of length three (called “triangle” in [HT73]).
The triconnected components of G are obtained from these graphs by merging the “triple
bonds” into maximal sets of multiple edges (called “bonds” in [HT73]), and the “triangles”
into maximal simple cycles (called “polygons” in [HT73]). When merging “triple bonds” into
“bonds” and “triangles” into “polygons,” virtual edges with both endvertices in common
are removed; we refer to the remaining virtual edges at the end of the merging process as
the virtual edges of the triconnected components. Note that, although the graphs obtained
at the end of the splitting process depend on the order of the splittings, the triconnected
components of G are unique. See [HT73] for further details.

In the rest of the chapter, we denote by n, m, and l the number of vertices, edges, and
faces of a plane graph, respectively; we always assume n ≥ 3. Unless otherwise specified,
graphs are assumed to be simple, i.e., without self-loops and multiple edges. Often, we do
not distinguish between a vertex (edge) of G and the point (segment) representing it.

We recall Euler’s formula, which holds for every plane graph, and two bounds for the
number of edges and faces of a plane graph (the equalities hold for maximal planar graphs),
which easily follow from it:

n+ l = m+ 2 (6.1)

m ≤ 3n− 6 (6.2)

l ≤ 2n− 4 (6.3)

Let P1 = (x1, y1) and P2 = (x2, y2) be two points on the plane; the Manhattan distance
between P1 and P2 is defined as |x1 − x2|+ |y1 − y2|.

A w×h integer grid is a grid of integer points of width w and height h; note that a w×h
integer grid contains (w+1)× (h+1) integer points. A grid drawing is an injective function
f : v ∈ V → (vx, vy) ∈ Z2. The area of a grid drawing is the number of integer points
contained in the smallest integer grid containing the drawing. In the rest of the chapter,
we will often omit “integer” before “grid” for brevity.

6.3 Real-Coordinate Drawings

In a classic paper, Tutte [Tut60, Tut63] presented a method for constructing strictly convex
drawings of triconnected plane graphs by solving a system of linear equations that place
each internal vertex at the barycenter of its neighbors. Hence, this method is referred to as
the barycenter method .

198 CHAPTER 6. PLANAR STRAIGHT-LINE DRAWING ALGORITHMS

Initially, the vertices of the external face are placed at the vertices of a strictly convex
polygon, P . We refer to the vertices not on the external face as internal vertices.

For a vertex v, let N(v) be the set of neighbors of v and d(v) the degree of v, i.e.,
d(v) = |N(v)|. The position of an internal vertex v is determined by the following linear
equations:

x(v) =
1

d(v)

∑
w∈N(v)

x(w) (6.4)

y(v) =
1

d(v)

∑
w∈N(v)

y(w) (6.5)

Tutte showed that the above system of linear equations admits a unique solution that
corresponds to a strict convex drawing of the graph. An example of a drawing constructed
with the barycenter method is shown in Figure 6.4.

Figure 6.4 Planar convex drawing obtained with Tutte’s barycenter method. Drawing
created by the PIGALE tool (see Chapter 18).

Combinatorial characterizations of convex and strictly convex planar graphs and meth-
ods for constructing convex and strictly convex drawings appear in papers by Tutte [Tut60,
Tut63], Thomassen [Tho80, Tho84], Chiba, Yamanouchi, and Nishizeki [CYN84], Chiba,
Onoguchi, and Nishizeki [CON85], and Djidjev [Dji95]. Note that the above methods com-
pute drawings with real coordinates for the vertices.

6.4 Grid Drawings

The drawings generated by Tutte’s algorithm presented in Section 6.3 exhibit some draw-
backs:

6.5. CANONICAL ORDERINGS 199

• they require high-precision real arithmetic relative to the size of the input graph,
and therefore cannot be used even for graphs of moderate size; and

• in the produced drawings, the ratio of the largest distance to the smallest distance
between vertices is very large (exponential in the size of the graph), i.e., vertices
are represented by arbitrarily close points, or, equivalently, if the graph is drawn
on an integer grid, then the grid has exponential size.

Motivated by these drawbacks, Rosenstiehl and Tarjan [RT86] posed the question whether
every planar graph has a planar straight-line drawing on an O(nk)×O(nk) integer grid for
some fixed constant k, where n is the number of vertices of the graph. As we will see, the
question was answered in the positive and various algorithms were presented over the years.
Selected algorithms are summarized in Table 6.1.

[CP95, dFPP90] (2n− 4)× (n− 2) shift

[CN98]
⌊
2
3 (n− 1)

⌋
× 4

⌊
2
3 (n− 1)

⌋
− 1 shift

[Bra08]
⌈
4
3n
⌉
×
⌈
2
3n
⌉

shift

[Sch90]
(2n− 5)× (2n− 5)

realizer
(n− 2)× (n− 2)

Table 6.1 Width and height of the drawing achieved by selected planar straight-line grid
drawing algorithms that use the shift method or the realizer method. We denote with n
the number of vertices of the graph.

The algorithms listed in Table 6.1 are designed for drawing maximal plane graphs but
can actually be used to draw general plane graphs: it is sufficient to transform the input
plane graph into a maximal plane graph by adding a linear number of extra edges, draw the
resulting graph, and then remove the segments corresponding to the extra edges from the
obtained drawing. These algorithms are based on two different methods, called the shift
method and the realizer method , and are described in Sections 6.6 and 6.7, respectively.

6.5 Canonical Orderings

In this section, we recall the definitions of canonical ordering of maximal plane graphs, as
given by de Fraysseix, Pach, and Pollack [dFPP90], and of triconnected plane graphs, as
given by Kant [Kan96].

DEFINITION 6.1 Let G be a maximal plane graph with n vertices, and let u0, u1, u2
be the external vertices of G in counterclockwise order. A canonical ordering of G (see
Figure 6.5) is an ordering v1, . . . , vn of the vertices of G such that the following conditions
are verified:

1. v1 = u1, v2 = u2.

2. For 3 ≤ k ≤ n, let Gk be the plane subgraph of G induced by vertices v1, . . . , vk
and let Ck be the external face of Gk. Vertex vk is on face Ck. Also, if k < n,
vertex vk has at least one neighbor in G−Gk.

200 CHAPTER 6. PLANAR STRAIGHT-LINE DRAWING ALGORITHMS

3. For each 3 ≤ k ≤ n−1, subgraph Gk is biconnected and internally maximal (i.e.,
all internal faces of Gk are triangles).

4. vn = u0.

LEMMA 6.1 [dFPP90] Each maximal plane graph has a canonical ordering, which can
be computed in linear time and space.

A canonical ordering of G yields an incremental construction of graph G starting from
edge (v1, v2). In step k (3 ≤ k ≤ n), vertex vk and the edges between vk and its neighbors
in Ck−1 are added to the current graph Gk−1. For each 3 ≤ k ≤ n, we denote by v1 =
w1, w2, . . . , wt = v2 the sequence of vertices of Ck−1, when traversed in clockwise order.
For the sake of enhancing intuition, we visualize w2, . . . , wt−1 as arranged from left to right
above (v1, v2) in the plane. For each 3 ≤ k ≤ n, let wp, . . . , wq be the subsequence of
vertices of Ck−1 that are adjacent to vk (note that p+ 1 may be equal to q). After vk has
been added to Gk−1, vertices wp+1, . . . , wq−1 (if any) are no longer external; we say that
vertex vk covers these vertices.

A canonical ordering v1, . . . , vn of graph G defines a spanning tree of graph G−{v1, v2},
called cover tree, which consists of all edges (u, v) such that u covers v. We set vn as the root
of the cover tree. Thus, the children of a vertex u in the cover tree are the vertices covered
by u. (See Figure 6.6.) We define the cover forest associate with a canonical ordering as
its cover tree together with the single-vertex trees v1 and v2.

The definition of canonical ordering can be generalized to triconnected plane graphs
as follows. A biconnected plane graph G is said to be internally triconnected if for any
separation pair {u, v} of G, u and v are external vertices and each connected component
of G \ {u, v} contains an external vertex; in other words, G is internally triconnected if
and only if the graph obtained from G by adding a new vertex and connecting it to all the
external vertices of G is triconnected.

DEFINITION 6.2 Let G be a triconnected plane graph with n vertices, (u1, u2) be an
external edge of G, and u0 6= u1, u2 be an external vertex of G. A canonical ordering of
G is an ordering v1, . . . , vn of the vertices of G that can be partitioned into subsequences
V1, . . . , Vh, where Vk = {vsk , . . . , vsk+dk}, 1 ≤ k ≤ h, 1 = s1 < s2 < · · · < sh < sh+1 = n+1,
dk = sk+1 − sk − 1, such that the following conditions are verified:

1. v1 = u1, v2 = u2, and V1 = {v1, v2}.
2. Let Gk be the plane subgraph of G induced by V1 ∪ · · · ∪ Vk, 1 ≤ k ≤ h, and Ck

be the external face of Gk. For each 2 ≤ k ≤ h − 1, one of the following cases
occurs:

(a) Vk = {vsk} is a vertex of Ck (and has at least one neighbor in G−Gk);

(b) Vk = {vsk , . . . , vsk+dk} is a subpath of Ck, and each vertex vi, sk ≤ i ≤
sk + dk, has degree two in Gk (and has at least one neighbor in G−Gk).

3. Each subgraph Gk, 2 ≤ k ≤ h− 1, is biconnected and internally triconnected.

4. vn = u0 and Vh = {vn}.

LEMMA 6.2 [Kan96] Each triconnected plane graph has a canonical ordering, which
can be computed in linear time and space.

6.5. CANONICAL ORDERINGS 201

v1 v2

v17

v14

v12

v13

v10

v11
v9

v8

v6

v5

v4

v7

v3

v18

v15

v16

Figure 6.5 A canonical ordering of a maximal plane graph.

v1 v2

v17

v14

v12

v13

v10

v11
v9

v8

v6

v5

v4

v7

v3

v18

v15

v16

Figure 6.6 Cover tree induced by a canonical ordering of a maximal plane graph. The
edges of the tree are drawn with thick lines.

202 CHAPTER 6. PLANAR STRAIGHT-LINE DRAWING ALGORITHMS

6.6 Shift Method

de Fraysseix, Pach, and Pollack [dFPP90] presented an algorithm for constructing a planar
straight-line drawing of an n-vertex maximal plane graph on the (2n − 4) × (n − 2) grid.
The algorithm is summarized as follows:2

• the vertices are placed on the grid one at a time following a canonical ordering
(see Definition 6.1) of the input graph;

• at each step, the contour of the drawing of the current graph satisfies certain
invariants that involve restrictions on the slopes of the contour edges;

• when a vertex is placed on the grid, some of the previously placed vertices are
shifted leftward and some others are shifted rightward to accommodate the new
vertex while maintaining the contour invariants and the planarity of the current
drawing.

6.6.1 Construction

We now give a detailed description of the algorithm. Let G be an n-vertex maximal plane
graph, and let v1, . . . , vn be a canonical ordering of G. We denote by P (v) = (x(v), y(v))
the current position of vertex v on the grid. For each vertex v, we maintain the set of
vertices that need to be shifted whenever v is shifted; we denote this set by L(v).

As described in Section 6.5, for each 3 ≤ k ≤ n, we denote by v1 = w1, w2, . . . , wt = v2
the sequence of vertices Ck−1 (the external face of graph Gk−1) when traversed in clockwise
order, and by wp, . . . , wq the subsequence of vertices of Ck−1 that are adjacent to vertex vk.
We call wp the left attachment of vk and wq the right attachment of vk. Note that vertices
wp+1, . . . , wq−1 are covered by vk.

For two grid points P1 = (x1, y1) and P2 = (x2, y2), we denote by µ(P1, P2) the inter-
section of the line with slope +1 passing through P1 and the line with slope −1 passing
through P2 (see Figure 6.7), i.e.,

µ(P1, P2) =

(
x2 + x1 + y2 − y1

2
,
x2 − x1 + y2 + y1

2

)
(6.6)

Note that if the Manhattan distance between P1 and P2 is even, then µ(P1, P2) is a grid
point.

Initially, we set P (v1) = (−1, 0), P (v2) = (1, 0), and P (v3) = (0, 1), i.e., we draw G3 as
a triangle Γ3; we also define shift sets L(vi) = {vi}, 1 ≤ i ≤ 3.

For each 4 ≤ k ≤ n, we assume that a planar straight-line grid drawing Γk−1 of Gk−1
has been constructed in such a way that the following contour conditions hold (see Fig-
ure 6.8):

1. P (v1) = (−((k − 1)− 2), 0) and P (v2) = ((k − 1)− 2, 0);

2. x(w1) < x(w2) < · · · < x(wt−1) < x(wt);

3. each segment P (wi)P (wi+1), 1 ≤ i ≤ t− 1, has slope either +1 or −1.

Note that, by Condition 3, the Manhattan distance between any two vertices of Ck−1 is
even; thus, µ(P (wp), P (wq)) is a grid point.

2Our description of the algorithm, which uses left shifts and right shifts, is slightly different from the
one given in [dFPP90], which uses only right shifts, but is conceptually equivalent.

6.6. SHIFT METHOD 203

P1

µ(P1, P2)

P2

Figure 6.7 Definition of point µ(P1, P2) as the intersection of the line with slope +1
passing through P1 and the line with slope −1 passing through P2.

w1 = v1

wt - 1 w2

wt = v2

wp

wq

Figure 6.8 Schematic illustration of a drawing of Γk−1 that satisfies the contour condi-
tions, i.e., the external face is drawn as a polygon consisting of a horizontal edge and a
chain of segments with slope +1 or −1 between endpoints P (v1) = (−((k − 1)− 2), 0) and
P (v2) = ((k − 1)− 2, 0).

w1 = v1 wt = v2

wt - 1 w2

wp
wq

vk

Figure 6.9 Schematic illustration of the addition of vertex vk to drawing Γk−1 to obtain
drawing Γk. Contour vertices w1, . . . , w+ p (black-filled) are shifted by one unit to the left
and contour vertices wq, . . . , wt (white-filled) are shifted by one unit to the right. When a
contour vertex is shifted, we also shift all the vertices in its shift set (not shown). Finally,
vertex vk is placed at point µ(P (wp), P (wq)). Drawing Γk satisfies the contour conditions,
i.e., the external face is drawn as a polygon consisting of a horizontal edge and a chain of
segments with slope +1 or −1 between endpoints P (v1) = (−k−2, 0) and P (v2) = (k−2, 0).

We now show how to add point P (vk) to Γk−1 and obtain a planar straight-line drawing
Γk of Gk (see Figure 6.9):

204 CHAPTER 6. PLANAR STRAIGHT-LINE DRAWING ALGORITHMS

Step 1 For each v ∈
⋃p
i=1 L(wi), set x(v) = x(v)− 1. This step translates leftward by

1 the vertices of the external face from w1 to the left attachment wp of vk plus
all the other vertices in the shift sets of these vertices.

Step 2 For each v ∈
⋃t
i=q L(wi), set x(v) = x(v) + 1. This step translates rightward

by 1 the vertices of the external face from the right attachment vq of vk to wt
plus all the other vertices in the shift sets of these vertices.

Step 3 Set P (vk) = µ(P (wp), P (wq)). This step places vertex vk so that it can be
joined with straight-line edges to its neighbors.

Step 4 Set L(vk) = {vk} ∪ (
⋃q−1
i=p+1 L(wi)). This step defines shift set L(vk) as the

union of vk and the shift sets of the vertices covered by vk.

Steps 1, 2, and 3 ensure that points P (wp), . . . , P (wq) are all visible from P (vk), i.e.,
segments P (vk)P (wi), p ≤ i ≤ q, can be added to Γk−1 without introducing crossings.
Conditions 1–3 above are clearly satisfied in Γk. By Step 4, we obtain inductively that each
set L(u) is the subtree of the cover forest rooted at vertex u. Thus, sets L(w1), . . . , L(wt),
form a partition of the vertices of Gk−1. It remains to prove that the shift operations in
Steps 1 and 2 preserve the planarity of Γk−1, and this is done in the following lemma.

LEMMA 6.3 Let Γj be a planar straight-line drawing of Gj , as described above, and let
v1 = w′1, w

′
2, . . . , w

′
t′ = v2 be the sequence of vertices of Cj . Let s be an index such that

1 ≤ s ≤ t′. If, for each 1 ≤ i ≤ s (resp., s ≤ i ≤ t′), we shift the vertices in L(w′i) leftward
(resp., rightward) by a positive integer number ρ, then the resulting straight-line drawing
is still planar.

Proof: By induction on j. For Γ3 the lemma is trivially true. We now suppose that the
lemma is true for Γj−1, j ≥ 4, and prove that it is true for Γj . We use the notation from the
algorithm description above; namely, v1 = w1, w2, . . . , wt = v2 is the sequence of vertices of
Cj−1, and wp and wq are the leftmost and rightmost neighbors of vj in Cj−1, respectively.
We denote by ζ the difference between the number of vertices of Cj−1 and the number of
vertices of Cj , i.e., ζ = (q − p− 1)− 1 ≥ −1. Thus, we have:

t′ = t− ζ

w′i =

wi for i = 1, . . . , p

vj for i = p+ 1

wi+ζ for i = p+ 2, . . . , t′

Note, in particular, that w′p+2 = wq. We prove the claim for the rightward shift; the proof
for the leftward shift is symmetric.

If s > p + 2, then vj and its neighbors wp, . . . , wq in Cj−1 do not move. Thus, by the
induction hypothesis, Γj is planar.

If s ≤ p, then vj and its neighbors wp, . . . , wq in Cj−1 shift rigidly rightward by ρ. Thus,
by the induction hypothesis, Γj is planar.

If s = p+1, we apply the induction hypothesis to Γj−1 with s = p+1; thus, the planarity
of Γj−1 is preserved. Vertex vj and its neighbors wp+1, . . . , wq in Cj−1 shift rigidly rightward
by ρ, while wp does not move. Point P (wp) is clearly still visible from points P (vj) and
P (wp+1), and thus, Γj is planar.

If s = p+ 2, we apply the induction hypothesis to Γj−1 with s = q; thus, the planarity of
Γj−1 is preserved. Vertex vj and its neighbors wp, . . . , wq−1 in Cj−1 do not move, while wq

6.6. SHIFT METHOD 205

shifts rightward by ρ. Point P (wq) is clearly still visible from points P (vj) and P (wq−1),
and thus Γj is planar. 2

In the end, we obtain a planar straight-line drawing of G in which P (v1) = (−(n− 2), 0)
and P (v2) = (n − 2, 0). By Condition 3 above, P (vn) = (0, n − 2). Therefore, G is drawn
on the (2n− 4)× (n− 2) grid.

Figures 6.10 through 6.19 show several steps of the execution of the algorithm on the
graph and canonical ordering of Figure 6.5. The final drawing is shown in Figure 6.20.

6.6.2 Implementation

A straightforward implementation of the shift method results in an O(n2)-time algorithm.
In their paper, de Fraysseix, Pach, and Pollack [dFPP90] were able to reduce this time bound
to O(n log n). An optimal O(n)-time implementation of the shift method was presented by
Chrobak and Payne [CP95], and this is the implementation we describe below.

The crucial observation is that, when vertex vk is placed on the grid, it is not necessary
to know the exact positions of wp and wq. If their y-coordinates and their x-offset, i.e.,
x(wq)−x(wp), are known, then y(vk) and the x-offset between vk and wp can be computed;
namely, by Eq. 6.6, we have

y(vk) =
x(wq)− x(wp) + y(wq) + y(wp)

2
, (6.7)

x(vk)− x(wp) =
x(wq)− x(wp) + y(wq)− y(wp)

2
. (6.8)

The algorithm consists of three phases. In the first phase, we compute a canonical
ordering of the input graph. In the second phase, we add vertices one at a time, according
to that canonical ordering: for each added vertex vk, we compute its y-coordinate and x-
offset x(vk) − x(wp), update the x-offset of wq (from its previous value x(wq) − x(wq−1))
to x(wq)− x(vk), and possibly update the x-offset of wp+1. In the third phase, we suitably
traverse the graph starting from v1 and compute the final x-coordinates of the vertices by
accumulating offsets.

We now describe the data structure used to implement the algorithm. For each 4 ≤ k ≤ n,
the family of sets L(w1), . . . , L(wt) for vertices w1, . . . , wt of Ck−1 can be viewed as an
ordered forest F of trees L(wi) rooted at vertex wi, 1 ≤ i ≤ t. When vertex vk is added
and set L(vk) is created (see Step 4 above), a new tree L(vk) of F is created out of trees
L(wp+1), . . . , L(wq−1) by making vk the parent of wp+1, . . . , wq−1 (in this order from left
to right). A standard way to represent an ordered forest F is by means of a binary tree
T : the roots of the trees of F are all considered siblings; the root of T corresponds to the
root of the first tree of F ; if nT is a node of T corresponding to a node nF of F , then the
left child of nT corresponds to the leftmost child of nF (if any), and the right child of nT
corresponds to the next sibling of nF (if any).

In our context, the root of T corresponds to v1 = w1, its right child corresponds to w2, its
right child’s right child corresponds to w3, and so on; thus, the rightmost leaf corresponds to
wt = v2. Tree L(wi), 1 ≤ i ≤ t, is represented by the node corresponding to wi and its left
subtree. The subtree of T rooted at the node corresponding to wi represents

⋃
j≥i L(wj).

For brevity, in the rest of the section, we refer with the same symbol to a vertex of G, the
corresponding node of F , and the corresponding node of T .

If u is an ancestor of v in T , the x-offset between v and u is defined as ∆x(v, u) =
x(v) − x(u). If u is the parent of v, we simply use the term x-offset of v and the symbol
∆x(v). With each vertex v of G, we store the following information:

206 CHAPTER 6. PLANAR STRAIGHT-LINE DRAWING ALGORITHMS

v2 v1

v9
v8

v6

v5
v4 v7

v3

Figure 6.10 Drawing Γ9 of graph G9 which consists of vertices v1, v2, . . . , v9.
v9 v6

v1 v2

v8 v5

v4

v7

v3

Figure 6.11 Preparing to add vertex v10 to drawing Γ9. Vertex v10 has left attachment
v9 and right attachment v4: the black-filled vertices are shifted to the left by one unit; the
gray-filled vertices do not move; and the white-filled vertices are shifted to the right by one
unit.

v1 v2

v10

v9
v8

v6

v5
v4

v7
v3

Figure 6.12 Addition of vertex v10 and its incident edges, which yields drawing Γ10.
Vertex v10 covers vertices v8, v7, and v3.

v1 v2

v9
v8 v6

v5
v4

v7
v3

v10
v11

Figure 6.13 Drawing Γ11 obtained by adding vertex v11 and its incident edges after
shifting the black-filled vertices to the left and the white-filled vertices to the right. Vertex
v11 covers vertex v5.

6.6. SHIFT METHOD 207

v11

v1 v2

v9
v8 v6

v5
v4

v7
v3

v10 v12

Figure 6.14 Drawing Γ12.

v11

v1 v2

v9
v8 v6

v5
v4 v7

v3

v10 v12

v13

Figure 6.15 Drawing Γ13.

v11

v1 v2

v9
v8 v6

v5
v4 v7

v3

v10
v12

v13

v14

Figure 6.16 Drawing Γ14.

208 CHAPTER 6. PLANAR STRAIGHT-LINE DRAWING ALGORITHMS

v6

v1

v9

v4 v7

v13

v14 v15

v5

v2

v3

v11
v12

v16

v10

v8

Figure 6.17 Drawing Γ16. Note that we have skipped drawing Γ15. Also, here and in the
next two figures we do not fill the vertices to denote the amount of shifting.

v1 v2

v17

v15

v13

v9
v8

v3
v4

v5
v6

v11

v10 v12

v14
v16

v7

Figure 6.18 Drawing Γ17.

v1 v2

v18
v17

v11
v9

v8 v6
v5

v4 v7
v3

v10
v12

v13

v14 v15
v16

Figure 6.19 Drawing Γ18 of the graph of Figure 6.5.

6.6. SHIFT METHOD 209

v 1
7

v 1
1

v 1

v 2

v 9

v 8

v 6

v 5

v 4

v 7

v 3

v 1
0

v 1
2

v 1
3

v 1
4

v 1
5

v 1
6

v 1
8

Figure 6.20 Planar straight-line grid drawing of the graph of Figure 6.5 constructed
with the shift method by de Fraysseix, Pach, and Pollack (Algorithm MaximalShift shown
in Figure 6.21). The graph has n = 18 vertices and the drawing has width 2n− 4 = 32 and
height n− 2 = 16. Note that the drawing is the same as that of Figure 6.19 except that it
has been rotated counterclockwise by 90 degrees and the grid lines have been omitted for
better readability.

210 CHAPTER 6. PLANAR STRAIGHT-LINE DRAWING ALGORITHMS

• ∆x(v), the x-offset of v;

• y(v), the y-coordinate of v;

• left(v), the left child of v in T ;

• right(v), the right child of v in T .

The pseudo-code of the algorithm, which we call MaximalShift, is given in Figure 6.21. The
first phase of the algorithm consists of line 1. The second phase consists of lines 2–30; note
that, on line 23, the right child of wq−1, which before the insertion of vk was wq, is set to nil
since now wq−1 6∈ Ck and wq is the right child of vk. The third phase consists of lines 31–
32, where the x-coordinate of v1 is set to 0 and recursive procedure AccumulateOffset is
called. The pseudo-code of procedure AccumulateOffset is given in Figure 6.22. It performs
a preorder visit of T and computes the x-coordinate of each vertex v 6= v1 of G as the sum
of the x-coordinate of the parent of v in T and the x-offset of v (line 1).

The following theorem summarizes the area bound and computational complexity of the
shift method.

Theorem 6.1 [dFPP90, CP95] Let G be a maximal plane graph with n vertices. The
shift method computes a planar straight-line drawing of G on the (2n− 4)× (n− 2) grid in
O(n) time and space.

Proof: We refer to Algorithm MaximalShift, shown in Figure 6.21. Clearly, the x-
coordinate of each vertex v 6= v1 of G can be computed by adding the x-offset ∆x(v, v1)
between v and v1 to the x-coordinate x(v1) of v1 (the root of T). Thus, we only have to
prove that those x-offsets are correct at the end of the second phase of the algorithm. Note
that the only steps of the algorithm where the x-offsets of some vertices of the current graph
Gk−1 are modified are those on lines 7–8 and on lines 26–29.

For the “stretch” step on lines 7–8, we recall that the subtree T (wi) of T rooted at wi rep-
resents

⋃
j≥i L(wj); thus, incrementing ∆x(wi) increments the x-offset between each vertex

of T (wi) and v1, i.e., correctly shifts all vertices in
⋃
j≥i L(wj) rightward, or, equivalently,

all vertices in
⋃
j<i L(wj) leftward.

During the “adjust” step on lines 26–29, only ∆x(wq) and possibly ∆x(wp+1) are modi-
fied. Note that, after the insertion of vk, wp is still an ancestor of both wq and wp+1 in T :
namely, vk is the parent of wp+1 and wq, and wp is the parent of vk. We now prove that
the values of ∆x(wq, wp) and ∆x(wp+1, wp) are not modified by the insertion of vk.

• After the insertion of vk we have ∆x(wq, wp) = ∆x(wq, vk) + ∆x(vk, wp) =
∆x(wq) + ∆x(vk), which, by the choice of ∆x(wq) on line 26, is clearly equal to
the value of ∆x(wq, wp) before the insertion of vk, computed on line 10.

• If p + 1 6= q, after the insertion of vk we have ∆x(wp+1, wp) = ∆x(wp+1, vk) +
∆x(vk, wp) = ∆x(wp+1) + ∆x(vk), which, by the choice of ∆x(vp+1) on line 28,
is clearly equal to the value of ∆x(wp+1) before the insertion of vk.

It follows that, for each vertex v 6= v1 ∈ Gk−1, x-offset ∆x(v, v1) is not modified during
the “adjust” step. Hence, algorithm MaximalShift is a correct implementation of the shift
method.

As for its space and time complexity, the data structure used to implement the algorithm
clearly takes O(n) space. By Lemma 6.1, the first phase takes O(n) time and space. The
time complexity of the body (lines 6–29) of the main for loop is dominated by the compu-
tation of ∆x(wq, wp) on line 10, which takes O(deg(vk)); thus, by Eq. 6.2, the second phase
globally takes O(n) time. The third phase clearly takes O(n) time since at the end of the
second phase T has n nodes. 2

6.6. SHIFT METHOD 211

Input: A maximal plane graph G with n vertices
Output: A planar straight-line drawing of G on the (2n− 4)× (n− 2) grid

1: compute a canonical ordering v1, . . . , vn of G
2: (∆x(v1), y(v1), left(v1), right(v1))← (0, 0,nil , v3)
3: (∆x(v3), y(v3), left(v3), right(v3))← (1, 1,nil , v2)
4: (∆x(v2), y(v2), left(v2), right(v2))← (1, 0,nil ,nil)
5: for 4 ≤ k ≤ n do
6: /* stretch the L(wp)-to-L(wp+1) and L(wq−1)-to-L(wq) gaps */
7: ∆x(wp+1)← ∆x(wp+1) + 1
8: ∆x(wq)← ∆x(wq) + 1
9: /* compute ∆x(wq, wp) */

10: ∆x(wq, wp)← ∆x(wp+1) + · · ·+ ∆x(wq)
11: /* compute ∆x(vk) and y(vk); see Eqs. 6.8 and 6.7 */
12: ∆x(vk)← (∆x(wq, wp) + y(wq)− y(wp))/2
13: y(vk)← (∆x(wq, wp) + y(wq) + y(wp))/2
14: /* add vk to T */
15: right(wp)← vk
16: if p+ 1 6= q then
17: left(vk)← wp+1

18: else
19: left(vk)← nil
20: end if
21: right(vk)← wq
22: if q − 1 6= p then
23: right(wq−1)← nil
24: end if
25: /* adjust ∆x(wq) and ∆x(wp+1) */
26: ∆x(wq)← ∆x(wq, wp)−∆x(vk)
27: if p+ 1 6= q then
28: ∆x(wp+1)← ∆x(wp+1)−∆x(vk)
29: end if
30: end for
31: x(v1)← 0
32: AccumulateOffset(v1,x(v1))

Figure 6.21 Algorithm MaximalShift.

Input: A vertex v of T and an integer x
1: if v 6= nil then
2: x(v)← x+ ∆x(v)
3: AccumulateOffset(left(v),x(v))
4: AccumulateOffset(right(v),x(v))
5: end if

Figure 6.22 Procedure AccumulateOffset.

212 CHAPTER 6. PLANAR STRAIGHT-LINE DRAWING ALGORITHMS

6.6.3 Refinements and Variations

Chrobak and Nakano [CN98] and Brandenburg [Bra08] refined the shift method by de Frays-
seix, Pach, and Pollack [dFPP90], thus reducing the area of the drawing.

In the original shift method [dFPP90], we have seen that at each step the drawing satisfies
the contour conditions. In the refinement by Chrobak and Nakano [CN98], these conditions
are relaxed: x(wi) ≤ x(wi+1), 1 ≤ i ≤ t − 1 and the equality may hold only when y(wi) <
y(wi+1). Thus, each contour segment P (wi)P (wi+1) belongs to one of the following four
types:

vertical x(wi) = x(wi+l) and y(wi) < y(wi+l);

upward x(wi) < x(wi+l) and y(wi) < y(wi+l);

horizontal x(wi) < x(wi+l) and y(wi) = y(wi+l);

downward x(wi) < x(wi+l) and y(wi) > y(wi+l).

The presence of vertical contour segments allows to avoid some shifts, thus obtaining a more
compact drawing. The authors present a new combinatorial structure, called a domino
chain, which allows to partition the vertices into stable and unstable; a stable vertex vk can
be added to Gk−1 with edge (wp, vk) drawn as a vertical segment and no shift is necessary.
Namely, the method avoids making any shifts in approximately n

3 steps and results in a
drawing of size

⌊
2
3 (n− 1)

⌋
× 4

⌊
2
3 (n− 1)

⌋
− 1.

Brandenburg further improves the shifting strategy and also rotates the drawing to choose
the best base edge. This refinement of the shift method results in a drawing of size

⌈
4
3n
⌉
×⌈

2
3n
⌉
. Also, this height and width are necessary if the drawing is constrained to be enclosed

by an isosceles right-angled triangle.
Kant [Kan96] presents an algorithm based on the shift method for constructing convex

drawings of triconnected plane graphs on the (2n− 4)× (n− 2) grid. The size of the grid
is reduced to (n− 2)× (n− 2) in a successive algorithm by Chrobak and Kant [CK97].

6.7 Realizer Method

An alternative method for drawing maximal planar graphs on an integer grid was presented
by Schnyder [Sch90]. The origins of the approach can be found in [Sch89], where it was
used to characterize planar graphs as the graphs whose incidence relation is the intersection
of at most three total orders3 (see Theorems 4.1 and 6.2 of [Sch89]).

6.7.1 Realizers

DEFINITION 6.3 A realizer of a maximal plane graph G is a triplet of rooted directed
spanning trees of G with the following properties4 (see Figure 6.23):

3 More formally, a graph G = (V,E) is planar if and only if the order dimension of the poset (V ∪E,≺),
where incidence relation ≺ is defined by v ≺ e⇔ v ∈ V, e ∈ E, v ∈ e, is at most 3. The order dimension
of a poset is the minimum cardinality of its realizers. A realizer of a poset (X,≺) is a nonempty set of
total orders on X whose intersection is ≺.
4This definition of a realizer of a maximal plane graph is slightly different from the one given in [Sch90],
as we consider also the external edges; our definition allows to reduce the number of special cases and
to generalize the concept of realizer to triconnected plane graphs.

6.7. REALIZER METHOD 213

1. In each spanning tree, the edges of G are directed from children to parent.

2. The sinks (roots) of the spanning trees are the three external vertices of G.

3. Each internal edge of G is contained in one spanning tree.

4. Each external edge of G is contained in two spanning trees and it has different
directions in the two trees.

5. Consider the edges of G with the directions they have in the three spanning trees
(the external edges are considered twice):

(a) Each non-sink vertex v of G has exactly three outgoing edges; the circular
order of the outgoing edges around v induces a circular order of the spanning
trees around v; all the non-sink vertices of G have the same circular order
of the spanning trees.

(b) For each vertex of G, the incoming edges that belong to the same span-
ning tree appear consecutively between the outgoing edges of the other two
spanning trees (for the sink of each spanning tree the first and last incoming
edges are coincident with the two outgoing edges).

6. For the sink of each spanning tree, all the incoming edges belong to that spanning
tree.

v1 v2

v10

v9

v7
v6

v8

v5

v4

v3

Figure 6.23 A realizer of a maximal plane graph whose vertices are numbered according
to a canonical ordering. The edges are thick for the green spanning tree, medium for the
blue spanning tree, and thin for the red spanning tree. Note the 2-colored edges on the
external face.

Let Tb, Tg, and Tr be the spanning trees forming a realizer of a maximal plane graph G
(see Figure 6.23). We assign a color to the edges of G contained in Tb, Tg, and Tr, say, blue,
green, and red, respectively. In the figures, we use dark grey for blue, light grey for green,
and medium grey for red. According to Property 3 of the realizers, each internal edge of

214 CHAPTER 6. PLANAR STRAIGHT-LINE DRAWING ALGORITHMS

G is assigned one color and is said to be 1-colored, while the three external edges of G are
assigned two colors and are said to be 2-colored.

In the proof of the following lemma, we present a mechanism for constructing a realizer
of a maximal plane graph G based on a canonical ordering of G; this is different from the
mechanism based on edge labelings presented in [Sch90].

LEMMA 6.4 Each maximal plane graph has a realizer, which can be computed in linear
time and space.

Proof: Let G be a maximal plane graph. A realizer of G can be constructed by assigning
colors and directions to the edges of G as follows:

1. a canonical ordering of G is computed;

2. v1, v2, and vn are the sinks of the blue, green, and red tree, respectively;

3. (v1, v2) is an outgoing blue edge for v2 and an outgoing green edge for v1;

4. for each 3 ≤ k ≤ n, let cl, . . . , cr be the consecutive neighbors of vk on Ck−1
from left to right; (vk, cl) is an outgoing blue edge for vk; (vk, cr) is an outgoing
green edge for vk; each edge (vk, ci), l < i < r, is an outgoing red edge for ci (see
Figure 6.23);

5. (vn, v1) is also an outgoing red edge for v1, and (vn, v2) is also an outgoing red
edge for v2.

Note that v1 has no outgoing blue edge, v2 has no outgoing green edge, and vn has no
outgoing red edge. Besides, for each 3 ≤ k ≤ n, the following invariants hold for Gk:

• vk has exactly one outgoing blue edge, exactly one outgoing green edge, and no
outgoing red edge; the outgoing blue edge precedes the outgoing green edge in
the clockwise circular order of the edges of Ck, and all the (possible) incoming
red edges are incident with vertices of Ck−1;

• for every vertex of Ck the (possible) incoming blue edge of Ck follows the (pos-
sible) incoming green edge of Ck in the clockwise circular order of the edges of
Ck;

• no vertex of Ck−1 has an outgoing blue or green edge incident with vk;

• every vertex of Ck−1 with no neighbor in G − Gk has exactly one outgoing red
edge, while every vertex of Ck−1 with neighbors in G−Gk has no outgoing red
edge;

• Gk contains no cycle such that a common color is assigned to all its edges.

All the properties of a realizer easily follow from these invariants. By Lemma 6.1, the above
construction can be carried out in linear time and space. 2

From the construction in the proof of Lemma 6.4, it follows that, for every realizer of a
maximal plane graph G, all internal edges of G are 1-colored, while the three external edges
are 2-colored. Also, for each vertex of G, the colors of the three outgoing edges appear in the
following counterclockwise circular order: blue, green, red. Set {b, g, r} will be considered
accordingly ordered in the rest of the chapter.

In the rest of the section, we consider a maximal plane graph G equipped with a realizer
{Tb, Tg, Tr}. We denote v1, v2, and vn by sb, sg, and sr, respectively. For each vertex v of
G, the blue path pb(v) is the path of G along Tb from v to sb. In the same way, we define the
green path pg(v) as the path of G along Tg from v to sg and the red path pr(v) as the path

6.7. REALIZER METHOD 215

of G along Tr from v to sr. Note that pi(si), i ∈ {b, g, r}, is a degenerate path consisting
only of si. The subpath of pi(v), i ∈ {b, g, r}, from v to the ancestor u of v in Ti is denoted
by pi(v, u). The parent of vertex v in Ti, i ∈ {b, g, r}, is denoted by par i(v). The lowest
common ancestor of vertices u and v in Ti, i ∈ {b, g, r}, is denoted by lcai(u, v).

LEMMA 6.5 For each vertex v of G, pb(v), pg(v), and pr(v) have only vertex v in
common.

Proof: W.l.o.g., suppose, for a contradiction, that pb(v) and pg(v) have a vertex u in
common, and that pb(v, u) − {u, v} and pg(v, u) − {u, v} have no vertex in common with
each other and with pr(v). Vertex u has both a blue and a green incoming edge; thus, by
Property 6 of the realizers, we have u 6= sb, sg. Let R be the subgraph of G bounded by
pb(v, u) and pg(v, u); from the circular order of the outgoing edges at v, we have that pb(v, u)
(resp., pg(v, u)) follows the boundary of R counterclockwise (resp., clockwise). Thus, by
Property 5 of the realizers at u and by the planarity of G, par b(u) ∈ R (the same is true
for parg(u)). Still by the planarity of G, pb(par b(u)) leaves R at a vertex w; two cases are
possible: (i) w ∈ pg(v, u)− {u, v}, but this contradicts Property 5 of the realizers at w, or
(ii) w ∈ pb(v, u), but this contradicts the acyclicity of Tb. 2

v1 v2

v10

v9

v7
v6

v8

v5

v4

v3

Figure 6.24 The blue (medium), green (thick), and red (thin) paths for vertex v9 and
corresponding blue (medium shaded), green (dark shaded) and red (light shaded) regions of
vertex v9. The coordinates of v9 in the barycentric representation are the number of faces
in the blue, green, and red region, respectively, i.e., (4, 2, 9).

For each vertex v of G, the blue region Rb(v) is the subgraph of G bounded by pg(v), pr(v)
and (sg, sr). In the same way, the green region Rg(v) is the subgraph of G bounded by pb(v),
pr(v) and (sr, sb), and the red region Rr(v) is the subgraph of G bounded by pb(v), pg(v)
and (sb, sg) (see Figure 6.24). Note that Rb(sg) = Rb(sr) is a degenerate region consisting
only of (sg, sr). In the same way, Rg(sr) = Rg(sb) = (sr, sb) and Rr(sb) = Rr(sg) = (sb, sg).

216 CHAPTER 6. PLANAR STRAIGHT-LINE DRAWING ALGORITHMS

LEMMA 6.6 Let u and v be two distinct vertices of G. If u ∈ Rk(v), k ∈ {b, g, r}, then
Rk(u) ⊂ Rk(v).

Proof: W.l.o.g, we assume k = r. Two cases are possible: (i) u 6∈ pb(v) ∪ pg(v),
or (ii) u ∈ pb(v) ∪ pg(v). We consider only the first case; the second is similar. By the
planarity of G and by Property 5 of the realizers, pb(u) has no vertex in common with pg(v),
and pg(u) has no vertex in common with pb(v). Thus, the region Rr(v)−Rr(u) bounded by
pb(u, lcab(u, v)), pg(u, lcag(u, v)), pb(v, lcab(u, v)), and pg(v, lcag(u, v)) is nonempty; hence,
Rr(u) ⊂ Rr(v). 2

Note that, for each k ∈ {b, g, r}, the inclusion partial order of the k-regions induces a
partial order on the vertices of G defined by u ≺k v ⇔ Rk(u) ⊂ Rk(v). Partial order ≺k is
represented by tree Tk, k ∈ {b, g, r} of the realizer of G. Also, for each edge (u,w) and each
vertex v 6= u,w of G, by the planarity of G, (u,w) is in some region Rk(v), k ∈ {b, g, r};
hence, u ≺k v and w ≺k v. Any choice of three linear extensions of ≺b, ≺g, and ≺r,
produces a realizer of the poset defined in footnote (3) on page 212.

6.7.2 Barycentric Representation

DEFINITION 6.4 A barycentric representation of a graph G = (V,E) is an injective
function f : v ∈ V → (vb, vg, vr) ∈ Z3 that satisfies the following conditions:

1. For each vertex v of G, vb + vg + vr = c, where c is a constant dependent on G.

2. For each edge (u,w) and each vertex v 6= u,w of G, there exists a coordinate i ∈
{b, g, r} such that vi > ui and vi > wi.

One can view vb, vg, and vr as barycentric coordinates of vertex v. Note that these
coordinates have a purely combinatorial meaning.

LEMMA 6.7 A barycentric representation f : v ∈ V → (vb, vg, vr) of a graph G = (V,E)
is a planar straight-line drawing of G on plane b+ g + r = c in Z3.

Proof: Let π be the plane in Z3 defined by equation b + g + r = c. By Condition 1 of
Definition 6.4, all vertices of G are mapped to points of π. In order to prove the planarity
of the straight-line drawing, we must prove the following:

• No two vertices are mapped to the same point of π. By definition, since f is injective.

• No vertex overlaps an edge. Let (u,w) be an edge ofG and let max i = max{ui, vi}, i ∈
{b, g, r}. Let λb be the line of π defined by equation b = max b, i.e., the line of
π passing through the endpoint of segment f(u)f(w) with maximum b-coordinate
and perpendicular to the b axis. Lines λg and λr are defined in a similar way, and,
together with λb, identify a (closed) triangle T containing f(u)f(w). Suppose, for
a contradiction, that there exists a vertex v 6= u,w of G such that f(v) overlaps
f(u)f(w). Clearly, f(v) is contained by T , i.e., vi ≤ max i, for each i ∈ {b, g, r}. But
this contradicts Condition 2 of Definition 6.4.

• No two edges cross. Let e1 = (u,w) and e2 = (x, y) be two nonincident edges of G,
and let T1 and T2 be the two (closed) triangles containing f(u)f(w) and f(x)f(y),

6.7. REALIZER METHOD 217

respectively, identified as above. Suppose, for a contradiction, that f(u)f(w) and
f(x)f(y) cross. Then, either T1 contains f(x) or f(y), or T2 contains f(u) or f(v).
But this again contradicts Condition 2 of Definition 6.4.

2

Lemma 6.7 implies that only a planar graph can have a barycentric representation. For
each vertex v of G, we denote by lb(v), lg(v), and lr(v) the number of faces in Rb(v), Rg(v),
and Rr(v), respectively. Note that 0 ≤ lb(v), lg(v), lr(v) ≤ 2n− 5 and

lb(v) + lg(v) + lr(v) = 2n− 5.

We have that these values yield barycentric coordinates (see Figures 6.24 and 6.25), as
shown by the following lemma.

LEMMA 6.8 Let G = (V,E) be a maximal plane graph equipped with a realizer. Func-
tion f : v ∈ V → (lb(v), lg(v), lr(v)) is a barycentric representation of G.

Proof: The injectivity of f follows from Lemma 6.6. Condition 1 of Definition 6.4 is
trivially satisfied since for each vertex v, vb + vg + vr = 2n − 5. As for Condition 2, let
(u,w) and v 6= u,w be an edge and a vertex of G, respectively. W.l.o.g., let u ∈ Rr(v); by
the planarity of G, w ∈ Rr(v), as well. By Lemma 6.6, Rr(u) ⊂ Rr(v) and Rr(w) ⊂ Rr(v).
Hence, vr > ur and vr > wr. 2

Let Γ be the planar straight-line drawing resulting from the barycentric representation of
Lemma 6.8. By that lemma and by Lemma 6.7, Γ is a planar straight-line drawing of G on
plane b+ g + r = 2n− 5 in Z3. In particular, vertices sb, sg, and sr are mapped to points
(2n−5, 0, 0), (0, 2n−5, 0), and (0, 0, 2n−5), respectively. A planar straight-line drawing of
G on the (2n− 5)× (2n− 5) grid in Z2 can be obtained by projecting Γ, e.g., by dropping,
for each vertex v, the red coordinate vr, as illustrated in Figure 6.26.

As for the time and space complexity, by Lemma 6.4, a realizer of G can be constructed
in linear time and space. The coordinates of the vertices of G can also be computed in
linear time and space.

It is possible to obtain more compact drawings by relaxing the constraints imposed on
the vertex coordinates by Definition 6.4. Given two ordered pairs (a, b) and (c, d), the >lex

relation is defined by (a, b) >lex (c, d)⇔ a > c ∨ (a = c ∧ b > d).

DEFINITION 6.5 A weak barycentric representation of a graph G = (V,E) is an injec-
tive function f : v ∈ V → (vb, vg, vr) ∈ Z3 that satisfies the following conditions:

1. For each vertex v of G, vb + vg + vr = c, where c is a constant dependent on G.

2. For each edge (u,w) and each vertex v 6= u,w of G, there exist two consecutive
coordinates i and j in the circularly ordered set {b, g, r} such that (vi, vj) >lex (ui, uj)
and (vi, vj) >lex (wi, wj).

The following lemma can be proved similarly to Lemma 6.7 and implies that only a
planar graph can have a weak barycentric representation.

LEMMA 6.9 [Sch90] A weak barycentric representation f : v ∈ V → (vb, vg, vr) of a
graph G = (V,E) is a planar straight-line drawing of G on plane b+ g + r = c in Z3.

218 CHAPTER 6. PLANAR STRAIGHT-LINE DRAWING ALGORITHMS

v1 = (15, 0, 0) v2= (0, 15, 0)

v10= (0, 0, 15)

v9= (4, 2, 9)

v7= (5, 5, 5)

v6= (1, 11, 3)

v8= (7, 1, 7)

v5= (11, 2, 2)

v4= (3, 10, 2)

v3= (7, 7, 1)

Figure 6.25 Barycentric coordinates obtained from a realizer.

v1

v2

v10

v9

v7

v6

v5

v4

v3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

v8

Figure 6.26 Planar straight-line grid drawing obtained from the barycentric coordinates
of Figure 6.25 by dropping the third (red) coordinate. The horizontal and vertical axes are
shown reversed to maintain the visual correspondence with the drawing of Figure 6.25.

6.7. REALIZER METHOD 219

For each vertex v of G, we denote by nb(v), ng(v), and nr(v) the number of ver-
tices in Rb(v) − pr(v), Rg(v) − pb(v), and Rr(v) − pg(v), respectively. Note that 0 ≤
nb(v), ng(v), nr(v) ≤ n− 2 and nb(v) + ng(v) + nr(v) = n− 1.

LEMMA 6.10 Let u and v be two distinct vertices of G, and let i and j be two consecutive
coordinates in the circularly ordered set {b, g, r}. If u ∈ Ri(v), then (ni(v), nj(v)) >lex

(ni(u), nj(u)).

Proof: W.l.o.g, we assume i = r and thus j = b. Two cases are possible:

1. u 6∈ pg(v); by Lemma 6.6, Rr(u) ⊂ Rr(v), and thus pg(u) is in Rr(v); since u ∈ pg(u),
we have u 6∈ Rr(u)−pg(u) while u ∈ Rr(v)−pg(v); thus, Rr(u)−pg(u) ⊂ Rr(v)−pg(v);
hence, nr(v) > nr(u);

2. u ∈ pg(v); two subcases are possible:

(a) Rr(u)− pg(u) ⊂ Rr(v)− pg(v); hence, nr(v) > nr(u);

(b) Rr(u)− pg(u) = Rr(v)− pg(v) (this subcase occurs if par b(u) = par b(v)); hence,
nr(v) = nr(u); however, u ∈ Rb(v) and u 6∈ pr(v); by the same argument used
for Case 1, nb(v) > nb(u).

Thus, (nr(v), nb(v)) >lex (nr(u), nb(u)). 2

LEMMA 6.11 Let G = (V,E) be a maximal planar graph equipped with a realizer.
Function f : v ∈ V → (nb(v), ng(v), nr(v)) is a weak barycentric representation of G.

Proof: Injectivity of f follows from Lemma 6.10. Condition 1 of Definition 6.5 is trivially
satisfied, since, for each vertex v, vb + vg + vr = n − 1. As for Condition 2, let (u,w) and
v 6= u,w be an edge and a vertex of G, respectively. W.l.o.g., let u ∈ Rr(v); by the
planarity of G, w ∈ Rr(v), as well. Hence, by Lemma 6.10, (vr, vb) >lex (ur, ub) and
(vr, vb) >lex (wr, wb). 2

6.7.3 Implementation

Let Γ be the straight-line drawing of G resulting from the weak barycentric representation
of Lemma 6.11. By that lemma and by Lemma 6.9, Γ is a planar straight-line drawing of G
on plane b+ g+ r = n− 1 in Z3. In particular, vertices sb, sg, and sr are mapped to points
(n− 2, 1, 0), (0, n− 2, 1), and (1, 0, n− 2), respectively. A planar straight-line drawing of G
on the (n− 2)× (n− 2) grid in Z2 can be obtained by projecting Γ, e.g., by dropping, for
each vertex v, the red coordinate vr.

We now consider the time and space complexity. By Lemma 6.4, a realizer of G can be
constructed in linear time and space. Next, we show that the coordinates for the vertices
of G can be computed in linear time and space. In particular, we show how to compute,
for each vertex v of G, coordinate vr; coordinates vb and vg can be computed similarly.

From the planarity of G and Property 5 of the realizers, it follows that, for each vertex
u 6= v ∈ Rr(v), (i) the subtree Tr(u) of Tr rooted at u is contained by Rr(v), and (ii) pr(u)
has exactly one vertex w in common with pb(v) ∪ pg(v) (note that u ∈ Tr(w)).

First, we compute, for each vertex v of G, the number of its descendants in Tr, including
v itself, and store it in variable numdescr(v); this can be done by a postorder visit of Tr.

220 CHAPTER 6. PLANAR STRAIGHT-LINE DRAWING ALGORITHMS

Second, we compute, for each vertex v of G, the number of its ancestors in Tg, including v
itself, and store it in variable numancg(v); this can be done by a preorder visit of Tg. Finally,
we compute, for each vertex v of G,

∑
w∈pb(v) numdescr(w) and

∑
w∈pg(v) numdescr(w); this

can be done by a preorder visit of Tb and Tg, respectively.
For each vertex v of G, the number nr(v) of vertices in Rr(v)− pg(v), i.e., coordinate vr,

is given by the expression∑
w∈pb(v)

numdescr(w) +
∑

w∈pg(v)

numdescr(w)− numdescr(v)− numancg(v)

It follows that the coordinates for the vertices of G can be computed by a constant number
of traversals of Tb, Tg, and Tr, and thus globally in O(n) time. Furthermore, the additional
variables used in the tree traversals clearly take O(n) space.

Thus, we obtain the following theorem that summarizes the area bound and computa-
tional complexity of the realizer method.

Theorem 6.2 [Sch90] Let G be a maximal plane graph with n vertices. The realizer
method computes a planar straight-line drawing of G on the (n− 2)× (n− 2) grid in O(n)
time and space.

6.7.4 Refinements and Variations

Zhang and He [ZH03] discovered some new properties of Schnyder’s realizers and were able
to further reduce the grid size (in most cases).

Di Battista, Tamassia, and Vismara [DTV99] extend the realizer method to construct in
linear time a convex grid drawing of a triconnected plane graph on the (f − 1) × (f − 1)
grid, where f is the number of faces of the graph. The same result had been claimed by
Schnyder and Trotter [ST92] without proof and is independently obtained by Felsner [Fel01]
with different techniques. A method that further improves the grid size was developed by
Bonichon, Felsner, and Mosbah [BFM07].

Acknowledgment

Roberto Tamassia contributed to the writing of this chapter.

REFERENCES 221

References

[BFM07] Nicolas Bonichon, Stefan Felsner, and Mohamed Mosbah. Convex drawings of
3-connected plane graphs. Algorithmica, 47:399–420, 2007.

[Bra08] Franz J. Brandenburg. Drawing planar graphs on 8
9n

2 area. Electronic Notes in
Discrete Mathematics, 31:37–40, 2008.

[CG95] I. F. Cruz and A. Garg. Drawing graphs by example efficiently: Trees and planar
acyclic digraphs. In R. Tamassia and I. G. Tollis, editors, Graph Drawing (Proc.
GD ’94), volume 894 of Lecture Notes Comput. Sci., pages 404–415. Springer-
Verlag, 1995.

[CK97] M. Chrobak and G. Kant. Convex grid drawings of 3-connected planar graphs.
Internat. J. Comput. Geom. Appl., 7(3):211–223, 1997.

[CN98] Marek Chrobak and S. Nakano. Minimum-width grid drawings of plane graphs.
Comput. Geom. Theory Appl., 11:29–54, 1998.

[CON85] N. Chiba, K. Onoguchi, and T. Nishizeki. Drawing planar graphs nicely. Acta
Inform., 22:187–201, 1985.

[CP95] M. Chrobak and T. Payne. A linear-time algorithm for drawing planar graphs.
Inform. Process. Lett., 54:241–246, 1995.

[CYN84] N. Chiba, T. Yamanouchi, and T. Nishizeki. Linear algorithms for convex draw-
ings of planar graphs. In J. A. Bondy and U. S. R. Murty, editors, Progress in
Graph Theory, pages 153–173. Academic Press, New York, NY, 1984.

[DF13] Giuseppe Di Battista and Fabrizio Frati. Drawing trees, outerplanar graphs,
series-parallel graphs, and planar graphs in a small area. In J. Pach, editor,
Thirty Essays on Geometric Graph Theory, pages 121–166. 2013.

[dFPP90] H. de Fraysseix, J. Pach, and R. Pollack. How to draw a planar graph on a grid.
Combinatorica, 10(1):41–51, 1990.

[Dji95] H. N. Djidjev. On drawing a graph convexly in the plane. In R. Tamassia and
I. G. Tollis, editors, Graph Drawing (Proc. GD ’94), volume 894 of Lecture Notes
Comput. Sci., pages 76–83. Springer-Verlag, 1995.

[DTV99] G. Di Battista, R. Tamassia, and L. Vismara. Output-sensitive reporting of
disjoint paths. Algorithmica, 23(4):302–340, 1999.

[Fár48] I. Fáry. On straight lines representation of planar graphs. Acta Univ. Szeged.
Sect. Sci. Math., 11:229–233, 1948.

[Fel01] Stefan Felsner. Convex drawings of planar graphs and the order dimension of
3-polytopes. Order, 18:19–37, 2001.

[HT73] J. Hopcroft and R. E. Tarjan. Dividing a graph into triconnected components.
SIAM J. Comput., 2(3):135–158, 1973.

[Kan96] G. Kant. Drawing planar graphs using the canonical ordering. Algorithmica,
16:4–32, 1996. (special issue on Graph Drawing, edited by G. Di Battista and R.
Tamassia).

222 CHAPTER 6. PLANAR STRAIGHT-LINE DRAWING ALGORITHMS

[NR04] Takao Nishizeki and Md. Saidur Rahman. Planar Graph Drawing. World Scien-
tific, 2004.

[RT86] P. Rosenstiehl and R. E. Tarjan. Rectilinear planar layouts and bipolar orienta-
tions of planar graphs. Discrete Comput. Geom., 1(4):343–353, 1986.

[Sch89] W. Schnyder. Planar graphs and poset dimension. Order, 5:323–343, 1989.

[Sch90] W. Schnyder. Embedding planar graphs on the grid. In Proc. 1st ACM-SIAM
Sympos. Discrete Algorithms, pages 138–148, 1990.

[SR34] E. Steinitz and H. Rademacher. Vorlesungen über die Theorie der Polyeder.
Julius Springer, Berlin, Germany, 1934.

[ST92] W. Schnyder and W. T. Trotter. Convex embeddings of 3-connected plane graphs.
Abstracts of the AMS, 13(5):502, 1992.

[Ste51] S. K. Stein. Convex maps. Proc. Amer. Math. Soc., 2(3):464–466, 1951.

[Tho80] C. Thomassen. Planarity and duality of finite and infinite planar graphs. J.
Combin. Theory Ser. B, 29(2):244–271, 1980.

[Tho84] C. Thomassen. Plane representations of graphs. In J. A. Bondy and U. S. R.
Murty, editors, Progress in Graph Theory, pages 43–69. Academic Press, New
York, NY, 1984.

[Tut60] W. T. Tutte. Convex representations of graphs. Proceedings London Mathemat-
ical Society, 10(38):304–320, 1960.

[Tut63] W. T. Tutte. How to draw a graph. Proceedings London Mathematical Society,
13(52):743–768, 1963.

[Wag36] K. Wagner. Bemerkungen zum Vierfarbenproblem. Jahresbericht der Deutschen
Mathematiker-Vereinigung, 46:26–32, 1936.

[ZH03] Huaming Zhang and Xin He. Compact visibility representation and straight-line
grid embedding of plane graphs. In Algorithms and Data Structures, volume 2748
of Lecture Notes in Computer Science, pages 493–504. Springer, 2003.

7
Planar Orthogonal and Polyline

Drawing Algorithms

Christian A. Duncan
Quinnipiac University

Michael T. Goodrich
University of California, Irvine

7.1 Introduction . 223
7.2 Preliminaries . 224

Definitions • Canonical Ordering and Shifting Sets •

Visibility Representations • Network Flows

7.3 Orthogonal Drawings . 234
Orthogonal Drawings from Visibility Representations •

Network Flow Algorithms

7.4 Polyline Drawings . 239
Mixed-Model Algorithm • One Bend Algorithm • Vertex
Regions • The Embedding

7.5 Conclusion . 244
References . 245

7.1 Introduction

One can assess the quality of a drawing of a graph in many different ways. Many important
criteria deal with the aesthetics, readability, of the drawing. For example, the size of the
drawing, roughly measured as the ratio between the farthest two objects of the drawings and
the closest two, is a measure of how much information can be displayed at one time. The
aesthetic that is of biggest concern in this chapter is that of angular resolution. Essentially,
we are concerned with how close together edges that stem from the same vertex are to each
other. The smaller the angle the more likely are the chances that the distinct edges become
one. Clearly, a high-degree vertex, one with many edges extending out of it, will inevitably
have a small angle between at least one pair of edges. So, the goal is to make the resolution
determined to some extent by the degree of the vertex.

Optimizing angular resolution in drawings has been addressed by countless researchers.
The two approaches we focus on in this chapter are to draw the graph orthogonally, that
is using only vertical and horizontal line segments for the edges. Orthogonal drawings have
the benefit that the smallest angle is at most π/2 and that the resulting graphs are often
quite pleasing to the eye because of the few edge directions employed, but they also have
the disadvantage that no vertex can have degree more than four. The study of orthogonal
graphs also has the advantage of being of interest to VLSI design, because many wires
are routed similarly. There are many different approaches to drawing orthogonal graphs.
Early results draw the graph using few bends but sacrificed size or running-time efficiency.
Improved techniques, involving computing a visibility representation, yielded orthogonal
drawings in linear time with few bends and small size. By using network flows, we can draw

223

224 CHAPTER 7. PLANAR ORTHOGONAL AND POLYLINE DRAWINGS

(embedded) graphs with the guaranteed minimum number of bends possible in the smallest
area allowable, but the run-time performance goes up to near quadratic time.

When using graphs containing vertices with degree more than four, one can no longer
apply standard orthogonal drawing techniques. More general polyline drawing techniques,
however, do exist. The goal is usually to focus directly on the sizes of angles created
rather than the types of edges allowed. Thus, during the drawing, we can route edges in
any orientation so long as the angle does not go below some fixed threshold. The most
successful approaches all seem to work by taking a vertex and assigning exit ports, which
are adequately spaced, such that edges are routed from the start vertex through distinct
ports to the destination vertex. These techniques typically produce the layout by creating
a canonical ordering on the vertices and adding the vertices into the drawing based on this
ordering, while constantly maintaining the routing requirements of the edges. Using this
approach, one can guarantee, for example, that a drawing can be made in linear time with
good angular resolution, good size bounds, and using at most one bend per edge.

Before going into the details of the different approaches, we first present some basic
terminology and general techniques in Section 7.2. Section 7.3 describes some standard
approaches to drawing orthogonal graphs. Section 7.4 describes work done on more general
polyline drawings. We conclude our chapter in Section 7.5 with a brief summary of the
main results presented.

7.2 Preliminaries

We begin with a few basic definitions of some general graph terminology along with some
more detailed descriptions of techniques useful for constructing drawings of graphs.

7.2.1 Definitions

Although common in nearly any book on graph algorithms, we borrow notation predomi-
nantly from [DETT99]. A (simple) graph G = (V,E) is a finite set V of vertices and a finite
set E of edges, where each edge is an unordered pair e = (u, v) of vertices. A multigraph is
a graph where the edges are multisets, that is two edges may have the same pair of vertices.
For each edge e = (u, v), we say that e is incident to u and v. We also say that u and v
are neighbors . The degree of a vertex is the number of edges incident to it. The maximum
degree of a graph is the maximum degree among all vertices in V . A (simple) path p of G is
a sequence of distinct vertices of G, (v1, v2, . . . , vk) such that for 1 ≤ i < k, (vi, vi+1) ∈ E.
A (simple) cycle c of G is a path such that v1 = vk with k > 1. A graph is acyclic if it has
no cycles. A graph is connected if for every pair of vertices u, v ∈ V , there is a path from
u to v. For any k > 0, a graph is k-connected if the removal of any k − 1 vertices from the
graph still leaves the graph connected. We often refer to 2-connected graphs as biconnected
and 3-connected graphs as triconnected .

We may also define many of our terms based on giving each edge a specific direction. A
directed graph (digraph) is a graph where each directed edge e = (u, v) is an ordered pair,
where we consider u to be the origin and v to be the destination of the edge. In addition,
e = (u, v) is an incoming edge of v and an outgoing edge of u. The indegree of a vertex v
is the number of its incoming edges, and the outdegree of a vertex v is the number of its
outgoing edges. A source is a vertex with no incoming edges, i.e., with indegree 0. A sink
is a vertex with no outgoing edges, i.e., with outdegree 0. A directed path of G is a path
of G, (v1, v2, . . . , vk), such that for 1 ≤ i < k, (vi, vi+1) is a directed edge in E. A directed
acyclic graph (DAG) is a directed graph that has no cycles.

7.2. PRELIMINARIES 225

A drawing Γ of a graph G = (V,E) is essentially a mapping of each vertex v ∈ V to a
distinct point Γ(v) and of each edge e = (u, v) ∈ E to a simple open Jordan curve Γ(e),
which has Γ(u) and Γ(v) as its endpoints. If G is directed, it is common to draw the edge
with an arrow toward the destination vertex. When the drawing is understood from the
context, we often leave out the Γ notation. For example, we may say that an edge e is made
of horizontal and vertical segments rather than the drawing Γ(e).

A planar graph is a graph G that admits a planar drawing Γ, a drawing with no edges
intersecting, except for edges that share a common vertex v and only at that vertex. A
planar embedding , or, simply, embedding , of a graph is the collection of (counter-clockwise)
circular orderings of incident edges around every vertex induced by a planar drawing. A
plane graph is a graph that has been associated with a specific planar embedding. A
maximal planar graph is a graph where the addition of any edge e /∈ E causes the graph to
be non-planar. Maximally planar graphs have the property that every face is a triangle, a
cycle of three edges. For notation, we often refer to planar graphs with maximum degree k
as k-planar graphs , in particular, we deal with many cases of 4-planar graphs.

A straight-line drawing of a graph is a drawing where every edge is a straight-line segment.
A polyline drawing of a graph is a drawing Γ such that every edge e = (u, v) ∈ E is
represented as a connected sequence of line segments p1p2, p2p3, . . . , pk−1pk, where p1 =
Γ(u) and pk = Γ(v) are the endpoints of the edge. We refer to p2, . . . , pk−1 as bend points of
the drawing of the edge. An orthogonal drawing of a graph is a polyline drawing where every
edge is an alternating sequence of horizontal and vertical line segments. A grid drawing
is a drawing of the graph where each vertex and each bend point has integer coordinate
values, effectively being placed on an integer grid. The area of a grid drawing is the area of
the smallest enclosing axis-aligned rectangle containing the drawing. For a given drawing
of G, the angular resolution of a vertex v is the smallest angle between two distinct edges
incident to v and the angular resolution of G is the minimum angular resolution among all
vertices.

An st-graph is a DAG with one source and one sink. A planar st-graph is an st-graph
that has a planar embedding with the source s and sink t located on the external face.

DEFINITION 7.1 Given a planar st-graph G, the dual planar st-graph G∗ = (V ∗, E∗)
is a digraph with the following properties:

• V ∗ is the set of faces in G with the addition that the external face (s, . . . , t, . . . , s)
is broken into two parts s∗ representing the portion of the face from s to t and
t∗ representing the portion from t to s.

• For every edge e ∈ E, we have an edge e∗ = (f, g) ∈ E∗ where f is the face to
the left of e and g is the face to the right of e.

In the construction of an orthogonal drawing of a graph G discussed in Sections 7.2.3
and 7.3.1, the dual graph coupled with the following special ordering of vertices play a
critical role in the creation of an intermediate visibility representation of G.

DEFINITION 7.2 Let G = (V,E) be a directed acyclic graph. A topological ordering
T (G) is an assignment of integer values T (v) to each vertex v ∈ V such that for every
directed edge (u, v) ∈ E, we have that T (u) < T (v). The size of the topological ordering
s(T) is maxv∈V T (v)−minu∈V T (u). An optimal topological ordering T ∗(G) is a topological
ordering with the smallest size, s(T ∗) = minT (G) s(T).

226 CHAPTER 7. PLANAR ORTHOGONAL AND POLYLINE DRAWINGS

Require: G = (V,E) be a Directed Acyclic Graph
Ensure: T (G) is an optimal topological ordering
{Compute the indegree for every vertex}
for all v ∈ V do

in(v)← 0
end for

5: for all (u, v) ∈ E do

increment in(v)
end for

{Identify all sinks}
S0 ← ∅

10: for all v ∈ V do

if in(v) = 0 then

S0.add(v)
end if

end for

15: n← 0
repeat

{Mark all current sinks and remove them from G}
Sn+1 ← ∅
for all v ∈ Sn do

20: T (v)← n
for all (v, u) ∈ E do {remove v from the graph}

decrement in(u)
if in(u) = 0 then {u is a new sink}
Sn+1.add(u)

25: end if

end for

increment n
end for

until Sn is empty {No more sinks}
Figure 7.1 Algorithm for computing an optimal topological ordering of a DAG.

In our definition, it is possible for two vertices u and v to have the same value if there is no
directed path between u and v. Note, this is basically a partial ordering where the optimal
size is the length of the longest chain in the partial order. Topological orderings are discussed
in most standard graph and algorithms textbooks. See, for example, [CLR90, GT02].
Computing an optimal topological ordering in linear time is fairly straightforward. We

assign every sink vertex a number 0, remove these vertices and their edges from the graph,
and repeat the process with a number one larger until there are no vertices left. Figure 7.1
describes the process in more detail.

This common algorithm proves useful for the construction of orthogonal graphs via a vis-
ibility representation. However, there are other more difficult, but equally useful, orderings.
We next discuss one such ordering, the canonical ordering.

7.2.2 Canonical Ordering and Shifting Sets

In [dFPP90], de Fraysseix, Pach, and Pollack describe a technique for embedding a plane
graph on a grid. Their technique uses an incremental approach that is built around a
particular ordering of the vertices known as a canonical ordering. Initially defined for

7.2. PRELIMINARIES 227

maximal plane graphs, Kant [Kan96] later extended it to triconnected plane graphs and
Gutwenger and Mutzel [GM98] to biconnected plane graphs. In this section, we define
and describe the canonical ordering of [dFPP90, CDGK01] as well as the shifting sets
derived from this ordering, which are needed in the polyline drawing method described in
Section 7.4.

DEFINITION 7.3 LetG be a maximal plane graph onm vertices. Let π = (v1, v2, . . . , vn)
be an ordering of the vertices of G. For 1 ≤ k ≤ n, let Gk be the plane subgraph of G
induced by the vertices of v1, . . . , vk and let Ck = (v1 = w1, w2, . . . , wm = v2) be the cycle
forming the external face of Gk. We call π a canonical ordering of G if

1. v1, v2, and vn are the external vertices of G in counter-clockwise order,

2. for 2 < k < n, Gk is 2-connected and internally maximal, i.e., every internal face
is a triangle, and

3. for 2 < k < n, vk is a vertex of Ck and has at least one neighbor in G−Gk.

de Fraysseix, Pach, and Pollack [dFPP90] prove the following theorem, which was later
extended to triconnected plane graphs by Kant [Kan96]:

Theorem 7.1 Every maximal plane graph has a canonical ordering that can be found in
linear time and space.

The canonical ordering has the property that all of the neighbors of vk+1 in Gk+1 lie
on Ck. Intuitively, the ordering is constructed in reverse order by starting with the initial
external triangular face and repeatedly removing a vertex vk+1 /∈ {v1, v2} that has at most
two neighbors on Ck+1 creating the new graph Gk and external face Ck. See Figure 7.2.

Once constructed, the canonical ordering π leads to an incremental approach for con-
structing a drawing of G. Here, we start with the triangle v1, v2, v3 and repeatedly add
the next vertex vk+1 to the graph of Gk by adding edges for vk+1 to its neighbors in
Ck forming Gk+1 and Ck+1. The vertices of Ck that are no longer on Ck+1 are said
to be covered by vk+1. Since the neighbors of vk+1 are all continuous on the cycle Ck,
we can label them as wl, wl+1, . . . , wr. We refer to the two vertices wl and wr as the
leftmost and rightmost neighbors of vk+1 in Ck. Since all the neighbors of vk+1 ex-
cept the leftmost and rightmost neighbors are covered by vk+1, we know that the cycle
Ck+1 = (v1 = w1, w2, . . . , wl, vk+1, wr, . . . wm = v2). See Figure 7.3.

Starting with de Fraysseix, Pach, and Pollack, several authors have used this canonical
ordering (or a variant) to build a graph incrementally. However, to place the vertices
effectively, onto a grid location for example, one must also repeatedly shift the vertices in
Gk to create a proper location for vk+1. Typically, the approach is to increase the space
between the leftmost and rightmost neighbors of vk+1. However, shifting these two vertices
also forces other vertices to shift to avoid creating edge crossings.

To solve the problem of determining which vertices must shift together, we also de-
fine a shifting set associated with each vertex on the current external face. See Cheng et
al. [CDGK01].

DEFINITION 7.4 For a given canonical ordering π = (v1, v2, . . . , vn), we define for
3 ≤ k ≤ n, the shifting set Mk(wi) ⊆ V for each vertex wi ∈ Ck on the external face
of Gk as follows. M3(v3) = {v3},M3(v2) = M3(v3) ∪ {v2},M3(v1) = M3(v2) ∪ {v1}. For
3 ≤ k < n, let wl and wr be the leftmost and rightmost neighbors of vk+1 in Ck. Then,

228 CHAPTER 7. PLANAR ORTHOGONAL AND POLYLINE DRAWINGS

(a) (b)

(c) (d)

v1 v2

v8

v1 v2

v7

v1 v2

v6

v1 v2

v3 v4

v7v6

v5

v8

Figure 7.2 An illustration showing the creation of the canonical ordering in reverse order.
(a) The first vertex v8 is about to be removed with the external cycle highlighted. (b)
Removal of the next vertex, v7. (c) Removal of vertex v6. (d) The final canonical ordering
of the vertices.

(a) (b)

wl

wr

v1 v2

v3 v4

v6

v5

v1 v2

v3 v4

v7v6

v5

Figure 7.3 Inserting a vertex using the canonical ordering. This example does not follow
the vertex placement techniques employed by the standard algorithms used to produce
good area drawings. (a) The graph G6, with its external cycle C6 drawn in bold. (b) The
graph G7 after inserting vertex v7. The covered vertex v5 is lightened. The leftmost and
rightmost neighbors are wl = v6 and wr = v4. The new external cycle C7 is therefore
(v1, v3, v6, v7, v4, v2).

7.2. PRELIMINARIES 229

(a) (b)

wl

wr

(d)

wl

wr

(c)

v3

v6

v5

v4

v2v1

v7

v4

v2

v3

v6

v5

v1

v7

v4

v2

v5

v1

v3

v6

v5

v4

v2v1

v3

v6

Figure 7.4 The incremental construction of a shifting set. The vertices for each set shown
are highlighted. (a) The shifting set for M6(v3). (b) After inserting v7, the shifting set for
M7(v3). This simply merges in the new vertex. (c) The shifting set for M6(v5). (d) After
inserting v7, the shifting set for M7(v7). Since wl+1 = v5, this set is the union of M6(v5)
and v7.

• for i ≤ l, Mk+1(wi) = Mk(wi) ∪ {vk+1},
• for j ≥ r, Mk+1(wj) = Mk(wj), and

• Mk+1(vk+1) = Mk(wl+1) ∪ {vk+1}.

From this definition, one can show that the following properties of the shifting set hold
for all 3 ≤ k ≤ n for the incremental drawing algorithms described in Section 7.4:

1. wj ∈Mk(wi) iff j ≥ i,

2. Mk(w1) ⊃Mk(w2) ⊃ · · · ⊃Mk(wm),

3. For 1 ≤ i ≤ m and a planar drawing of Gk, if we shift all vertices in Mk(wi) by
distance δi ≥ 0 to the right, then the resulting drawing of Gk remains planar.

In other words, the shifting set for a vertex wi on the external face is just the set of all
vertices that need to be shifted to the right to maintain planarity if wi is shifted to the
right.

Note that Mk+1(wi) is undefined for l < i < r, since these covered vertices are no longer
on the external face. See Figure 7.4.

A careful examination of the set reveals that a vertex wi that is covered by vk+1 shifts by δ
units if and only if vk+1 shifts by δ units. That is, for k′ > k, wi ∈Mk′(v) iff vk+1 ∈Mk′(v).
This property of the shifting set is exploited during the incremental embedding algorithms
that use a canonical ordering to ensure that shifts do not produce crossings.

230 CHAPTER 7. PLANAR ORTHOGONAL AND POLYLINE DRAWINGS

7.2.3 Visibility Representations

Orthogonal drawings, and even general drawings, of planar graphs often start by computing
a visibility representation of the graph. Before going into the details of using a visibility
representation to compute an orthogonal drawing, presented in Section 7.3.1, we first explain
the general approach of computing such a representation.

DEFINITION 7.5 Given a graph G = (V,E), a visibility representation Γ, for G maps
every vertex v ∈ V to a horizontal vertex segment Γ(v) and every edge (u, v) ∈ E to a
vertical edge segment Γ(u, v) such that each vertical edge segment Γ(u, v) has its endpoints
lying on the horizontal vertex segments Γ(u) and Γ(v) and no other segment intersections
or overlaps occur.

v2

v3

v4

v6

v5

v1
(a)

t

s
(b)

Γ(v6)

Γ(v3) Γ(v5)

Γ(v2)

Γ(v4)

(c)
Γ(v1)

Figure 7.5 (a) A simple graph G (b) An st-ordering of G (c) A visibility representation
of G.

See Figure 7.5 for one example of a visibility representation. Otten and van Wijk [OvW78]
introduced the visibility representation. With varying improvements, several researchers
have proved that every planar graph has such a representation, which can be found in
linear time [OvW78, DHVM83, RT86, TT86]. In general, we have the following theorem
about computing a visibility representation:

Theorem 7.2 [TT86] A graph admits a visibility representation if and only if it is planar.
Furthermore, a visibility representation for a planar graph can be constructed in linear time.

Figure 7.6 describes an algorithm to compute the visibility representation of a given
graph. After making the graph biconnected by adding dummy edges [FM98], we compute
an st-ordering on the graph creating a planar st-graph and its dual graph G∗. The location
of the vertex-segments and edge-segments are then determined by a topological ordering of
the st-graph and its dual with the former serving to determine y-values and the latter to
determining x-values. Figure 7.7 shows an example construction.

7.2. PRELIMINARIES 231

Require: G = (V,E) be a plane graph
Ensure: Γ is a visibility representation of G on the integer grid of size O(n2)

Make G biconnected by adding “dummy” edges {See [FM98]}
Select an edge (s, t) on the external face
Compute a planar st-graph on G {For simplicity, we refer to it as G}
Create the dual planar st-graph G∗

5: Compute the optimal topological ordering Tx = T (G∗) {See Figure 7.1}
Compute the optimal topological ordering Ty = T (G)
for all v ∈ V do {Assigning positions to the horizontal vertex segments}
Let fl be the face to the left of the leftmost outgoing edge of v
Let fr be the face to the right of the rightmost outgoing edge of v

10: {fl and fr are vertices in the dual graph G∗}
Γ(v).y ← Ty(v)
Γ(v).xmin← Tx(fl)
Γ(v).xmax← Tx(fr)− 1

end for

15: for all e = (u, v) ∈ E do {Assigning positions to the vertical edge segments}
Let fl be the face to the left of e {fl is a vertex in G∗}
Γ(e).x← Tx(fl)
Γ(e).ymin← Ty(u)
Γ(e).ymax← Ty(v)

20: end for

Remove any added “dummy” edges

Figure 7.6 Algorithm for constructing a visibility representation of a plane graph.

7.2.4 Network Flows

Network flows, useful in many areas of graph theory and graph drawing, are particularly
useful in finding drawings of orthogonal graphs with a minimum number of bends. We
describe this use in Section 7.3.2. Beforehand, we discuss the general structure of a network
flow, borrowing notation from Goodrich and Tamassia [GT02].

A (single-source single-sink) flow network N is a connected directed graph of arcs and
nodes1 with the following properties:

• Each arc e has a positive integer capacity c(e) and a nonnegative integer cost
w(e);

• There exists a source node, s, such that s has no incoming arcs;

• There exists a sink node, t, such that t has no outgoing arcs;

• All other non-terminal nodes have at least one incoming and one outgoing arc.

Figure 7.8(a) shows one particular flow network. The network is viewed as transporting
some commodity from the source to the sink by flowing along the arcs. A flow f for some
network N is an assignment to each arc e of some (integer) flow value f(e) such that the
following two rules apply:

• Capacity rule: The (positive) flow for each arc does not exceed the capacity.
For each arc e ∈ N , 0 ≤ f(e) ≤ c(e).

1We use the terms arc and node for a flow network instead of the analogous terms edge and vertex to

help differentiate between a flow network and a graph, which is to be drawn using the flow network.

232 CHAPTER 7. PLANAR ORTHOGONAL AND POLYLINE DRAWINGS

1

3

2
2

s = 0

(c)

t = 4

s∗

t∗

(d)

Γ(v1)

Γ(v2)

Γ(v3)

Γ(v6)

Γ(v4)

Γ(v5)

v2

v3

v4

v6

v5

v1

(b)

v2

v3

v4

v6

v5

v1

(a)

0 1

2

4

3

Figure 7.7 (a) A simple graph G. (b) G after augmenting to make it biconnected. (c) The
st-planar graph of G (solid) and the dual graph G∗ (dashed). The two topological orderings
from these graphs are shown labeled by their nodes. (d) The visibility representation of G
computed from these orderings.

7.2. PRELIMINARIES 233

(3,1)

(4,1) (1,1)

(2,2) (3,3)

(2,2)

(3,0)

(a)

s t

3 (3)

3 (3) 1 (1)

0 (0) 3 (9)

2 (4)

1 (0)

(b)

3 (3)

3 (3) 1 (1)

2 (4) 1 (3)

2 (4)

3 (0)

(c)

Figure 7.8 (a) A (single-source single-sink) flow network N with arcs labeled with the
pair (c(e), w(e)) (capacity, cost). (b) A maximum flow of value 6 for flow network N . Each
arc of N is labelled with its flow and, in parentheses, the cost of the flow on that arc. The
total cost of this flow is 20. (c) A minimum-cost maximum flow for N . Note, the value of
this flow is still 6 but the cost is now 18.

• Conservation rule: The flow coming in to a non-terminal node is the same as the
flow going out of the node.
For each non-terminal node v ∈ N , with v 6= s, t,

Σe∈inarc(v)f(e) = Σe∈outarc(v)f(e).

The value of the flow v(f) is the total flow leaving the source node, which because of
the conservation rule is the same as the flow entering the sink node. That is, v(f) =
Σe∈outarc(s)f(e). For a given flow f , the cost of the flow on a given arc e is the cost of the
arc w(e) times the amount of flow on that arc f(e). The cost of the flow w(f) is the sum of
the costs of each arc. That is, w(f) = Σe∈Nw(e)f(e).

The maximum flow problem for N is to find a flow f∗ with maximum value among all
possible flows of N . The minimum-cost flow problem for N is to find the minimum cost
flow among all possible maximum flows in N . Figure 7.8 shows a maximum flow that does
not have minimum cost as well as a minimum-cost maximum-flow solution.

There are several methods for solving flow networks, which are beyond the scope of this
chapter. Their running times often depend on combinations of the number of nodes in the
network, the capacity of the edges in the network, and the cost of the edges in the network.
For details, see [CLR90, GT02].

Of particular relevance are minimum cost flow algorithms with running time that depends
on the value of computed flow [CK12, GT97]. We use such an algorithm in Section 7.3.2 to
compute a planar orthogonal drawing with the minimum number of bends.

234 CHAPTER 7. PLANAR ORTHOGONAL AND POLYLINE DRAWINGS

7.3 Orthogonal Drawings

One highly effective way to draw graphs with good angular resolution is to use only edges
that are rectilinear, or orthogonal. Such edges consist of alternating sequences of vertical
and horizontal segments. In graph representations where each vertex is a point and where
two edges are not allowed to overlap, a necessary condition for a graph to have an orthogonal
drawing is that the maximum vertex degree be at most four. However, the introduction of
rectangular regions for vertices allows for larger graph degrees.

7.3.1 Orthogonal Drawings from Visibility Representations

Given a 4-planar graph G = (V,E), one can construct a good orthogonal drawing using
the visibility representation discussed in Section 7.2.3. The following theorem is due to
Tamassia and Tollis [TT89]:

Theorem 7.3 Let G be a 4-plane graph. If G is biconnected, there exists an orthogonal
grid drawing of G using O(n2) area with at most 2n + 4 bends and where only two edges
have more than two bends. If G is connected, the number of bends is 2.4n+ 2 and no edge
has more than four bends.

The version of the algorithm used to prove this theorem uses a constrained visibility
representation. The additional constraint is that each (horizontal) vertex segment other
than the source and sink have two (vertical) edge segments incident to its leftmost endpoint,
with one being above and the other below the vertex segment. We describe the simpler,
but slightly less effective, algorithm that uses a regular visibility representation. First,
we compute a visibility representation Γ(G). For each vertex v ∈ V , place the vertex at
a single point on the horizontal vertex segment Γ(v), determined below. The routing of
the edges incident to v and the location of v on the vertex segment are based on various
cases. Since each vertex has at most 4 incident edges and accounting for symmetry and
subcases with smaller vertex degrees, Figure 7.9 shows the six possible cases along with
the resulting edge routings and vertex placements. A careful study of the cases shows
that no edge has more than two bends per endpoint, resulting in no more than four bends
total. This creates an orthogonal shape, discussed in the next section, for G. To help
improve the size and number of bends one can do a few heuristics to straighten out various
edges. Finally, using the compaction technique described in the next section or similar more
efficient techniques, one can convert the orthogonal shape into an orthogonal drawing using
the smallest area. Figure 7.10 shows an example of an orthogonal drawing constructed from
a visibility representation.

7.3.2 Network Flow Algorithms

Tamassia [Tam87] showed that by using a network flow algorithm one could construct
orthogonal drawings of embedded 4-planar graphs with a minimum number of bends.

The fact that the graph is given with its embedding is significant. Formann et al. [FHH+93]
and Garg and Tamassia [GT01] showed that the problem of determining whether a drawing
with no bends exists is NP-hard for 4-planar graphs. The strategy in their proof deals with
the difficulty of assigning an order of the edges around vertices of degree 4. It is interesting
to note that the problem is polynomial when the maximum degree is 3 [DLV98].

Tamassia’s algorithm originally ran in O(n2 log n) time. However, an improvement for
certain types of planar flow networks (see Section 7.2.4) presented by Garg and Tamas-

7.3. ORTHOGONAL DRAWINGS 235

(a)

(b)

Figure 7.9 (a) The six possible cases for horizontal vertex segments intersecting with its
4 incident vertical edge segments in a visibility representation, accounting for symmetry.
(b) The vertex placement and edge routings for each of the cases.

v3

v4

v6

v2

v1

v5

Figure 7.10 An orthogonal drawing from the visibility representation of Figure 7.7.

236 CHAPTER 7. PLANAR ORTHOGONAL AND POLYLINE DRAWINGS

sia [GT97] reduced the running time to O(n7/4
√
log n). Recently, Cornelsen and Karren-

bauer obtained a running time of O(n3/2 log n) [CK12].
LetG = (V,E) be an embedded planar graph having maximum degree 4. We can compute

a drawing of G with the minimum number of bends in two phases. First, we compute an
orthogonal shape for G. Here we only define the bends of the edges and angles between
adjacent edges at a vertex of G. In the second phase, we assign integer lengths to the edge
segments of the orthogonal shape.

By transforming the first phase into a network flow problem, we are able to compute
the required drawing’s orthogonal shape. In this network, the commodities are the angles
between adjacent edges. Each unit of flow in the network is associated with a right angle
in the orthogonal shape, originating from the vertices, flowing across the faces by the edge
bends, and ultimately sinking at the faces. Since this interpretation leads to a multi-source,
multi-sink flow, we actually create a dummy source and sink that connect to the respective
nodes. For simplicity, we allow certain arcs to have a lower bound in addition to a capacity.
This is easily incorporated into the algorithms for the original flow network.

We want each vertex v to supply 4 units of flow and to have the faces consume these units.
Here, 4 “units” correspond to a 2π angle. Let d(f), the degree of a face f in the graph G,
be the length of the cycle bounding face f . If the graph is not biconnected, an edge may be
counted twice on the same face. The consumption rate of each face is designated by σ(f)
with

σ(f) =

{

2d(f)− 4 if f is an internal face
2d(f) + 4 if f is the external face

From Euler’s formula, we know that Σfσ(f) = 4n, which is the total number of units
supplied by the vertices. Our network N has three types of nodes and four types of arcs
with the following described attributes:

• Non-terminal nodes correspond to the vertices and faces of G;

• A source node s and sink node t serve to supply and consume the commodity;

• For every vertex v, arcs of type (s, v) with a capacity of 4, cost 1, and lower
bound 4 act to supply the vertex v with its commodity;

• For every face f , arcs of type (f, t) with a capacity of σ(f) and cost 1 act to
consume the commodity from the face vertices;

• From every face f and every vertex v on the cycle of f , we use an arc of type
(v, f) with a capacity of 4, cost 1, and lower bound 1. This arc flow represents
the angle at vertex v in face f ;

• For every pair of faces f and g sharing an edge, we designate an arc of type (f, g)
having a capacity of +∞, cost 1, and lower bound 0. This arc flow represents
the number of bends along edge e with the right angle inside of the face f .

Figure 7.11 shows a detailed example of a 4-planar graph, its network model, and the
minimum cost solution. We now take a closer look at an interpretation of the network from
the source side. At every vertex v the network supplies the vertex with 4 units, all of which
must, by the conservation rule, flow across the (v, f) arcs. Since each unit corresponds to
π/2 radians, this guarantees that the sum of the angles around a vertex, which is equivalent
to the sum of the flow leaving v along these arcs, is 2π.

From the sink side, by the conservation rule, we know that the sum of the units at the
vertices and the bends of a face is equal to 2d(f)−4 units for an internal face and 2d(f)+4

7.3. ORTHOGONAL DRAWINGS 237

v2

v3

f1

f2 f3

f0

v4

v6

v5

v1
(a)

t

f0

f1

f3

f2

(14, 1, 0)

(4, 1, 0)

(4, 1, 0)

(2, 1, 0)

s

v1 v2

f0

f2

v6

v4 v5

f1

f3
v3

(b)

2

1

2

3

1

1

3
2

2

11 1

(c)

11

1

2

1

Figure 7.11 (a) A simple planar graph G with maximum degree 4. (b) The network
N associated with G. The arcs from the source s to the vertex nodes have label (4, 1, 4),
i.e., capacity 4, cost 1, and a lower bound of 4. The vertex to face arcs are drawn as solid
lines with label (4, 1, 1). The face to face arcs are drawn bi-directional with both directions
having label (+∞, 1, 0). (c) A minimum cost max flow with the arc labels reflecting the
flow. Some vertices are omitted and some edges are partially drawn for better readability.

238 CHAPTER 7. PLANAR ORTHOGONAL AND POLYLINE DRAWINGS

for the external face. Again, since each unit corresponds to π/2 radians, we know the sum
of these angles is equal to π(d(f)− 2) for an internal face and π(d(f) + 2) for the external
face. Thus, each face is properly closed, and we can see that any valid flow φ on the network
corresponds to a proper orthogonal shape for G.

We now interpret the cost associated with a specific flow. For arcs of type (s, v) the cost
is 1 and the flow is fixed. So, for this case, the total cost is exactly 4n. Similarly, all the
arcs of type (f, t) have cost that sum to exactly 4n. Since all the arcs of type (v, f) have to
release the commodity sent from the source s, we know that the sum of these arcs is also
4n. Finally, the arcs of type (f, g) represent the number of bends for the given edge with
each bend costing one unit. Therefore, the total cost of the flow is 12n + B, where B is
the total number of bends in the orthogonal shape represented by the flow. Since 12n is
fixed for all flows along the same network, minimizing the cost of the flow corresponds to
minimizing the number of bends in the orthogonal shape.

In the second phase, we take this orthogonal shape and determine a compact drawing
for the actual graph. Since each bend for an edge switches between horizontal and vertical
lines, our strategy is to determine the (integer) lengths of these line segments. We do this
by computing the lengths of the horizontal segments independently of the vertical segments.
We shall explore the vertical computation as the horizontal one is analogous.

We can compute the length of each vertical segment by, once again, using a network flow
model. However, this flow model assumes that the faces are all rectangular. Therefore, we
first split the faces into rectangular faces by converting bend points into dummy vertices
and inserting dummy edges where necessary. This process is described in detail in Chapter
5 of [DETT99]. We therefore explain the solution for when we have an orthogonal repre-
sentation where each face is a rectangle, referring to this modified graph as G′. In this case,
our model has three types of nodes and three types of arcs.

• A source node s and sink node t serve to supply and consume the commodity
and also represent the “left” and “right” regions of the external face;

• Non-terminal nodes correspond to the faces of G′;

• For every pair of faces f and g sharing a vertical edge segment, with f to the
left of g, we designate an arc of type (f, g), with capacity +∞, cost 1, and lower
bound 1. The arc flow represents the length of this vertical segment.

Figure 7.12 illustrates an example of computing a compact orthogonal drawing using this
network flow approach. Since the source node s (and similarly sink node t) represents the
entire left vertical border of the final drawing and the flow leaving s corresponds to the
height of this border, the flow value is exactly the height of the drawing. In addition, the
cost of the flow is equal to the total length of all vertical segments in the drawing. Similarly,
the horizontal flow model computes the width of the drawing and the total length of all
horizontal segments. By solving the minimum-cost minimum-flow problem for both vertical
and horizontal networks, we can create an orthogonal drawing of G with the minimum
height, width, area, and total edge length. Observe that the flow here is the smallest flow
that meets the lower bound requirements for each arc.

Using their improved network flow algorithm, Cornelsen and Karrenbauer proved the
following result, which improves the running time of the original algorithm by Tamas-
sia [Tam87]:

Theorem 7.4 [CK12] Let G be an embedded 4-planar graph with n vertices. A planar or-
thogonal drawing of G with the minimum number of bends can be computed in O(n3/2 log n)
time.

7.4. POLYLINE DRAWINGS 239

v2

v5
v6v4

v1
v3

(a)

v2

v5
v6v4

v1
v3

b7 b8

(b)

v2

v5
v6v4

v1
v3

b7 b8

1

1 1

11

(c)

v2

v5
v6v4

v1
v3

b7 b8
1

11

1

(d)

2

(e)

v6 v5

v2v1

v4

v3

Figure 7.12 (a) An orthogonal drawing with the orthogonal representation described by
Figure 7.11c. (b) The same drawing with the two bend points temporarily converted to
vertices so that each face is rectangular. (c) The network flow for computing the vertical
segments along with the solution. (d) The network flow for computing the horizontal
segments along with the solution. (e) The final compact solution with the horizontal and
vertical segments determined from the two flows and the inserted dummy vertices removed.

7.4 Polyline Drawings

When one wishes to draw planar graphs having maximum degree more than 4 with good
angular resolution and with vertices as single points, clearly orthogonal drawings do not
suffice. There have been various other approaches to creating planar polyline drawings
with good angular resolution, many of these results extend the work of Kant [Kan96],
including work by Goodrich and Wagner [GW00], Gutwenger and Mutzel [GM98], Cheng
et al. [CDGK01], and Duncan and Kobourov [DK03]. The general approach is to use an
incremental insertion method to add vertices one at a time using a canonical ordering and
continually maintain the proper angular resolution qualities and other specific restrictions.

7.4.1 Mixed-Model Algorithm

The approach of Gutwenger and Mutzel [GM98] is similar to the approaches taken by [GW00,
CDGK01, DK03], which are discussed in the next subsection. However, unlike those ap-
proaches which rely on the graph being either maximal, tri-connected, or having artificial
edges added to make them maximal, the approach by Gutwenger and Mutzel uses an order-
ing that is defined for biconnected graphs. The benefits are significant in the sense that such
artificial edges, once removed, often create unexpected artifacts. In their mixed-model algo-
rithm, they take a given biconnected plane graph G = (V,E), and using this new ordering,

240 CHAPTER 7. PLANAR ORTHOGONAL AND POLYLINE DRAWINGS

assign for each edge e ∈ E, an inpoint ein = (xin, yin) and an outpoint eout = (xout, yout).
Then each edge e = (v, w) is drawn as a polyline edge. Route the edge from v to w in the
following manner:

• from v to eout,

• from eout vertically to point b = (xout, yin),

• from b horizontally to ein,

• and finally to w.

This approach results in quite aesthetically pleasing graphs that combine a mixture of
good angular resolution via general direction edges and orthogonal edges. However, the
results require, in general, three bends per edge. The next section describes a technique
that achieves similar results but with only one bend per edge.

7.4.2 One Bend Algorithm

Building off previous work by Kant [Kan96], Goodrich and Wagner [GW00], and Cheng
et al. [CDGK01], Duncan and Kobourov [DK03] use an incremental insertion approach to
create a planar polyline drawing with the following key properties:

• each edge is drawn with at most one bend;

• each vertex v has angular resolution Θ(1/d(v));

• all vertices and bend points lie on an O(n)×O(n) grid.

The incremental approach uses the canonical ordering and the shifting set described in
Section 7.2.2.

7.4.3 Vertex Regions

In [dFPP90], de Fraysseix, Pach, and Pollack present an algorithm to draw an n-vertex plane
graph with straight-line edges on an O(n)×O(n) integer grid. Chrobak and Payne [CP95]
show how to implement the algorithm in linear time. In this algorithm, each new vertex
vk+1 is inserted above its neighbors wl, . . . , wr, and after proper shifting, edges are drawn as
straight-line segments from the location of vk+1 to each neighbor of vk+1. In the approach
used in [GW00, CDGK01], each vertex is associated with a diamond-shaped region where
edges are routed through ports along the boundary of the region before connecting to
the vertices. This creates bends in the edges but allows better control over the angles
that are formed by the edges around vertices. To reduce the overall grid size, Duncan
and Kobourov [DK03] use slightly altered vertex regions. Each vertex is surrounded by
six vertex regions of two types, free regions and port regions, which alternate around the
vertex. The regions are bounded by rays extending from v in various directions, with 0◦

indicating a positive vertical direction. See Figure 7.13.

DEFINITION 7.6 Let v ∈ V have degree d = d(v). The vertex regions associated with v
are of two types, free regions and port regions. Free regions have the property that only one
edge extends from v to another vertex through that region. Port regions are bounded on
one side by a horizontal or vertical line segment with a number of (integer coordinate) ports,
and each edge going through a port region of v from v to any other vertex passes through
a unique port. Moreover, every edge is drawn as two line segments. The first, starting at
one endpoint v, connects to a port in the port region of v, and the second connects from

7.4. POLYLINE DRAWINGS 241

Mp

Mf

Lp

Lf Rf

Rp

(b)(a)

v

Figure 7.13 (a) The vertex regions around a particular vertex v. Notice that each port
region can have a different number of ports. (b) Edges extending from a (darkened) vertex.
The port edge segment is drawn dashed and the free edge segment is drawn solid.

that port to the other vertex w passing through one of w’s free regions. The six regions
associated with v are defined as follows:

• Free region Mf lies between −45◦ and 45◦;

• Free region Rf lies between 90◦ and 135◦;

• Free region Lf lies between −135◦ and −90◦;
• Port region Mp lies between Lf and Rf ;

• Port region Lp lies between Lf and Mf ; and

• Port region Rp lies between Rf and Mf .

The algorithm proceeds similar to the standard embeddings that use the canonical or-
dering. In particular, one starts with an initial face v1, v2, v3 and then repeatedly inserts
the next vertex vk+1 by finding its leftmost and rightmost neighbors, wl and wr, on the
current external face shifting the space between these vertices so that the lines connecting
vk+1 to wl and wr intersect at a grid location. To ensure good angular resolution, one must
introduce some bends, which requires a slight alteration in the approach.
Except for the initial horizontal edge (v1, v2), we route each edge (vi, vj) through a port

of one of the two vertices. In the process, each edge consists of two edge segments. One
segment, the port segment, extends from vi to one of vi’s ports, lying entirely in one of vi’s
port regions. The other, free segment, extends from this port to vj passing through one of
vj ’s free regions. See Figure 7.13(b).

The ports are arranged in such a way that the angle between successive ports and v is
O(1/d(v)). By Definition 7.6, since for every vertex v each free segment associated with
v lies inside a free region boundary, each free region has exactly one free segment passing
through it, each port segment associated with v lies inside a port region and passes through
a unique port, the resulting angular resolution at v is O(1/d(v)). For compactness, port
segments, which are essentially bend points, can also coincide with the destination vertex,
effectively creating a free edge segment of zero length. That is, if we have an edge (u, v)
that goes through u’s port p, we may have a situation where p coincides with v. This is not
necessary but allows for smaller grid size in the end.

242 CHAPTER 7. PLANAR ORTHOGONAL AND POLYLINE DRAWINGS

The embedding is constructed in incremental stages, with each stage corresponding to
the insertion of a new vertex vk+1. At each stage, we maintain that each vertex except
those on the current external face has exactly three free edge segments. The remaining
edge segments connect to a vertex v through port segments. We can divide the current
degree of v into three parts: dl(v), dr(v), and dm(v). The degree dl(v) corresponds to the
current number of port edge segments using the Lp region. The degrees dr(v) and dm(v)
are defined similarly for the Rp and Mp regions. At each insertion, we route port edge
segments involving the new vertex vk+1 through maximal left and right ports.

DEFINITION 7.7 Let a vertex v have coordinates (vx, vy). Then, the maximal left port
of v, Lp

max(v), has coordinates (vx−dl(v)+1, vy+dl(v)) if dl(v) > 0 and (vx, vy) otherwise.
Define the maximal right port of v, Rp

max(v), similarly.

7.4.4 The Embedding

Initially, the first three vertices have integer coordinates v1 = (0, 0), v2 = (4, 0), and v3 =
(2, 1). In subsequent stages, we insert the next vertex vk+1 maintaining the following
invariants:

• All vertices and ports lie on the integer grid.

• Let Ck = (w1 = v1, w2, . . . , wm = v2) be the exterior face of Gk with wi(x)
corresponding to the x-coordinate of wi. Then w1(x) < w2(x) < . . . < wm(x).
In other words, the vertices of the exterior face are strictly x-monotonic.

• Let e = (wi, wi+1) be an edge on the external face. The free edge segment of e
has a slope of ±1. The port edge segment of e passes through a maximal port.

• Every vertex v has at most one free edge segment crossing each free region, and
each port segment goes to a unique port.

When we insert a new vertex vk+1, we must create enough space so that the two neighbors
wl and wr can “see” the new vertex through their maximal right and left ports, which are
typically already used. Thus, we must shift these vertices over to create space and also to
ensure that the intersection of these ports lies on a grid location, for the new vertex. Of
course, we cannot simply shift these vertices, we must shift other vertices to be sure that
we do not produce any crossings. Therefore, to shift a vertex w, we shift all vertices in its
shifting set, defined in Section 7.2.2, and also most of the ports. See Figure 7.14.

DEFINITION 7.8 For δ ≥ 0 and a vertex wi ∈ Ck, define a regular-shift by δ units of
wi as shifting all vertices in Mk(wi) by δ units to the right, including all associated ports.
Define the right-shift by δ units on wi as a regular-shift of wi except that the ports in the
Lp region of wi are not shifted. Similarly, define the left-shift by δ units on wi as a regular
shift of wi+1 and additionally shifting the ports in the Rp region of wi.

Notice that left-shifting a vertex wi is nearly identical to right-shifting its neighbor wi+1

except for the ports that are moved.

Assume that Gk has been embedded and that the invariants hold. We now look at the
specific insertion of a new vertex vk+1 to create Gk+1 while maintaining the invariants. For
a vertex w ∈ Ck, recall that the current number of port edge segments using Rp is dr(w)
and for Lp is dl(w). If dr(wl) = 0, we perform a left-shift of 2 units on wl; otherwise,
we perform a left-shift of 1 unit on wl. This frees a space for a new maximal port in the

7.4. POLYLINE DRAWINGS 243

(a) (b)

Figure 7.14 (a) A (darkened) vertex and its neighbors before a right shift of one unit.
(b) And after a right shift of one unit. The other vertices that are part of the shifting set
are highlighted, while those that are not are drawn dashed. Notice that the left port region
remains in place creating a location for one more port.

Rp region of wl. Similarly, if dl(wr) = 0, we perform a right-shift of 2 units on wr, and
otherwise, we perform a right-shift of 1 unit.

Let l be the line of slope +1 passing through wl’s newly created maximal right port. Let
r be the line of slope −1 passing through wr’s newly created maximal left port. We place
vk+1 at the intersection of lines l and r. If l and r intersect at a non-grid location, we simply
perform a regular-shift of 1 unit on wr. Observe that we therefore perform at most 5 shifts
per insertion.

We now route the edges as follows. The edge from wl to vk+1 goes from wl to Rp
max(wl)

and then to vk+1 through its free region Lf . The edge from wr to vk+1 goes from wr to
Lp
max(wr) and then to vk+1 through its free region Rf . The remaining edges are from vk+1

to wi for l < i < r. These edges are routed from vk+1 to nearly consecutive ports on the
Mp region of vk+1 and then to wi through its free region Mf . We locate the horizontal
line segment containing the ports of Mp exactly ⌈(r− l)/2⌉ units below vk+1. Duncan and
Kobourov [DK03] prove that this guarantees that each port is above each neighbor vertex
wi. In the case that r − l is even, there is exactly one port per edge routed, and the ports
are mapped consecutively. In the case of an odd value, we must skip one port in the region,
which is easy to identify [DK03]. Figure 7.15 shows the insertion of five vertices of a planar
graph using this algorithm.

Duncan and Kobourov prove that this algorithm properly maintains the previous invari-
ants leading to the following theorem:

Theorem 7.5 [DK03] For a given plane graph G = (V,E), there is a linear-time algorithm
that constructs a planar polyline drawing of G with grid size 5n × 5n/2 using at most one
bend per edge and with an angular resolution no less than 1/2d(v) for every vertex v ∈ V .

244 CHAPTER 7. PLANAR ORTHOGONAL AND POLYLINE DRAWINGS

(a) (b) (c)

v1 v2

v3

v1

v3

v2

v4

v1 v2

v4
v3

v5

Figure 7.15 The insertion of the first five vertices of a particular planar graph. (a) The
initial configuration with 3 vertices. Note that the port edge segment connecting v1 to v3
connects to v1’s port which is at the same location as v3. For clarity, we illustrate the port
slightly outside this location. (b) Insertion of v4. This requires a left-shift of 1 unit for
v3 and a right-shift of 1 unit for v2 before placing v4. (c) Insertion of v5. This requires
a left-shift of 1 unit for v3 and a right-shift of 1 unit for v5 before placing v5, which also
connects to the covered vertex v4.

7.5 Conclusion

When angular resolution is a desired criterion in drawing a graph, many techniques exist to
accommodate it. If the graph is known to be 4-planar or if one is willing to use rectangular
regions instead of points for vertices, one can efficiently construct aesthetically pleasing
orthogonal drawings [Tam87, TT89, GT97, CK12]. This body of work uses network flows
to compute an orthogonal shape with the minimum number of bends and to compact the
representation into an orthgonal drawing with minimal height and width.

In addition, several polyline drawing strategies exist that allow one to create good draw-
ings with relatively high angular resolution, a small number of bends, and good area bounds
even when the maximum degree of the graph is greater than four [Kan96, GM98, GW00,
CDGK01, DK03]. These all extend the incremental insertion algorithm using a canonical
ordering initially employed by de Fraysseix, Pach, and Pollack [dFPP90]. The mixed-model
approach, employed by Kant [Kan96] and Gutwenger and Mutzel [GM98], uses primarily
orthogonal edges but must still connect vertices using some segments whose slopes de-
pend on the degree of the vertex. The works of Cheng et al. [CDGK01] and Duncan and
Kobourov [DK03] use an optimal one bend per edge but with one of the two segments of
each edge having arbitrary slope. Unlike the purely orthogonal representations, the set of
slopes determined by the edges in these polyline drawings is possibly large.

REFERENCES 245

References

[CDGK01] C. C. Cheng, C. A. Duncan, M. T. Goodrich, and S. G. Kobourov. Drawing
planar graphs with circular arcs. Discrete and Computational Geometry,
25(3):405–418, 2001.

[CK12] Sabine Cornelsen and Andreas Karrenbauer. Accelerated bend minimiza-
tion. Journal of Graph Algortihms and Applications, 16(3):635–650, 2012.

[CLR90] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algo-
rithms. MIT Press, Cambridge, MA, 1990.

[CP95] M. Chrobak and T. Payne. A linear-time algorithm for drawing planar
graphs. Inform. Process. Lett., 54:241–246, 1995.

[DETT99] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing.
Prentice Hall, Upper Saddle River, NJ, 1999.

[dFPP90] H. de Fraysseix, J. Pach, and R. Pollack. How to draw a planar graph on
a grid. Combinatorica, 10(1):41–51, 1990.

[DHVM83] P. Duchet, Y. Hamidoune, M. Las Vergnas, and H. Meyniel. Representing
a planar graph by vertical lines joining different levels. Discrete Math.,
46:319–321, 1983.

[DK03] C. A. Duncan and S. G. Kobourov. Polar coordinate drawing of planar
graphs with good angular resolution. Journal of Graph Algorithms and
Applications, 7(4):311–332, 2003.

[DLV98] G. Di Battista, G. Liotta, and F. Vargiu. Spirality and optimal orthogonal
drawings. SIAM J. Comput., 27(6):1764–1811, 1998.

[FHH+93] M. Formann, T. Hagerup, J. Haralambides, M. Kaufmann, F. T. Leighton,
A. Simvonis, Emo Welzl, and G. Woeginger. Drawing graphs in the plane
with high resolution. SIAM J. Comput., 22:1035–1052, 1993.

[FM98] S. Fialko and P. Mutzel. A new approximation algorithm for the planar
augmentation problem. In Proceedings of the 9th Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA ’98), pages 260–269. ACM Press,
1998.

[GM98] C. Gutwenger and P. Mutzel. Planar polyline drawings with good angular
resolution. In S. Whitesides, editor, Graph Drawing (Proc. GD ’98), vol-
ume 1547 of Lecture Notes Comput. Sci., pages 167–182. Springer-Verlag,
1998.

[GT97] A. Garg and R. Tamassia. A new minimum cost flow algorithm with
applications to graph drawing. In S. C. North, editor, Graph Drawing
(Proc. GD ’96), volume 1190 of Lecture Notes Comput. Sci., pages 201–
216. Springer-Verlag, 1997.

[GT01] A. Garg and R. Tamassia. On the computational complexity of upward and
rectilinear planarity testing. SIAM J. Computing, 31(2):601–625, 2001.

[GT02] Michael T. Goodrich and Roberto Tamassia. Algorithm design: founda-
tions, analysis, and Internet examples. John Wiley and Sons, Inc., New
York, NY, 2002.

[GW00] M. T. Goodrich and C. G. Wagner. A framework for drawing planar graphs
with curves and polylines. Journal of Algorithms, 37(2):399–421, 2000.

246 CHAPTER 7. PLANAR ORTHOGONAL AND POLYLINE DRAWINGS

[Kan96] G. Kant. Drawing planar graphs using the canonical ordering. Algorith-
mica, 16:4–32, 1996. Special issue on Graph Drawing, edited by G. Di
Battista and R. Tamassia.

[OvW78] R. H. J. M. Otten and J. G. van Wijk. Graph representations in interactive
layout design. In Proc. IEEE Internat. Sympos. on Circuits and Systems,
pages 914–918, 1978.

[RT86] P. Rosenstiehl and R. E. Tarjan. Rectilinear planar layouts and bipo-
lar orientations of planar graphs. Discrete Comput. Geom., 1(4):343–353,
1986.

[Tam87] R. Tamassia. On embedding a graph in the grid with the minimum number
of bends. SIAM J. Comput., 16(3):421–444, 1987.

[TT86] R. Tamassia and I. G. Tollis. A unified approach to visibility representa-
tions of planar graphs. Discrete Comput. Geom., 1(4):321–341, 1986.

[TT89] R. Tamassia and I. G. Tollis. Planar grid embedding in linear time. IEEE
Trans. Circuits Syst., CAS-36(9):1230–1234, 1989.

8
Spine and Radial Drawings

Emilio Di Giacomo
University of Perugia

Walter Didimo
University of Perugia

Giuseppe Liotta
University of Perugia

8.1 Introduction . 247
8.2 A Unified Framework for Spine and Radial Drawings 248

Definitions • Scenarios

8.3 Results in the General Scenario . 251
Spine Drawings in the General Scenario • Radial Drawings
in the General Scenario

8.4 Results in the Constrained Scenarios . 266
Upright and Proper Spine Drawings • Partitioned Spine
Drawings • Radial Drawings with Assigned Layers

8.5 Related Problems . 273
Hamiltonicity • Point-Set Embeddability

8.6 Conclusions . 280
References . 281

8.1 Introduction

A layered drawing of a graph is a drawing such that the vertices are constrained to lie on
geometric layers that can be lines, circles, or other kinds of curves. Partitioning the vertices
into distinct layers can be an effective way to emphasize some structural properties of the
graph; in many cases this is required in some real-world applications to convey the so-called
semantic constraints [Sug02].

In this chapter, we concentrate on layered drawings of undirected graphs, where the
edges are not constrained to be monotone in a given direction. Conversely, this is typically
a basic requirement in the layered drawings of directed graphs or hierarchies, where all edges
must flow in a common direction (usually the vertical one), according to their orientation.
Layered drawings algorithms for directed graphs are extensively investigated in Chapter 13.

Although it is theoretically interesting to study layered drawings where the layers can be
curves of any type, it is rather difficult to extract properties and design algorithms if the
layers do not have a quite “regular” shape. Indeed, most of the literature assumes that the
layers are either parallel straight lines or concentric circles, which is also the most common
requirement in real-world application domains. Therefore, we only give an overview of the
results on layered drawings where layers are straight lines or circles. We call the first family
of drawings spine drawings and the second family radial drawings .

The remainder of this chapter is structured as follows. We first give formal definitions
that are needed in the chapter and describe a unified investigation framework for spine
and radial drawings (Section 8.2). Then, we investigate the results on spine and radial
drawings in a general scenario (Section 8.3); this scenario has the only requirement that the
vertices are placed on layers. Results on scenarios that consider additional constraints are

247

248 CHAPTER 8. SPINE AND RADIAL DRAWINGS

investigated in Section 8.4. Finally, we mention some topological and geometric problems
related to the spine and radial drawability of a graph (Section 8.5) and we give conclusions
(Section 8.6).

8.2 A Unified Framework for Spine and Radial Drawings

8.2.1 Definitions

A drawing Γ of a graph G is a geometric representation of G such that each vertex u of
G is mapped to a distinct point pu of the plane and each edge (u, v) of G is drawn as a
simple Jordan curve with end-points pu and pv. Drawing Γ is planar if two distinct edges
never intersect except at common end-vertices. G is planar if it admits a planar drawing.
A planar drawing Γ of G partitions the plane into topologically connected regions called
the faces. The unbounded face is called the external face and the other faces are called
internal faces. The boundary of a face is its delimiting circuit (not necessarily a simple
cycle) described by the circular list of its edges and vertices. The boundary of the external
face, also called the external boundary, is the circular list of edges and vertices delimiting
the unbounded region. If the graph is biconnected, the boundary of each face is a simple
cycle. An embedding of a planar graph G is an equivalence class of planar drawings that
determine the same set of faces, i.e., the same set of face boundaries. A planar graph G
with a given embedding is called an embedded planar graph. In this chapter, we only deal
with planar graphs and planar drawings. From a practical point of view, if a graph is not
planar, one can think of applying a planarization algorithm on it in order to find a planar
embedding with dummy vertices that replace crossings [DETT99].

A drawing Γ of G such that the edges are represented as a polygonal chain is a polyline
drawing . A bend along an edge e of Γ is a common point between two consecutive straight-
line segments that form e. If every edge of Γ has at most b bends, Γ is a b-bend drawing of
G. A 0-bend drawing is also called a straight-line drawing .

Let γ1 and γ2 be two curves. Curves γ1 and γ2 are parallel if every normal to one curve is
a normal to the other curve and the distance between the points where the normals cut the
two curves is a constant. Examples of parallel curves are parallel straight lines or concentric
circles. A set of layers is a set of pairwise parallel curves; each curve in the set is called a
layer. Given a set of layers it is possible to order the layers according to the order they are
encountered while walking along a straight line normal to all of them. More precisely, let
C be a set of layers, and let ln be a normal to all the layers in C. Let pi be the intersection
point between ln and γi ∈ C and let pj be the intersection point between ln and γj ∈ C.
Given an orientation for ln, we have that γi is before γj if pi is encountered before pj while
walking along ln according to the given orientation, γi is after γj otherwise. In the following,
given a set of layers denoted as γ0, . . . , γk−1, we always assume that γi is before γi+1 for
each 0 ≤ i ≤ k − 1.

DEFINITION 8.1 Let G = (V,E) be a planar graph, and let C = {γ0, . . . , γk−1} be a
set of layers, with k ≤ n. A k-layered drawing of G on C is a polyline planar drawing Γ of
G such that each vertex v ∈ V is represented in Γ as a point pv ∈ γi (0 ≤ i ≤ k − 1).

An example of a 4-layered drawing is shown in Figure 8.1. A k-layered drawing will be
simply called a layered drawing when we are not interested in the number of layers.

Let Γ be a k-layered drawing of a graph G, and let e = (u, v) be an edge of G such that
u is drawn in Γ on layer γi and v is drawn in Γ on layer γj (0 ≤ i, j ≤ k− 1). The span of e

8.2. A UNIFIED FRAMEWORK FOR SPINE AND RADIAL DRAWINGS 249

1

2

3

4

5

6

7

8

9
10

1

2

3

4

5

6
7

8

9

10

(a) (b) (c)

Figure 8.1 (a) A planar graph G. (b) A set C of four layers. (c) A 4-layer, 0-bend drawing
of G on C

in Γ is |i− j|. An intra-layer edge is an edge with span equal to 0, i.e., an edge connecting
vertices that are on the same layer. A long edge is an edge with span greater than 1.

In the following, we shall consider two special cases of layered drawings: spine drawings1

and radial drawings, which are defined as follows.

DEFINITION 8.2 A k-spine drawing of a planar graph is a planar k-layered drawing
such that the layers are horizontal straight lines, called spines.

DEFINITION 8.3 A k-radial drawing of a planar graph is a planar k-layered drawing
such that the layers are concentric circles.

For a k-spine drawing, we denote the set of layers as C = {L0, . . . , Lk−1} and we as-
sume that they are ordered from the highest to the lowest, i.e., L0 is the topmost line
and Lk−1 is the bottommost one. For a k-radial drawing, we denote the set of layers as
C = {C0, . . . , Ck−1}, and we assume that they are ordered from the more external to the
innermost, i.e., C0 is the circle with the largest radius and Ck−1 is the one with the smallest
radius. When we are not interested in distinguishing between spine and radial drawings,
we will generically denote the layers as C = {γ0, . . . , γk−1}. If a planar graph G admits a k-
spine, b-bend drawing (k-radial, b-bend drawing), we say that G is k-spine, b-bend drawable
(k-radial, b-bend drawable).

We conclude this section with some definitions about Hamiltonicity that will be used in
the following. A Hamiltonian cycle of G is a simple cycle that contains all vertices of G.
A graph G that admits a Hamiltonian cycle is said to be Hamiltonian. A planar graph G
is sub-Hamiltonian if either G is Hamiltonian or G can be augmented with dummy edges
(but not with dummy vertices) to a graph that is Hamiltonian and planar. We denote
by aug(G) a planar Hamiltonian graph obtained by G by possibly adding edges (if G is
Hamiltonian then aug(G) = G). A subdivision of a graph G is a graph obtained from G by

1Drawings on a set of horizontal layers are often called layered drawings in the literature. Since in this
chapter we use the term layered drawing to denote the more general case of a drawing on any set of
parallel curves, we use the term spine drawings when the layers are straight lines. This term is taken
from the theory of book embeddings, which can be regarded as drawings on a single horizontal line,
usually called the spine of the book embedding.

250 CHAPTER 8. SPINE AND RADIAL DRAWINGS

replacing each edge by a path with at least one edge. Internal vertices on such a path are
called division vertices. It is easy to see that any planar graph always admits a subdivision
that is sub-Hamiltonian. Let G be a planar graph and let sub(G) be a sub-Hamiltonian
subdivision of G (if G is sub-Hamiltonian, then sub(G) = G). The graph aug(sub(G)) is
called a Hamiltonian augmentation of G and will be denoted as Ham(G) (if G is Hamiltonian
then Ham(G) = G). A Hamiltonian cycle of Ham(G) is called an augmenting Hamitonian
cycle of G.

8.2.2 Scenarios

In the following, we are interested in characterizing k-spine, b-bend drawable and k-radial,
b-bend drawable graphs for different values of k and b. We are also interested in the
drawability testing problems, i.e., in studying the complexity of deciding whether a given
planar graph is k-spine, b-bend drawable (k-radial, b-bend drawable). More precisely, we
consider the following two problems.

Characterization Problem. Let k and b be two given integers. What is the largest
class of k-spine, b-bend drawable (k-radial, b-bend drawable) graphs?

Drawability Testing Problem. Let k and b be two given integers and let G be a
planar graph. What is the complexity of deciding whether G is k-spine, b-bend
drawable (k-radial, b-bend drawable)?

The study of these two problems is motivated by the fact that, for aesthetic reasons,
one can be interested in keeping the number of layers and the number of edge bends in a
layered drawing as small as possible. Observe that every planar graph G with n vertices
is k-spine 0-bend drawable, for some value of k ≤ n. Indeed, it is known that G admits
a planar straight-line drawing Γ [Fár48], and at most n distinct horizontal parallel layers
are sufficient to intersect all vertex-points in Γ. Furthermore, since G also admits a planar
straight-line drawing on an integer grid of size O(n) × O(n) [dPP90], G is always k-spine
0-bend drawable within an O(n2) area. With analogous considerations, every planar graph
with n vertices is k-radial 0-bend drawable for some value of k ≤ n.

The Characterization Problem and the Drawability Testing Problem can be studied within
different scenarios, depending on the additional constraints that one can define. We first
consider the two problems without any additional constraint. We will refer to this scenario
as the general scenario. We then consider the same problems with some of the following
additional constraints:

Intra-layer edges not allowed. Many results in the literature assume that there is
no intra-layer edge in a layered drawing. For example, avoiding intra-layer edges
in a k-layered drawing could be important to put in evidence a k-partite structure
of the graph. Indeed, a k-layered drawing of a graph G = (V,E) implicitly defines
a partition of the set V into k sets V0, V1, . . . , Vk−1, where each set Vi is the set
of vertices drawn on layer γi. Layered drawings with no intra-layer edges will be
called upright drawings.

Assigned vertex partitioning. In some cases, the partitioning of the vertices can
be given as a part of the input. In these cases, the vertex partition determined
by the layered drawing has to preserve the one given in the input. Layered
drawings where the partition of the vertices is given will be called partitioned
layered drawings.

Long edges not allowed. Edges that span more than one level are more difficult to
follow by the human eye than edges connecting vertices on consecutive layers.

8.3. RESULTS IN THE GENERAL SCENARIO 251

Thus another common constraint in a layered drawing is to avoid long edges.
Layered drawings with no long edges will be called proper drawings.

Assigned layers. In the general scenario, we are assuming that only the number and
the type (spines or circles) of layers are given. However, one can consider the
case when also the distance between every two consecutive layers is given as part
of the input. Having the distances of the layers assigned as a part of the input
may change the answer to both the Characterization and the Drawability Testing
Problem.

8.3 Results in the General Scenario

8.3.1 Spine Drawings in the General Scenario

We start by considering the easiest case for k-spine drawings, i.e., the case when k = 1. A
trivial result is that if only 0 bends per edge are allowed we can only draw forests of paths,
and therefore, the drawability test can be executed in O(n) time, where n is the number of
vertices of the input graph.

PROPOSITION 8.1 A planar graph is 1-spine, 0-bend drawable if and only if it is a
forest of paths.

If one bend per edge is allowed the problem of computing a 1-spine, 1-bend drawing of a
planar graph G is equivalent to that of computing a book embedding of G on two pages. A
book embedding of a graph G = (V,E) consists of a total order <σ of V and a partition of
E into p sets, called pages , such that there are no two edges (u, v) and (w, z) in the same
page with u <σ w <σ v <σ z. The pagenumber of a graph G is the minimum value p for
which G admits a book embedding with p pages.

A book embedding can be seen as a drawing of G where: (i) all vertices are drawn along
a straight line, called the spine, according to the total order <σ, (ii) each edge is assigned
to one among p half-planes having the spine as a common boundary, (iii) no two edges
in the same page cross (see Figure 8.2). It is not difficult to prove that if two edges can
be drawn without crossings on a half-plane with the endvertices on the boundary of the
half-plane, then they can be drawn without crossings as two polylines with one bend on the
same half-plane and with the end-vertices in the same position (see also Figure 8.2). Since
a straight line on a plane define two half-planes we have the following lemma.

LEMMA 8.1 A planar graph is 1-spine, 1-bend drawable if and only if it has pagenumber
two.

Bernhart and Kainen [BK79] prove that a graph has pagenumber at most two if and only
if it is sub-Hamiltonian. If a graph G admits a book embedding on two pages, then let
v0, v1, . . . , vn−1 be the vertices of G ordered according to the total ordering <σ of the book
embedding. An augmenting Hamiltonian cycle of G is (v0, v1), (v1, v2), . . . , (vn−2, vn−1),
(vn−1, v0) where each edge (vi, vi+1) is either an edge of G or a dummy edge that can be
added to G without violating planarity (see Figure 8.3 for an example). Conversely, if G
is sub-Hamiltonian there exists an augmenting Hamiltonian cycle H (possibly obtained by
adding some edges) in G. Choose an embedding Ψ of G with an edge e of H on the external
face. By removing e we have a path P containing all the vertices of G. Define the total

252 CHAPTER 8. SPINE AND RADIAL DRAWINGS

1

2

3

4

5 6

7

8

18

9

11

14

16
15

12

17

10

13

(a)

1 9 11

13 10

12 14

16 15 17

2

3

4

6 5 87

18

(b)

1 9 11

13 10

12 1614

15 17

2

3

4 6

5 7 8 18

(c)

Figure 8.2 (a) A planar graph G. (b) A book embedding of G on two pages: the total
order of the vertices is the left-to-right order of the vertices along the horizontal line, while
the two pages are represented by the two half-planes defined by the same line. (c) A 1-spine,
1-bend drawing of G.

8.3. RESULTS IN THE GENERAL SCENARIO 253

order <σ according to the order the vertices of G are encountered while walking along P .
The edges in P can be assigned to one of the two pages. Edge e can also be assigned to the
same page as the edges in P . All the remaining edges of G are either inside or outside H in
the embedding Ψ. Those that are inside H are assigned to the same page as all the edges of
H, those that are outside are assigned to the other page. There cannot be two edges (u, v)
and (w, z) in the same page such that u <σ w <σ v <σ z, because otherwise there would
be a crossing in the embedding Ψ.

1 9 11

13 10

12 14

16 15 17

2

3

4

6 5 87

18

1

2

3

4

5

7

8

18

9

11

14

16
15

12

10

13

17

6

(a) (b)

Figure 8.3 An augmentation of the planar graph of Figure 8.2 to a planar Hamiltonian
graph.

Based on the result of Bernhart and Kainen and on Lemma 8.1, we have that the class of
graphs that admit a planar 1-spine, 1-bend drawing is the class of sub-Hamiltonian graphs.
Since testing sub-Hamiltonicity is NP-complete [Wig82], we have that testing a graph for
1-spine, 1-bend drawability is NP-complete, too.

Theorem 8.1 A planar graph is 1-spine, 1-bend drawable if and only if it is sub-Hamiltonian.

Although Theorem 8.1 gives a complete characterization of 1-spine, 1-bend drawable
graphs, such graphs cannot be recognized efficiently; thus it is worth investigating some
specific families of graphs that are sub-classes of the sub-Hamiltonian graphs and that can
be recognized efficiently. Among them we recall here: outerplanar graphs [BK79] (that
coincide with the graphs having pagenumber one), series-parallel graphs [DDLW06, RM95],
planar bipartite graphs [ddMP95], square grids, and X-trees [CLR87].

If two bends per edge are allowed, then every planar graph is drawable on one spine.
This result is a consequence of a result by Kaufmann and Wiese [KW02] about point-set
embeddability. Given a planar graph G = (V,E) and a set S of points in the plane such
that |S| = |V | = n, a point-set embedding of G onto S is a planar drawing of G such that
each vertex of G is represented as a point of S. Kaufmann and Wiese [KW02] prove that

254 CHAPTER 8. SPINE AND RADIAL DRAWINGS

11

1 2

3

4
5 6

78 9

10

11

1 2

3

4
5

7 9

10

8

6

(a) (b)

111

67

3

4 5

8 10

9

2 111

67

3

4 5

8 10

9

2

(c) (d)

111

67

3

4 5

8 10

9

2

(e)

Figure 8.4 (a) A non-Hamiltonian graph G. (b) A Hamiltonian augmentation Ham(G)
of G. (c) A 1-spine, 1-bend drawing of Ham(G). (d) A 1-spine, 3-bend drawing of G; the
edges with 3 bends are highlighted. (e) A 1-spine, 2-bend drawing of G obtained by rotating
the segments of the edges that had 3 bends in the previous picture.

8.3. RESULTS IN THE GENERAL SCENARIO 255

every planar graph G admits a point-set embedding on any given set of points such that
every edge of G is represented as a polyline with at most 2 bends. Such a drawing can
be computed in O(n log n) time. In order to compute a planar 1-spine, 2-bend drawing of
a planar graph G, it is sufficient to choose a set of n collinear points and then apply the
Kaufmann and Wiese algorithm. As a consequence, the following theorem holds.

Theorem 8.2 Every planar graph is 1-spine, 2-bend drawable.

Although the paper by Kaufmann and Wiese is about point-set embeddings and does not
mention book embeddings, their drawing technique can be regarded as an extension of the
technique used to compute a 1-spine, 1-bend drawing of a Hamiltonian graph. Kaufmann
and Wiese compute a Hamiltonian augmentation Ham(G) of the input graph G such that
each edge of G is subdivided at most once (see Figure 8.4). Since Ham(G) is Hamiltonian
it admits a 1-spine, 1-bend drawing by Theorem 8.1. An edge e = (u, v) that has been
subdivided by a division vertex w, is represented in the 1-spine, 1-bend drawing of Ham(G)
by two edges (u,w) and (w, v) each one drawn with at most one bend. Removing the
division vertex w we obtain another bend on edge e at the point pw where w was drawn.
This removal would give rise to at most three bends per edge (see Figure 8.4). However, it
is possible to remove this third bend by suitably rotating the segments incident to pw (see
Figure 8.4). The drawing technique described above requires to compute a Hamiltonian
augmentation Ham(G) of G. Kaufmann and Wiese describe a Hamiltonian augmentation
technique that runs in O(n) time and subdivides each edge at most once. Details about
different Hamiltonian augmentation techniques are given in Section 8.5.1.

We conclude this discussion about 1-spine, 2-bend drawings by further remarking the
connection between them and book embeddings. The 1-spine, 2-bend drawing of the input
graph G is obtained from a 1-spine, 1-bend drawing of the Hamiltonian graph Ham(G).
An edge e = (u, v) that has been subdivided by a division vertex w, is represented in the
1-spine, 1-bend drawing of Ham(G) by two edges (u,w) and (w, v) that may be on the two
different half-planes defined by the spine. This means that a 1-spine, 2-bend drawing of
a planar graph G can be seen as a book embedding of G on two pages, where each edge
is not required to be on one page only but is allowed to cross the spine at most once. A
book embedding where edges are allowed to cross the spine is also called a topological book
embedding . Therefore, Theorem 8.2 implies that every planar graph has a topological book
embedding on two pages where each edge crosses the spine at most once. Since two bends
are sufficient to draw all planar graphs on a single spine, it does not make sense to further
investigate 1-spine, b-bend drawings for b > 2.

Figure 8.5 An outerplanar graph that does not admit a 2-spine, 0-bend drawing.

Consider now the case when two spines are given. It is immediate to see that if a graph
admits a 2-spine, 0-bend drawing, then it is outerplanar (i.e., it admits a planar embedding
such that all the vertices are on the external face). Indeed, in a 2-spine, 0-bend drawing

256 CHAPTER 8. SPINE AND RADIAL DRAWINGS

each vertex is either a topmost vertex or a bottommost vertex, and therefore, since the
edges are straight lines, it is on the external face. Observe however that not all outerplanar
graphs admits a 2-spine, 0-bend drawing. The graph in Figure 8.5 is the smallest (in terms
of number of vertices) outerplanar graph that is not 2-spine, 0-bend drawable.

Some preliminary results about 2-spine, 0-bend drawability were presented by Felsner et
al. [FLW03], who characterize trees that are 2-spine, 0-bend drawable. They prove that a
tree T admits a 2-spine, 0-bend drawing if and only if there exists a path P in T such that
removing P from T we are left with a collection of vertex disjoint paths (see Figure 8.6).
A characterization of (outer)planar graphs that admit a planar 2-spine, 0-bend drawing
has been given by Cornelsen et al. [CSW04]. They first consider biconnected outerplanar
graphs and prove that a biconnected outerplanar graph G admits a 2-spine, 0-bend drawing
if and only if its internal faces induce a path in the dual graph of G (see Figure 8.6).
The dual graph G∗ of a planar graph G is a multigraph that has a vertex for each face
of G and an edge between two vertices f and g if the two faces represented by f and g
share an edge. For general simply connected outerplanar graphs Cornelsen et al. [CSW04]
describe a decomposition of an outerplanar graph G into components like paths, trees
and biconnected outerplanar components and describe necessary and sufficient conditions
that these components must satisfy for the 2-spine, 0-bend drawability of G. Therefore,
the outerplanar graphs whose components satisfy these conditions are exactly the planar
graphs that are 2-spine, 0-bend drawable. The necessary and sufficient conditions described
in [CSW04] cannot be shortly summarized. Intuitively, they guarantee that each single
component is 2-spine, 0-bend drawable and that the vertices shared by different components
are drawn so that the drawings of the different components can be merged together. Finally,
Cornelsen et al. [CSW04] prove that the necessary and sufficient condition above can be
tested in O(n) time, thus proving that 2-spine, 0-bend drawability can be tested in linear
time.

(a) (b)

Figure 8.6 (a) A 2-spine, 0-bend drawable tree. The removal of the highlighted path
leaves a set of paths. (b) A 2-spine, 0-bend drawing of a biconnected outerplanar graph G
such that the inner faces of G induce a path in the dual graph of G. In the picture, the
node of the dual graph corresponding to the outer face is not shown.

Drawings on two spines with at most one bend per edge are the subject of [DDLS06]
where, in fact, k-spine, 1-bend drawings have been studied. In [DDLS06], a k-spine, 1-bend
drawing is considered as an extension of a 2-page book embedding where the spines are
more than one, and it is proved that, for any fixed k ≥ 2, not all planar graphs are k-spine,
1-bend drawable. The proof is based on the observation that, if a graph admits a k-spine,
1-bend drawing, it must exist a special cycle, called cutting cycle (see Figure 8.7), removing
which we are left with (k − 1)-spine, 1-bend drawable subgraphs. The cutting cycle is
actually a sequence of vertices that may or may not correspond to an actual cycle in the

8.3. RESULTS IN THE GENERAL SCENARIO 257

graph. Instead, the sequence of vertices is such that, if dummy edges are inserted between
non-adjacent vertices that are consecutive in the sequence, then the resulting drawing is
still a k-spine, 1-bend drawing. The following lemma holds.

LEMMA 8.2 If G is a maximal planar graph that is k-spine, 1-bend drawable for k ≥ 2,
then there exists a simple cycle C in G such that G \ C is (k − 1)-spine, 1-bend drawable.

(a)

(b)

Figure 8.7 (a) A planar 2-spine, 1-bend drawing of a planar graph G. (b) A cutting cycle
of G. Figure taken from [DDLS06].

We can use now the necessary condition expressed by Lemma 8.2 to construct, for any
fixed k ≥ 1, a maximal planar graph Nk that is not k-spine, 1-bend drawable. Graph N1

is the graph shown in Figure 8.8 (it is the same graph as in Figure 8.4), which is a non-
Hamiltonian graph. Graph Nk is obtained from N1 by replacing each black vertex with a
copy of Nk−1 and triangulating the result (see Figure 8.8).

The proof that Nk is not k-spine, 1-bend drawable is by induction on k. N1 is not 1-
spine, 1-bend drawable by Theorem 8.1 because it is not Hamiltonian. Let Nk−1 be not
(k − 1)-spine, 1-bend drawable and assume by contradiction that Nk is k-spine, 1-bend
drawable. By Lemma 8.2 there exists a simple cycle C in Nk whose removal leaves us with
(k − 1)-spine, 1-bend drawable subgraphs. Since each copy of Nk−1 is not (k − 1)-spine,
1-bend drawable, then C contains at least one vertex for each copy of Nk−1. Also, since
each copy of Nk−1 is inside a triangle of white vertices we have that also all white vertices
must be in C. However, this would imply that N1 is Hamiltonian.

258 CHAPTER 8. SPINE AND RADIAL DRAWINGS

Theorem 8.3 For each integer k ≥ 1, there exists a planar graph that is not k-spine,
1-bend drawable.

v
1 v

3

v
5

v
4

2
v

v
1 v

3

v
5

v
4

2
v

=N
k

(a) (b)

Figure 8.8 (a) A graph that is not 1-spine, 1-bend drawable. (b) A graph that is not
k-spine, 1-bend drawable. Figure taken from [DDLS06].

Motivated by the fact that not all planar graphs are k-spine, 1-bend drawable, in [DDLS06]
the complexity of deciding whether a planar graph is k-spine, 1-bend drawable is studied,
and it is proved that this problem is NP-complete. The reduction is from the Maximal

Planar External Hamiltonian Circuit problem, i.e., the problem of deciding whether
a planar embedded graph contains a Hamiltonian circuit with an edge on the external face.
In [DDLS06], a construction is described that, given a maximal planar graph G, produces a
maximal planar graph Hk(G) that is k-spine, 1-bend drawable if and only if G is externally
Hamiltonian.

Theorem 8.4 The problem of deciding whether a given planar graph is k-spine, 1-bend
drawable is NP-complete for any fixed k ≥ 1.

For the special case of k = 2, a complete characterization of 2-spine, 1-bend drawable
graphs is given in [DDLS06]. In this case, the necessary condition expressed by Lemma 8.2
can be better detailed. Namely, after removing the cutting cycle, we are left with a set
of disjoint paths whose endvertices are adjacent (or can be made adjacent) to the cutting
cycle and that satisfy some additional properties (see Figure 8.9). It can be proved that
this necessary condition is also sufficient. Graphs whose vertices can be covered by a
cycle and a set of vertex-disjoint paths whose end-vertices are connected to the cycle are
called (sub-)Hamiltonian-with-handles graphs in [DDLS06], which appears as an extension
of (sub-)Hamiltonian graphs.

Theorem 8.5 A planar graph is 2-spine, 1-bend drawable if and only if it is sub-Hamiltonian-
with-handles.

Theorem 8.4 says that it is NP-complete to recognize sub-Hamiltonian-with-handles
graphs. However, there are subclasses of sub-Hamiltonian-with-handles graphs that can
be recognized in polynomial time. For example, in [DDLS06] it has been proved that 2-
outerplanar graphs are sub-Hamiltonian-with-handles and hence 2-spine, 1-bend drawable.

8.3. RESULTS IN THE GENERAL SCENARIO 259

b

b b

b

r

rr

r

g
g

g

g g

g g
g

g
g

Figure 8.9 The planar graph of Figure 8.7 covered by a cycle (thick blue edges) and a
set of vertex-disjoint paths (thick red edges) whose end-vertices are connected to the cycle
(thick green edges). The dashed edges are dummy edges. Labels b, g, and r denote the
color of the solid thick edges. The color of the dashed thick edges can be easily inferred.

A complete characterization of the family of k-spine, 1-bend drawable graphs is still
missing, but Theorem 8.3 tells us that this family is a proper subclass of planar graphs.

A characterization is still missing also for k-spine, 0-bend drawable graphs, where some
preliminary results have been obtained only for trees. Felsner et al. [FLW03] proved that,
for any fixed k, it is possible to construct a tree that is not k-spine, 0-bend drawable. To
produce such a tree, Felsner et al. [FLW03] introduce the notion of strictness of a tree T
defined as follows. A tree T is 2-strict if it contains a vertex of degree greater than or equal
to three. T is k-strict if it contains a vertex v adjacent to at least three vertices u1, u2,
and u3 such that the subtrees rooted at u1, u2, and u3 are (k − 1)-strict. In [FLW03] it is
proved that a k-strict tree is not (k− 1)-spine, 0-bend drawable. The proof is by induction.
A 2-strict tree is not 1-spine, 0-bend drawable since it is not a path. If a tree is k-strict,
then the three subtrees rooted at u1, u2 and u3 are (k − 1)-strict and require at least k
spine to be drawn. In this case, there is no location for v on the k spines that allows it to
connect to the three subtrees without creating a crossing. Based on this result about the
strictness of a tree we have that the complete ternary tree of height2 k + 1 is not k-spine,
0-bend drawable because it is (k + 1)-strict.

An interesting result shown in [FLW03] is that the strictness of a tree T is closely related
to the pathwidth; more precisely, we have that the strictness s of T and the pathwidth p of
T are such that p ≤ s ≤ p+1. This implies that if a tree has pathwidth p, then it is not k-
spine, 0-bend drawable for k < p. The relationship between the pathwidth p of a tree T and
the k-spine, 0-bend drawability of T has been further investigated by Suderman [Sud04] who
proved that every tree with pathwidth h has a k-spine, 0-bend drawing with p ≤ k ≤ ⌈3p/2⌉.
Suderman [Sud04] also describes a linear-time drawing algorithm that computes a k-spine,
0-bend drawing for a tree with pathwidth p, where k = ⌈3p/2⌉. In his paper, Suderman
studies layered drawings of trees with pathwidth p not only within the general scenario, but
also in several different constrained scenarios. We will describe these results in Section 8.4.

A summary of the results described in this section is presented in Table 8.1 (for the
Characterization Problem) and in Table 8.2 (for the Drawability Testing Problem).

2The height is measured as the number of vertices on the path from the root to the deepest leaf.

260 CHAPTER 8. SPINE AND RADIAL DRAWINGS

0 bends 1 bend 2 bends

1 spine paths
sub-Hamiltonian

[BK79]
planar [KW02]

2 spines
subclass of

outerplanar [CSW04]

sub-Hamiltonian-

with-handles

[DDLS06]

planar [KW02]

k > 2 spines
OPEN (not all trees

[FLW03])

OPEN (not all

planar [DDLS06])
planar [KW02]

Table 8.1 Summary of the results about the Characterization Problem for different
numbers of spines and bends.

0 bends 1 bend 2 bends

1 spine O(n) NP-complete [BK79] always true

2 spines O(n) [CSW04]
NP-complete

[DDLS06]
always true

k ≥ 2 spines OPEN
NP-complete

[DDLS06]
always true

Table 8.2 Summary of the results about the Drawability Testing Problem for different
numbers of spines and bends.

8.3.2 Radial Drawings in the General Scenario

In this section, we consider k-radial, b-bend drawings, and start with the case of a single
circle. If no bend per edge is allowed, then the class of planar graphs that can be drawn on
a circle trivially coincides with the class of outerplanar graphs, which can be recognized in
linear time.

Theorem 8.6 A planar graph is 1-radial, 0-bend drawable if and only if it is outerplanar.

Drawings on one circle and at most one bend per edge have been studied in [DDLW05]
where it is proved that every planar graph admits a planar 1-bend drawing on a semi-circle
and therefore it is 1-radial, 1-bend drawable. More generally, in [DDLW05] it has been
shown that, for every planar graph G, it is possible to define a linear ordering L of the
vertices of G, called curve embedding , such that G admits a planar 1-bend drawing on any
concave curve Λ where the vertices appear along Λ in the same order as in L. This rather
surprising result says that, although not all planar graph can be drawn with one bend on a
single spine, it is sufficient to “curve” this spine in order to support all of them. Thus, in
one sense, a circle is “more powerful” than any number of spines, because, for any k > 0,
we know that there are planar graphs that are not k-spine, 1-bend drawable.
The algorithm described in [DDLW05] to compute a 1-bend drawing on a semi-circle Λ

of a maximal planar graph G uses the canonical ordering defined by de Fraysseix, Pach,
and Pollack [dPP90]. Let G be a maximal embedded planar graph with external boundary
u, v, w; a canonical ordering of G is an ordering v1 = u, v2 = v, v3, . . . , vn−1, vn = w of the
vertices of G such that for every 4 ≤ k ≤ n:

• the subgraph Gk−1 of G induced by v1, v2, . . . , vk−1 is biconnected and the ex-
ternal boundary Ck−1 of Gk−1 contains edge (u, v).

8.3. RESULTS IN THE GENERAL SCENARIO 261

• vk is on the external face of Gk−1, and its neighbors in Gk−1 form a subpath of
the path Ck−1 − (u, v) (see Figure 8.10).

v
k

u v

−1

−1

C

G

k

k

Figure 8.10 Illustration of the properties of the canonical ordering. Figure taken
from [DDLW05].

Once a canonical ordering has been computed, the drawing algorithm in [DDLW05] first
draws G3 by placing vertices v1, v2, and v3 at three arbitrary points of Λ in the order v1, v3,
and v2; the edges between them are drawn as straight-line segments. Vertices v4, v5, . . . , vn
are added one per step. At step k vertex vk is placed and a planar 1-radial, 1-bend drawing
Γk of Gk is computed. The algorithm guarantees that the following invariants hold for Γk:

• the clockwise order of the vertices along Λ is equal to the clockwise order they
have on the external boundary Ck of Gk;

• each vertex c on the external boundary of Ck is drawn on Λ so that there exists
two points αc and βc, such that no point of an edge (i.e., no vertex and no internal
point of an edge) is encountered going clockwise along Λ between αc and c and
between c and βc. The arc of Λ between αc and c is called the left safe region of
c while the arc of Λ between c and βc is called the right safe region of c.

After the drawing of Gk has been computed, vertex vk+1 has to be added to the draw-
ing. By the properties of the canonical ordering, vk+1 is adjacent to a set of vertices
w1, w2, . . . , wh that are consecutive on the external boundary of Gk and, by the first in-
variant, are consecutive along Λ. Vertex vk+1 is placed in the right safe region of w1 (i.e.,
between w1 and βw1

). By the second invariant, this arc is “free,” i.e., it does not contain
any vertex or any crossing between an edge and Λ. Edge (w1, vk+1) is drawn as a straight-
line segment, while each edge ei = (vk+1, wi) (i = 2, . . . , h) is drawn as a polyline with one
bend by suitably choosing two intersection points between ei and Λ. The first intersection
point is a point of the arc of Λ between vk+1 and βw1

, while the second is a point of the
left safe region of wi (i.e., it is a point between αwi

and wi). This choice of the two inter-
section points guarantees that edges e2, e3, . . . , eh can be drawn without crossings. For an
illustration of the incremental technique described above, see Figure 8.11. For an example
of a 1-radial, 1-bend drawing of a planar graph, see Figure 8.12.

Theorem 8.7 Every planar graph is 1-radial, 1-bend drawable.

A 1-bend drawing on a semi-circle can be seen as an extension of a book embedding on two
pages and, indeed, in [DDLW05] planar 1-bend drawings on a semi-circle are used to give an
alternative proof of Theorem 8.2. Informally speaking, a planar 1-bend drawing on a semi-

262 CHAPTER 8. SPINE AND RADIAL DRAWINGS

w2 αw3

αw2β w1

vk+1

w1
w3

Figure 8.11 Illustration of the technique used to draw a planar graph on a semi-circle.
Figure taken from [DDLW05].

6

5
4

3 21

(a)

1

6

2

3

4

5

(b)

Figure 8.12 (a) A planar graph G (where the vertices are numbered according to a canon-
ical ordering of G). (b) A 1-radial, 1-bend drawing. The linear ordering of the vertices along
the (semi)-circle is different from the canonical ordering. Figure taken from [DDLW05].

8.3. RESULTS IN THE GENERAL SCENARIO 263

circle is a topological book embedding where the spine is “bent.” By “straightening” this
“bent” spine, one can obtain a topological book embedding on two pages. More precisely,
according to the algorithm presented in [DDLW05], each edge is either straight-line or
it crosses the circle in two points (other than its endvertices). If we consider these two
intersection points as two division vertices, then each edge (real or obtained by subdividing
a real edge with two division vertices) is either straight-line and completely inside the (semi)-
circle or it is bent and completely outside the (semi)-circle. A topological book embedding
on two pages can now be computed by assigning edges inside the circle to one page (for
example to the one corresponding to the half-plane below the spine), and edges outside the
circle to the other page (for example, to the one corresponding to the half-plane above the
spine). In the obtained topological book embedding each edge crosses the spine at most
twice. However, the 1-bend drawing on a semi-circle is such that one of this spine crossing
can be avoided. For an illustration, see Figure 8.13, for more details see [DDLW05].

1 6 4 5 3 2

Figure 8.13 A 1-spine, 2-bend drawing of the graph of Figure 8.12, obtained by using
the 1-radial, 1-bend drawing shown in Figure 8.12. Figure taken from [DDLW05].

In [DDLM05] k-radial, 0-bend drawings have been studied, for k ≥ 2. The existence of
a k-radial, 0-bend drawing of a planar graph G is related to the outerplanarity of G. The
outerplanarity is defined as follows. A 1-outerplanar embedded graph (or simply outerplanar
embedded graph) is an embedded planar graph where all vertices are on the external face.
An embedded graph is a k-outerplanar embedded graph (k > 1) if the embedded graph
obtained by removing all vertices of the external face is a (k − 1)-outerplanar embedded
graph. The planar embedding of a k-outerplanar embedded graph is called a k-outerplanar
embedding . A graph is k-outerplanar if it admits a k-outerplanar embedding. A planar
graph G has outerplanarity k (for an integer k > 0) if it is k-outerplanar but not (k − 1)-
outerplanar. In [DDLM05], it is proved that if a planar graph G admits a k-radial, 0-bend
drawing, then its outerplanarity is at most k. The proof is by induction on the number of
circles k. If G has a 1-radial, 0-bend drawing, then it is outerplanar by Theorem 8.6. Let
Γ be a planar k-radial, 0-bend drawing of G. All the vertices that are on the most external
circle in Γ are vertices of the external face because the drawing is planar and straight-line.
Therefore, removing the vertices of the external face we are left with a (k − 1)-radial, 0-

264 CHAPTER 8. SPINE AND RADIAL DRAWINGS

bend drawing and, by induction, with an embedded (k − 1)-outerplanar graph. Therefore,
G is an embedded k-outerplanar graph and its outerplanarity is at most k. In the same
paper [DDLM05], an algorithm is presented to compute a k-radial, 0-bend drawing of a k-
outerplanar embedded graph G. Figure 8.14 shows an example of a 2-radial, 0-bend drawing
of a 2-outerplanar embedded graph. A consequence of these two results in [DDLM05] is
that the class of graphs that are k-radial, 0-bend drawable, is the class of graphs with
outerplanarity at most k.

Theorem 8.8 A planar graph is k-radial, 0-bend drawable (k > 1) if and only if its
outerplanarity is at most k.

Theorem 8.8 implies that, in order to test whether a planar graph is k-radial, 0-bend draw-
able, one has to compute the outerplanarity of a planar graph G. In [DDLM05], it is stated
that this can be done in O(n5 log n) time based on a result by Bienstock and Monma [BM90].
Recently, this result has been improved to O(n4) by Angelini et al. [ADP11]; as a conse-
quence the problem of deciding whether a planar graph is k-radial, 0-bend drawable can
be solved in O(n4) time. The algorithm by Angelini et al. [ADP11] can also be used to
compute a k-outerplanar embedding of a planar graph G, where k is the outerplanarity of
G. Thus, another consequence of the results in [DDLM05] is that there exists an O(n4)-time
algorithm to compute a k-radial, 0-bend drawing of a planar graph G such that k is the
minimum possible value. Namely, given a planar graph G, one can use the Angelini et al.
algorithm to compute a planar k-outerplanar embedding of G where k is the outerplanarity
of G and then use the algorithm described in [DDLM05] to compute a k-radial, 0-bend
drawing. The number of circles used is the minimum possible because, if G admitted a
h-radial, 0-bend drawing for h < k, then its outerplanarity would be smaller than k.

0 bends 1 bend 2 bends

1 circle outerplanar all planar [DDLW05] all planar [DDLW05]

k ≥ 2 circles
outerplanarity ≤ k

[DDLM05]
all planar [DDLW05] all planar [DDLW05]

Table 8.3 Summary of the results about the Characterization Problem for different
numbers of circles and bends.

0 bends 1 bend 2 bends

1 circle O(n) always true always true

k ≥ 2 circles O(n4) [ADP11] always true always true

Table 8.4 Summary of the results about the Drawability Testing Problem for different
numbers of circles and bends.

8.3. RESULTS IN THE GENERAL SCENARIO 265

1

5

6

7

8 9

10

234

(a)
1

2

3

4

56

7

8

9

10

(b)

Figure 8.14 (a) A 2-outerplanar embedded graph G. (b) A 2-radial, 0-bend drawing
of G. Figure taken from [DDLM05].

266 CHAPTER 8. SPINE AND RADIAL DRAWINGS

8.4 Results in the Constrained Scenarios

In this section, we describe results about spine and radial drawings with the additional
constraints described in Section 8.2.

8.4.1 Upright and Proper Spine Drawings

We start by considering upright spine drawings, i.e., drawings where intra-layer edges are
not allowed. This constraint implies that the number of layers is at least two, because on
a single layer only isolated vertices can be represented. The characterization of upright
2-spine, 0-bend drawable graphs can be stated in several different but equivalent ways. A
graph is a caterpillar if it consists of a simple path and degree-one vertices attached to this
path. A 2-claw is a graph consisting of one vertex of degree 3 (the center), which is adjacent
to three degree-two vertices, each of which is adjacent to the center and to a vertex of degree
one. These definitions are illustrated in Figure 8.15. The following characterizations can be
found in the works of Eades, McKay and Wormald [EMW86], Harary and Schwenk [HS72],
and Tomii, Kambayashi, and Yajima [TKY77].

(a) (b)

Figure 8.15 (a) A caterpillar. (b) A 2-claw.

Theorem 8.9 Let G be a planar graph. The following are equivalent.

1. G is upright 2-spine, 0-bend drawable.

2. G is a forest of caterpillars.

3. G is acyclic and does not contain a 2-claw.

An interesting work about upright 2-spine, 0-bend drawings is the one by Waterman and
Griggs [WG86]. In this paper, the authors study a DNA mapping problem with applications
in biology. Very roughly speaking, we have a specific DNA sequence that can be “cut” by
means of enzymes. Each cut can be modeled as a partition of a straight line into intervals.
Different enzymes give different cuts, i.e., different intervals. Biologists are interested in the
order of the “pieces” (intervals) in the sequence, but they cannot directly observe this order.
Instead, they can easily establish if different intervals of different cuts (i.e., cuts produced
by different enzymes) overlap. This overlapping between intervals can be modeled as a
bipartite graph. Namely, let A and B be two cuts of the same DNA sequence. We define
a vertex for each interval ai ∈ A, a vertex for each interval bi ∈ B, and an edge (ai, bj)
with ai ∈ A and bj ∈ B iff ai and bj overlap. The problem of reconstructing the two orders
of the intervals in A and B can be modeled as the problem of finding an ordering of the
vertices in A and an ordering of the vertices in B such that they are “consistent” with the

8.4. RESULTS IN THE CONSTRAINED SCENARIOS 267

given overlaps. But this means to find a layout of the bipartite graph on two straight lines
such that there is no edge crossing. In other words, the problem of reconstructing the two
orders of the intervals in A and B is equivalent to the problem of computing an upright
2-spine, 0-bend drawing of the bipartite graph representing the overlaps. Waterman and
Griggs study the properties of this bipartite graph, prove that it is a caterpillar and give a
linear-time algorithm to compute an upright 2-spine, 0-bend drawing.

Remaining in the case of upright drawings, when the number of spines is greater than
two, the problem is different depending on whether one admits long edges (i.e., edges that
span more than one level) or not.

In the case when long edges are not allowed, i.e., the case of upright proper drawings3,
Heath and Rosenberg [HR92] show that the drawability testing problem is NP-complete
if the number of spines is not fixed. By using the theory of the parametrized complexity,
Dujmović et al. [DFK+08] prove that it is possible to decide whether a planar graph G
admits an upright proper k-spine, 0-bend drawing in O(f(k) · n). This implies that, for a
fixed number of layers k, k-spine, 0-bend drawable graphs can be recognized in linear time.
However, the dependency of time complexity from k is given by f(k) = 232·k

3

, which gives
impractical large constants also for small values of k.

Fößmeier and Kaufmann [FK97] studied upright proper 3-spine, 0-bend drawable graphs,
gave a characterization of them, and presented a linear-time algorithm to recognize them.
Recently, Suderman [Sud05] pointed out some errors in the work by Fößmeier and Kauf-
mann and, based on the ideas found there, presented a new characterization and a new
linear-time algorithm to recognize upright proper 3-spine, 0-bend drawable graphs. The
characterization presented by Suderman consists of constraints on vertices and biconnected
components. For example, it is not difficult to see that if C is a biconnected component of an
upright proper 3-spine, 0-bend drawable graph, then G−C contains at most two connected
components that are not upright proper 2-spine, 0-bend drawable. However, this in itself
is not sufficient to guarantee upright proper 3-spine, 0-bend drawability. Consequently,
additional constraints must be defined. Suderman describes constraints on vertices and
biconnected components that guarantee upright proper 3-spine, 0-bend drawability. Such
constraints cannot be easily summarized. The interested reader is referred to the original
work by Suderman [Sud05].

Upright spine drawings (proper or not) have also been studied by Suderman [Sud04] in the
case of trees with pathwidth p. Suderman proves that every tree with pathwidth p admits
an upright k-spine, 0-bend drawing with p ≤ k ≤ ⌈3p/2⌉ and an upright proper k-spine,
0-bend drawing with p ≤ k ≤ ⌈3p−3⌉. Suderman also proves that these bounds are optimal
and present linear-time algorithms that, given a tree with pathwidth p, compute an upright
k-spine, 0-bend drawing where k = ⌈3p/2⌉ and an upright proper k-spine, 0-bend drawing
where k = ⌈3p − 3⌉. In the same paper [Sud04], Suderman studies proper (non-upright)
spine drawings of trees with pathwidth p. In this case, a lower bound of p and an upper
bound of 2p−1 on the number of spines in a proper spine drawings of a tree with pathwidth
p are given. Also in this case the bounds are optimal and a linear-time algorithm exists to
compute a proper k-spine, 0-bend drawing with k = 2p− 1 of a tree with pathwidth p.

3These drawings are usually called simply proper layered drawings.

268 CHAPTER 8. SPINE AND RADIAL DRAWINGS

8.4.2 Partitioned Spine Drawings

As explained in Subsection 8.2.2, in the partitioned layered drawing problem the input
graph is partitioned into subsets of vertices, and all vertices in the same set must be drawn
on the same layer.

The special case of partitions into two sets have been studied in the literature with
two different assumptions: (i) vertices of a same set are never adjacent; (ii) vertices of a
same set can be adjacent. Observe that partitioned k-spine, 0-bend drawings of a bipartite
planar graph with k ∈ {2, 3} can be regarded as upright proper k-spine, 0-bend drawings
of (non-bipartite) planar graphs. Namely, if a planar graph admits an upright 2-spine, 0-
bend drawing, then the vertices on each spine are not adjacent and therefore the graph is
bipartite. Analogously, if a planar graph admits an upright proper 3-spine, 0-bend drawing
then the vertices on the middle spine are adjacent to the vertices on the top spine and to
the vertices on the bottom spine and there is no edge on each spine. This means that the
vertices in the middle spine form a set of the bipartition and the vertices in the top and
bottom spines form the other set. Thus, the results about upright 2-spine, 0-bend drawings
and upright proper 3-spine, 0-bend drawings can also be regarded as results for bipartite
graphs.

Biedl [Bie98] characterizes the family of planar graphs that admit a partitioned 2-spine,
0-bend drawing, where vertices in the same set (layer) can be adjacent. Starting from a
partitioned planar graph G = (A ∪ B,E) Biedl constructs a graph G′ whose vertex set is
A ∪B ∪ {va, vb}. Vertex va is connected to all the edges in A, vertex vb is connected to all
the edges in B, and va and vb are adjacent. Graph G admits a partitioned 2-spine, 0-bend
drawing if and only if G′ is planar and there exists a planar embedding of G′ such that any
triangle containing va or vb is a face (see Figure 8.16).

va

vb

Figure 8.16 The graph G′ constructed by Biedl [Bie98] in order to compute a partitioned
2-spine, 0-bend drawing of a partitioned planar graph G.

Partitioned layered drawings on three layers have been studied by Cornelsen et al. [CSW04]
who considered partitioned (non-bipartite) planar graphs with the additional property that
every B-vertex of degree one is adjacent to an A-vertex. Cornelsen et al. derive a graph
G′ from the input graph G by means of a suitable transformation and prove that G admits
a partitioned 3-spine, 0-bend drawing if and only if G′ admits a 2-spine, 0-bend drawing.
Since G′ can be computed in linear time and 2-spine, 0-bend drawability can be tested in
linear time (see Section 8.3.1), we have that partitioned 3-spine, 0-bend drawable graphs
can be recognized in linear time.

We remark that several other models have been introduced in the literature to draw
partitioned planar graphs. We recall, for example, the LH-drawings, where only one set of
the partition is required to be on a straight line while the other is drawn in one of the two

8.4. RESULTS IN THE CONSTRAINED SCENARIOS 269

half-space defined by the line itself, and the HH-drawings, where each set is drawn in one
of the two half-planes defined by a straight line. These drawings, however, are not layered
drawings, and therefore, we do not describe the results about them here. The interested
reader is referred to the literature [Bie98, BKM98].

8.4.3 Radial Drawings with Assigned Layers

As discussed in Subsection 8.3.2 for the general scenario, a planar graph is k-radial, 0-bend
drawable (k > 1) if and only if it has outerplanarity at most k. The algorithm that computes
a k-radial, 0-bend drawing strongly relies on the possibility of choosing the radius of each
circle, and therefore the distance between every two consecutive layers. This often leads to
consecutive layers that are very close to each other, and the angular resolution of the drawing
becomes very poor. To improve the readability of radial drawings, consecutive layers should
be at least at a given distance that can be specified as part of the input. However, if the
layers are given the drawability problem cannot be tackled with the technique described
in [DDLM05]. Providing a complete characterization in this case is still an open problem.
Partial results are given in [DD03] and in [DGL08]. In [DD03] it is proven that the family
of 2-outerplanar embedded graphs whose internal vertices induce a biconnected graph are
2-radial, 0-bend drawable. The drawing can be computed in linear time in such a way that
the internal vertices are placed on the internal circle and the external vertices are placed on
the external circle. The idea of the drawing technique is as follows (refer to Figure 8.17).

w

v

u

G2

G
3

1G

u1

u2

w

1

2
w

v

w

u

w

ur

s

(a) (b)

C0
C1

t

t

q

q

p*

c

p
q

q*

c

p

q

p

ext

p

int
int

q

ext

p

G1

G2

G3

C0

C1

ur

u1 w1

ws

v

u

w

(c) (d)

Figure 8.17 (a) A 2-outerplanar embedded graph G where the internal vertices induce a
biconnected graph. (b) The structure of G decomposed into three edge-disjoint outerplanar
embedded graphs. (c) Notation used in the description of the drawing algorithm. (d) A
2-radial, 0-bend drawing of G on any two given given circles. Figure taken from [DD03].

270 CHAPTER 8. SPINE AND RADIAL DRAWINGS

Let G = (V,E) be the 2-outerplanar embedded graph given as input, let C0 and C1

be the external and the internal circles given in input, and let V0 and V1 be the external
vertices and the internal vertices of G. The algorithm places all the vertices on two parallel
semi-circles of C0 and C1. First, it chooses two distinct points, p and q, of C0 such that:
(i) the x- and y-coordinate of p is less than the x- and the y-coordinate of q, respectively;
(ii) segment pq is a chord of C0 that has two intersection points cp, cq with C1, where cp
is the first point encountered while walking on pq from p to q; (iii) there are two lines tp
and tq passing for p and q, respectively, that are tangent to C1, and intersecting in a point
lying in the portion of the annulus delimited by C1 and C0. Denote by pext 6= p and pint
the points where tp intersects C0 and C1, respectively. Similarly, let qext 6= q and qint be
the points where tq intersects C0 and C1, respectively. Also denote by q∗ any point of C1

between qint and cq, and by p∗ any point of C1 between pint and the point pq∗ ∩ C1.

Then the algorithm maps all the vertices of V1 to points of C1, according to the clockwise
order they appear on the external boundary of G(V1), in such a way that: (i) ur and u1 are
mapped to p∗ and pint, respectively; (ii) ws is mapped to qint; (iii) v is mapped to q∗.

Also, it maps all vertices of V0 to points of C0, according to the clockwise order they
appear on the external boundary of G, in such a way that: (i) u and w are mapped to p
and q, respectively; (ii) all vertices from u to w are mapped to points between qext and pext
(iii) all vertices from w to u are mapped to points below q.

A characterization of upright 2-radial, 0-bend drawable graphs is given by Di Giacomo et
al. [DGL08] who, more in general, studied upright 2-layer, 0-bend drawable graphs in the
case when the two layers are two parallel convex curves (a curve is convex if any straight
line intersects it in at most two points). The characterization depends on the properties of
the curves considered. Roughly speaking, if the two curves have not enough “curvature,”
then they behave as two straight lines and the class of graphs that admit an upright 2-
layer, 0-bend drawing on the two curves coincides with the class of upright 2-spine, 0-bend
drawable graphs; on the other hand, if the “curvature” of the two curves is enough, the class
of graphs admitting a 2-layer, 0-bend drawing is larger. These concepts can be formalized
by defining paired and non-paired curves (see Figure 8.18). Let λe, λi be two parallel convex
curves such that the curvature of λe is less than the curvature of λi; λe is the external curve,
λi is the internal curve (in the special case of two concentric circles, λe is the circle with
larger radius). Curves λe, λi are paired if there exist two points p ∈ λi and q ∈ λe such
that the straight-line segment pq intersects λi twice. Observe that two concentric circles
are paired. Two curves will be called non-paired if they are parallel, convex, but are not
paired. The following theorems are proved in [DGL08].

λeλi

x

p

q

ℓ

λe

ℓ
λi

p

x

q

(a) (b)

Figure 8.18 (a) Two paired curves. (b) Two non-paired curves. Figure taken from [DGL08].

8.4. RESULTS IN THE CONSTRAINED SCENARIOS 271

Theorem 8.10 Let C be a set of layers consisting of two non-paired curves and let G be a
planar graph. G admits an upright 2-layer, 0-bend drawing on C if and only if G is a forest
of caterpillars.

Theorem 8.11 Let C be a set of layers consisting of two paired curves and let G be a
planar graph. G admits an upright 2-layer, 0-bend drawing on C if and only if G is bipartite
and admits a planar embedding such that all vertices of one partite set belong to the external
face.

The proof of Theorem 8.10 is an easy adaptation of the proof of Theorem 8.9. The
necessity of Theorem 8.11 can be easily proved as follows. Since the drawing is upright the
graph must be bipartite with each partite set defined by the vertices drawn on each curve.
Also, since the drawing is straight-line and planar, it defines a planar embedding in which
all vertices of the external curve are on the external face. As for the sufficiency, Di Giacomo
et al. describe a drawing algorithm based on a suitable decomposition of the graph called
bipartite fan decomposition. A bipartite fan is a biconnected bipartite planar graph having
a vertex u, called apex, that is shared by all its faces (including the external one). Let
u, v0, v1, . . . , vn−2 be the vertices of a fan G in the counterclockwise order they have on the
external face. Any three vertices v2j , v2j+1, v2j+2 (0 ≤ j ≤ n−4

2) form a fan triplet of G.
Notice that v2j+1 belongs to the same partite set as u. See Figure 8.19 (a) for an example
of a bipartite fan.

fan triplet

u

v5

v1

v2
v3

v4
v6

v7
v8

v9
v10

v0

v0

v1

v2

v3
v5

v6

Fu

u

v4

v5

v6

Fv5

v4
v2

v3

Fv3

v4

(a) (b) (c)

Figure 8.19 (a) A bipartite fan. (b) A bipartite graph G embedded with all vertices of one par-
tition set on the external face. (c) A bipartite fan decomposition of G. Figure taken from [DGL08].

Given a biconnected bipartite graph embedded with all vertices of one partition set on
the external face,4 it is possible to decompose it into bipartite fans as follows. A first
bipartite fan Fu is computed; the two edges of each fan triplet of Fu either belong to the
external face, or they are a cut-set for G and they identify a subgraph that can be recursively
decomposed (see Figure 8.19 (b) for an example of bipartite fan decomposition). Once G
has been decomposed, a wedge Wu is defined on the paired curves; a wedge is a portion of
plane delimited by the external curve λe and by two segments having and endpoint on each
curve, one of which has two intersections with the internal curve λi (see Figure 8.20 (a)
for an example). Fan Fu is drawn inside Wu as shown in Figure 8.20 (b). Notice that
the drawing of Fu is such that each fan triplet defines a new wedge where the subgraph

4If the input graph is not biconnected, it can be augmented with vertex and edge addition to became
biconnected while maintaining all the vertices of one partition set on the external face. For details,
see [DGL08]

272 CHAPTER 8. SPINE AND RADIAL DRAWINGS

identified by the fan triplet can be recursively drawn. We conclude by mentioning that
based on Theorem 8.11 upright 2-layer, 0-bend drawable graphs can be recognized in linear
time and that, when the two paired curves are two circles, an upright 2-radial, 0-bend
drawing can be computed in linear time [DGL08].

λi λe

Wu

λi λe

v0

u

v2

v4

v6

v1

v3

v5

Wv1

Wv3

Wv5

(a) (b)

Figure 8.20 (a) A wedge Wu defined on two paired curves. (b) A 2-layer, 0-bend drawing of
the fan Fu of Figure 8.19 inside Wu.

Di Giacomo et al. [DDL08b] studied k-radial drawings of graphs with assigned layers and
a prescribed assignment of vertices to the layers. More precisely, the layers are concentric
circles such that the difference between the radii of any two consecutive circles is constant
and equal to the radius of the smallest circle. Also, a function φ : V → {0, 1, . . . , k − 1} is
given and it is required that each vertex v ∈ V is drawn as a point of circle Cφ(v). A planar
graph G equipped with such a function is called a layered planar graph. We observe that the
assignment of vertices to layers described by the function φ represents a stronger constraint
than assigning a vertex partition. In [DDL08b], k-radial drawings with different trade-offs
between the maximum number of bends along an edge and the angular distance ratio are
studied. The angular distance ratio measures how uniform is the angular distribution of the
vertices. More precisely, let ρ0, ρ1, . . . , ρh−1 (h ≥ 1) be the distinct rays passing through
the vertices in the order they are encountered in a radial sweep of the drawing. If h > 1,
define αi = (6 ρi+1 − 6 ρi) (the indices are taken modulo h and the angles are measured
modulo 2π), αmin = mini{αi} and αmax = maxi{αi}. If h = 1, we define αmin = 0 and
αmax = 2π. The angular distance ratio is defined as ADR = αmax

αmin

. Notice that, when
h = 1 we have ADR = +∞.

In [DDL08b], it is first proved that there exist layered graphs that do not admit a k-radial,
0-bend drawing satisfying the vertex assignment that have optimal angular distance ratio
(i.e., ADR = 1). The graphG = (V,E, φ) is defined as follows (refer to Figure 8.21). The set
of vertices is V = {u0, u1, . . . , uh−1}∪{v0, v1, . . . , vh−1}∪{w0, w1, . . . , wh−1} with h ≥ 3; the
set of edges is E = {(ui, ui+1), (vi, ui), (vi, ui+1), (wi, ui), (wi, ui+1), (wi, vi) | 0 ≤ i ≤ h−1}
(indices are taken modulo h), φ(ui) = 0, φ(vi) = 0, and φ(wi) = 1 (i = 0, . . . , h − 1).
Consider now a 3-cycle ui, ui+1, vi (i = 0, . . . , h − 2). All the vertices of the cycle must
be drawn on circle C0 and if we want ADR = 1 the angle between the two rays passing
through ui and ui+1 must be 2π

h
. Vertex wi must be drawn on circle C1 and, in order to

guarantee planarity, w1 must be inside the triangle representing the 3-cycle ui, ui+1, vi. It

8.5. RELATED PROBLEMS 273

follows that circle C1 must cross the segment representing the edge (ui, ui+1); thus, it must
be r1 ≥ r0 cos(

π
h
), but this is possible only if h < 3 because r1 = 1

2r0.

v0 v7

v6

v5

v4v3

v2

v1

w0 w7

w6

w5

w4w3

w2

w1

u0

u7

u6

u5

u4

u3

u2

u1

Figure 8.21 A layered planar graph that does not admit a k-radial, 0-bend drawing with
optimal angular distance ratio if the white vertices are assigned to layer 0 and the black
vertices are assigned to layer 1. Figure taken from [DDL08b].

The negative result above motivates the study of k-radial drawings with bends. Di
Giacomo et al. [DDL08b] prove that every layered planar graph G admits a k-radial, 3-
bend drawing consistent with the assignment of the vertices the layers having optimal
angular distance ratio. Such a drawing can be computed in linear time. It is interesting to
note that the drawing algorithm exploits the connection between 1-spine, 2-bend drawings,
topological book embeddings, and Hamiltonicity observed in Section 8.3.1 and that will
be explained in detail in Section 8.5.1. By using the Hamiltonian augmentation technique
described in [DDLW05], a Hamiltonian augmentation Ham(G) of G and an augmenting
Hamiltonian cycle H of G are computed. The cycle H is drawn with straight-line edges
(and each vertex v drawn on circle Cφ(v)). All the remaining edges are either inside H or
outside it in the planar embedding of Ham(G). The edges that are outside H are drawn as a
2-bend polyline outside the polygon representing H; the edges that are inside H are drawn
as a 1-bend polyline inside the polygon representing H. The properties of the cycle H
computed with the augmentation technique of [DDLW05] guarantees that edges subdivided
with a division vertex have at most three bends.

In [DDL08b], a drawing algorithm to compute a k-radial, 2-bend drawing consistent with
the assignment of the vertices to the layers is also presented. In this case, however, the
angular distance ratio is not optimal.

8.5 Related Problems

In this section, we present two applications of the results described in Subsections 8.3.1
and 8.3.2. The first application is in the field of graph theory and the second one is in
computational geometry.

274 CHAPTER 8. SPINE AND RADIAL DRAWINGS

8.5.1 Hamiltonicity

We have already seen in the description of Section 8.3.1 that there is a connection between
1-spine, 1-bend drawings and Hamiltonicity. As stated by Theorem 8.1, a planar graph
admits a 1-spine, 1-bend drawing if and only if it is sub-Hamiltonian. Given a planar
1-spine, 1-bend drawing of a planar graph G (or equivalently a book embedding on two
pages), denote by v0, v1, . . . vn−1 the vertices of G in the order they appear along the spine.
Ham(G) can be computed by augmenting G with the edges (vi, vi+1) (indices are taken
modulo n) that are not in G. A Hamiltonian cycle of Ham(G) is given by the sequence of
edges (v0, v1), (v1, v2), . . . , (vn−2, vn−1), (vn−1, v0). This implies that if one can compute a
planar 1-spine, 1-bend drawing (or equivalently a book embedding on two pages) efficiently,
then it is also possible to find an augmenting Hamiltonian cycle of G efficiently. Since
a book embedding on at most two pages can be computed in O(n) time for outerplanar
graphs [BK79], series-parallel graphs [DDLW06], planar bipartite graphs [ddMP95], square
grids and X-trees [CLR87], for all these families of graphs it is also possible to find an
augmenting Hamiltonian cycle in O(n) time.

(a) (b)

w
1

w
2

w
3

w
4

w
5

w
6

w
7

w
8

(c) (d)

Figure 8.22 The PW Augmentation Technique [PW01]. (a) A planar graph G. (b) A
spanning tree S of G. (c) Visit of S. (d) The resulting Hamiltonian augmentation of G.
Figure taken from [PW01].

In the general case of planar graphs, there are different techniques to compute Ham(G)
and a Hamiltonian cycle of Ham(G), i.e., an augmenting Hamiltonian cycle of G. A first
technique is the one described by Pach and Wenger [PW01] (see also Figure 8.22), which
we will call the PW Augmentation Technique. Let S be a spanning tree of G and let Γ be a
planar drawing of G. Starting at any vertex, walk clockwise around S, visiting its vertices
in order. Note that the internal vertices of S will be visited more than once. Label the
vertices with w1, w2, . . . , wn by the order in which they are first visited. If wi and wi+1 are
connected by an edge, then let this edge belong to the Hamiltonian cycle (1 ≤ i ≤ n and
assume that the indices are taken modulo n). If not, connect wi to wi+1 by a simple curve

8.5. RELATED PROBLEMS 275

clockwise around the boundary of S, passing very close to it. Wherever this curve intersects
an edge of G, introduce a new vertex. This curve becomes a path whose pieces are added as
edges to the graph and to its Hamiltonian cycle. Multiple edges (if any) are merged and the
resulting graph is Ham(G). It can be proved that, using the PW Augmentation Technique,
each edge is split at most twice. Since G has at most 3n− 6 edges and the edges of S are
not split, Ham(G) has at most 5n− 10 vertices.

An alternative technique to compute a Hamiltonian augmentation of G is the one de-
scribed in the work by Kaufman and Wiese [KW02], which we will denote as the KW
Augmentation Technique. This technique is based on the fact that every 4-connected graph
is Hamiltonian and a Hamiltonian cycle can be found in O(n) time [CN89]. Thus, the idea
of Kaufman and Wiese is to make a graph 4-connected. Assume that the input graph is
maximal planar (if not it can be augmented in linear time to a maximal planar graph). By
using an algorithm by Chiba and Nishizeki [CN85] one can find the separating triangles of
G in O(n) time. Each separating triangle can be removed by using the following approach.
Let e = (u, v) be and edge of a separating triangle. Since G is maximal planar, e is shared
by two triangular faces u, v, w and u, v, z. Edge e is replaced by a chain consisting of two
edges (u, d), (d, v) and a division vertex d. Furthermore, edges (d,w) and (d, z) are added
to the graph (see Figure 8.23). By applying this transformation the separating triangle
has been removed and no other separating triangle is created. Thus repeatedly apply-
ing this technique for every separating triangle we eventually obtain a 4-connected graph,
which therefore is a Hamiltonian augmentation Ham(G) of G. The algorithm by Chiba
and Nishizeki [CN89] can then be applied to find a Hamiltonian cycle in Ham(G). The
KW Augmentation Technique splits each edge with at most one division vertex, therefore
Ham(G) has at most 4n− 6 vertices.

v

u
z

w
v

u
z

w

d

Figure 8.23 The augmentation described by Kaufmann and Wiese [KW02] to make a
planar graph 4-connected.

The curve embedding defined in [DDLW05] can be used to define another alternative
technique to compute a Hamiltonian augmentation of G, which will be called in the following
the DDLW Augmentation Technique. As explained in Section 8.3.2, a curve embedding of a
planar graph is a linear ordering L of the vertices of G such that G admits a planar 1-bend
drawing on any concave curve Λ where the vertices appear along Λ in the same order as
L. In particular, such an ordering can be computed by drawing G on a semi-circle with
at most 1 bend per edge according to the technique described in Section 8.3.2. As already
explained in Section 8.3.2, by using the 1-bend drawing on a semi-circle we can obtain a
topological book embedding of G on two pages where each edge crosses the spine at most
once. If we consider the crossings between the edges and the spine as division vertices of
the edges, we have a book embedding on two pages of a subdivision sub(G) of G. Graph
sub(G) has at most one division vertex per edge. Since sub(G) admits a book embedding

276 CHAPTER 8. SPINE AND RADIAL DRAWINGS

on two pages, it is sub-Hamiltonian and we can augment it with edge addition so to make it
Hamiltonian. As explained above this can be done by adding edges between non adjacent
vertices that are consecutive along the spine of the book embedding and between the first
and the last vertex on the spine if such an edge does not exist (see Figure 8.24). With the
DDLW Augmentation Technique, each edge is split at most once and therefore, like in the
case of the KW Augmentation Technique, Ham(G) has at most 4n−6 vertices. However, the
DDLWAugmentation Technique does not require to preliminarily make G 4-connected. The
augmenting Hamiltonian cycle H of G computed by the DDLW Augmentation Technique
has another interesting property. Let d be a division vertex that subdivide the edge (u, v),
and consider the linear ordering of both the real vertices and the division vertices defined by
the topological book embedding of sub(G) used to compute Ham(G). The division vertex
d is encountered after u and before v in the considered order. This is a consequence of the
fact that, according to the algorithm described in [DDLW05], the crossing between an edge
and the spine always falls between the end-vertices of the edge. We say that all the division
vertices of H are flat with respect to the considered order. The flatness of the division
vertices will be used in the next application.

1 11 10

8 7

9

5 4 6 3 2

9

11

10

8
7

5
4

6

3
21

(a) (b)

Figure 8.24 (a) A 1-spine, 2-bend drawing (or equivalently a topological book embedding
on two pages) of the non-Hamiltonian graph G of Figure 8.4 obtained by using the curve
embedding. (b) A Hamiltonian augmentation of G.

8.5.2 Point-Set Embeddability

The results described in Subsections 8.3.1 and 8.3.2 can be applied to the point-set embed-
ding problem, which is widely investigated both in graph drawing and in computational
geometry. Let G be a planar graph with n vertices and let S be a set of n points in the
plane, a point-set embedding of G onto S is a planar drawing of G such that each vertex of
G is represented by a point of S. Observe that there are two main variants of this problem,
depending on whether the mapping between the vertices and the points is given as a part
of the input or not. If the mapping is not given and the points are in general position,
then every outerplanar graph admits a point-set embedding on any given set of points and

8.5. RELATED PROBLEMS 277

straight-line edges [Bos02]. In [Bos02], an O(n log3 n)-time algorithm is also presented to
compute a straight-line point-set embedding of an outerplanar graph G on a given set of
points. For trees, an optimal Θ(n log n)-time algorithm is given by Bose et al. [BMS97],
who improve previous results by Ikebe et al. [IPTT94] and Pach and Törőcsik [PT93].
The problem of deciding whether there exists a point set embedding with straight-line

edges of a planar graph on a given set of points is, in general, NP-hard [Cab06]. Since
outerplanar graphs are the largest class of graphs admitting a straight-line point-set em-
bedding on every set of points [GMPP91] in general position, Kaufmann and Wiese [KW02]
investigate the problem of computing a point-set embedding of a planar graph with a small
number of bends per edge. They show that any planar graph admits a point-set embedding
with at most two bends per edge on any given set of points, and that two bends are required
in some cases. Pach and Wenger [PW01] show that, if the mapping of the vertices of G
to the points of P is given, then a planar drawing of G exists with O(n) bends per edge
and that Ω(n) bends per edge may be necessary even for paths. Recently, the two main
variants (with or without mapping) have been unified and generalized by introducing the
concept of coloured point-set embedding where the set of vertices and the set of points are
coloured with k colours and it is required that each vertex is drawn on a point with the
same colour [BDL08, DDL+08a, DLT06, DGLT10]. Badent et al. [BDL08] generalized the
result by Pach and Wenger by proving that, for every k ≥ 2, a k-coloured planar graph
admits a k-coloured point-set embedding on every k-coloured set of points with O(n) bends
per edge. They also show that Ω(n) bends may be necessary.

We briefly recall here the technique of Kaufmann and Wiese [KW02] and highlight con-
nections between this technique and spine drawings. Assume first that the input graph G
is (sub)-Hamiltonian. Let H = v1, v2, . . . , vn be a (augmenting) Hamiltonian cycle in G,
and let Ψ be a planar embedding of G such that edge (v1, vn) lies on the external face.
Let p1, p2, . . . , pn be the sequence of points in S ordered by increasing x-coordinates (we
can assume that all the points have distinct x-coordinates because, if not, we can rotate
the plane to achieve this condition). Assign each vertex vi to point pi in P and draw the
edges of path P = H \ {(v1, vn)} as straight-line segments. Draw each remaining edge e
using two segments, one with slope σ > 0 and the other with slope −σ. In order to prevent
e from crossing the previously drawn edges, the slope σ is chosen to be greater than the
absolute value of the slope of each edge in P . With segments of slope ±σ, it is possible
to draw e above or below P . Edge e is drawn above P if e is on the left-hand side when
walking from v1 to vn in G, and below P otherwise. The resulting drawing is planar except
that edges outside P incident to the same vertex may contain overlapping segments. To
eliminate overlapping, perturb overlapping edges by decreasing the absolute value of their
segment slopes by slightly different amounts (see [KW02] for details).

When the input graph G is not Hamiltonian, Kaufmann and Wiese compute a Hamilto-
nian augmentation Ham(G) of G by using the KW Augmentation Technique described in
Section 8.5.1. Since Ham(G) has more vertices than G, the set of points S is also enriched
with extra points at suitable positions. Ham(G) can be point-set embedded as described
above. Some edges of G are split into two pieces in Ham(G). Let e = (u, v) be an edge of
G split by a division vertex d in G′. The edge e is replaced by the two edges (u, d) and
(d, v); each of these two edges may have one bend. Furthermore, the two segments incident
to d can have different slopes, thus creating a third bend at d. Hence, each edge of G is
drawn with at most three bends. In order to remove the third bend, Kaufmann and Wiese
rotate the segments incident to d and make them both vertical. Note that this may imply
to rotate other segments that are “above” or “below” the rotating segments. An example
of a point-set embedding of the non-Hamiltonian graph G of Figure 8.4 computed by the
Kaufmann and Wiese technique is shown in Figure 8.25.

278 CHAPTER 8. SPINE AND RADIAL DRAWINGS

1

3

11 8

6
5

4

2

7
10

9

Figure 8.25 A point-set embedding of the non-Hamiltonian graph G of Figure 8.4. The
drawing is created with the Kaufmann and Wiese technique [KW02] and using the Hamil-
tonian cycle (highlighted in the picture) shown in Figure 8.24.

As one can see from the description above, computing an augmenting Hamiltonian cycle
of the input graph G plays an important role in the Kaufmann and Wiese technique. As
discussed in Subsection 8.5.1, Hamiltonicity is related to spine and radial drawings. A first
consequence of this fact is that one can compute a point-set embedding on any set of points
with at most 1 bend per edge for all those families of (sub)-Hamiltonian graphs for which a
(augmenting) Hamiltonian cycle can be found efficiently. In Section 8.5.1, we have seen that
among these families we have outerplanar graphs, series-parallel graphs, planar bipartite
graphs, square grids, and X-trees.

Another connection between spine and radial drawings, Hamiltonicity, and point-set em-
beddings, is given by the fact that one can use the DDLW Augmentation Technique (see
Section 8.5.1) as an alternative to the KW Augmentation Technique to compute a Hamil-
tonian augmentation of the input graph G. The DDLW Augmentation Technique has the
advantage that the rotation needed to avoid the third bend is not required. If e = (u, v) is
an edge of G split by a division vertex d, the rotation is needed only when the x-coordinate
of d is not between the x-coordinates of u and v, i.e., only if d is not flat with respect to
the left to right order of the vertices (see Figure 8.26). As pointed out in Section 8.5.1, the
technique based on curve embeddings guarantees that d is always flat, and thus no rotation
is required. To avoid the final rotation not only simplifies the drawing algorithm, but it
also has impact on the area of the final drawing. Namely, Kaufmann and Wiese prove
that the drawing before the rotation has area O(W 3), where W is the size of S, i.e., the
length of the side of the smallest axis parallel square containing S. The rotation may cause
an exponential growth of the area of the drawing. Thus, avoiding the rotation keeps the
drawing in a polynomial area.

We conclude this section by mentioning that the DDLW Augmentation Technique has
been used to investigate other problems related to point-set embeddability, such as the
study of universal point sets. A set S of m points is h-bend universal for a family of planar

8.5. RELATED PROBLEMS 279

z
w

(a)

z
w

(b)

Figure 8.26 An illustration of the segments rotation performed in the technique by Kauf-
mann and Wiese [KW02] in order to remove a third bend. The division vertex z requires the
rotation, the division vertex w does not require the rotation. Figure taken from [DDLW05].

graphs with n vertices (n ≤ m) if each graph in the family admits a point-set embedding
on a subset of S that has at most h bends per edge.

Many results about point-set embeddings can be regarded as results about universal point
sets. For example, the results about the point-set embeddability of outerplanar graphs on
every set of points in general position [Bos02] imply that every set of points in general
position is 0-bend universal for the class of outerplanar graphs with n vertices. Analogously,
the result about Kaufmann and Wiese implies that every set of points is 2-bend universal
for the class of planar graphs.

De Fraysseix, Pach, and Pollack [dPP90] and independently Schnyder [Sch90] proved
that a grid with O(n2) points is 0-bend universal for all planar graphs with n vertices.
De Fraysseix et al. [dPP90] also showed that a 0-bend universal set of points for all planar
graphs having n vertices cannot have n+o(

√
n) points. This last lower bound was improved

by Chrobak and Karloff [CK89] and later by Kurowski [Kur04] who showed that linearly
many extra points are necessary for a 0-bend universal set of points for all planar graphs
having n vertices.

Since 0-bend universal point sets for planar graphs must have more that n points [Kur04],
while every set of n points is 2-bend universal for planar graphs [KW02], Everett et
al. [ELLW10] investigated 1-bend universal point sets and proved that there exists a set
of n distinct points in the plane in general position that is 1-bend universal for all planar
graphs with n vertices. The proof of the latter result is constructive. A set S of n points is
defined and a point-set embedding of a planar graph G on this set of points is constructed
by exploiting the DDLW Augmentation Technique. Namely, the points are chosen to be
in convex position and an augmenting Hamiltonian cycle H of the input graph G is drawn
as the convex hull CH of S suitably enriched with extra points that represent the division
vertices. The edges of Ham(G) that are not in H are either inside H or outside it. Those
inside are drawn as chords inside CH, the others are drawn with one bend outside CH.
The choice of points and the property of H that all division vertices are flat guarantee that
no additional bend is required when the division vertices are removed.

Dujmović et al. [DEL+13] study 0-bends universal point sets for sub-classes of planar
graphs. They prove that there exist sets of n points that are 0-bend universal for maximum
degree 3 series-parallel lattices with n vertices. They also study h-bend universal point sets
with the additional requirement that bends are also constrained to be represented by points
in the set. They prove that, if 1, 2, or 3 bends per edge are allowed then universal point
sets exist of size O(n2/ log n), O(n log n), and O(n), respectively. All these results use as a
basic tool the DDLW Augmentation Technique.

280 CHAPTER 8. SPINE AND RADIAL DRAWINGS

8.6 Conclusions

In this chapter, layered drawing conventions and drawing algorithms have been presented,
where layers can be parallel straight lines (spine drawings) or concentric circles (radial
drawings). One of the main differences between these drawings and hierarchical drawings
is that we do not take into account the orientation of the edges and we do not require that
edges are represented as monotone curves in a common direction.

In the discussion of the results, we used a unified framework for spine and radial drawings,
which studies the drawability problem assuming that upper bounds are given on the number
of layers and on the number of bends along each edge. We summarized the literature by
providing characterization and time-complexity results for each specific drawability problem,
and we also presented variations of the problem and related results for some constrained
scenarios.

Some theoretical connections between spine drawings, radial drawings, and well-studied
problems in graph theory and computational geometry were also pointed-out.

REFERENCES 281

References

[ADP11] Patrizio Angelini, Giuseppe Di Battista, and Maurizio Patrignani. Finding
a minimum-depth embedding of a planar graph in O(n4) time. Algorith-
mica, 60:890–937, 2011.

[BDL08] Melanie Badent, Emilio Di Giacomo, and Giuseppe Liotta. Drawing col-
ored graphs on colored points. Theoretical Computer Science, 408(2-3):129
– 142, 2008.

[Bie98] Therese C. Biedl. Drawing planar partitions I: LL-drawings and LH-
drawings. In Symposium on Computational Geometry, pages 287–296,
1998.

[BK79] Frank Bernhart and Paul C. Kainen. The book thickness of a graph.
Journal Combinatorial Theory, Series B, 27(3):320–331, 1979.

[BKM98] Therese C. Biedl, Michael Kaufmann, and Petra Mutzel. Drawing planar
partitions. II. HH-drawings. In Graph-Theoretic Concepts in Computer
Science, pages 124–136. Springer-Verlag, 1998.

[BM90] Daniel Bienstock and Clyde L. Monma. On the complexity of embed-
ding planar graphs to minimize certain distance measures. Algorithmica,
5(1):93–109, 1990.

[BMS97] Prosenjit Bose, Michael McAllister, and Jack Snoeyink. Optimal algo-
rithms to embed trees in a point set. Journal of Graph Algorithms and
Applications, 2(1):1–15, 1997.

[Bos02] Prosenjit Bose. On embedding an outer-planar graph in a point-set. Com-
putational Geometry, 23(3):303–312, 2002.

[Cab06] Sergio Cabello. Planar embeddability of the vertices of a graph using a
fixed point set is np-hard. Journal of Graph Algorithms and Applications,
10(2):353–363, 2006.

[CK89] M. Chrobak and H. Karloff. A lower bound on the size of universal sets
for planar graphs. SIGACT News, 20(4):83–86, 1989.

[CLR87] Fan R. K. Chung, Frank T. Leighton, and Arnold L. Rosenberg. Embed-
ding graphs in books: A layout problem with applications to VLSI design.
SIAM Journal on Algebraic and Discrete Methods, 8:33–58, 1987.

[CN85] Norishige Chiba and Takao Nishizeki. Arboricity and subgraph listing
algorithms. SIAM Journal on Computing, 14:210–223, 1985.

[CN89] Norishige Chiba and Takao Nishizeki. The Hamiltonian cycle problem
is linear-time solvable for 4-connected planar graphs. J. Algorithms,
10(2):187–211, June 1989.

[CSW04] Sabine Cornelsen, Thomas Schank, and Dorothea Wagner. Drawing graphs
on two and three lines. Journal of Graph Algorithms and Applications,
8(2):161–177, 2004.

[DD03] Emilio Di Giacomo and Walter Didimo. Straight-line drawings of 2-
outerplanar graphs on two curves. In Graph Drawing, volume 4912, pages
419–424, 2003.

[DDL+08a] E. Di Giacomo, W. Didimo, G. Liotta, H. Meijer, F. Trotta, and S. K. Wis-
math. k-colored point-set embeddability of outerplanar graphs. Journal
of Graph Algorithms and Applications, 12(1):29–49, 2008.

282 CHAPTER 8. SPINE AND RADIAL DRAWINGS

[DDL08b] Emilio Di Giacomo, Walter Didimo, and Giuseppe Liotta. Radial draw-
ings of graphs: Geometric constraints and trade-offs. Journal of Discrete
Algorithms, 6(1):109 – 124, 2008.

[DDLM05] E. Di Giacomo, W. Didimo, G. Liotta, and H. Meijer. Computing radial
drawings on the minimum number of circles. Journal of Graph Algorithms
and Applications, 9(3):365–389, 2005.

[DDLS06] Emilio Di Giacomo, Walter Didimo, Giuseppe Liotta, and Matthew Sud-
erman. k-spine, 1-bend planarity. Theoretical Computer Science, 359(1–
3):148–175, 2006.

[DDLW05] Emilio Di Giacomo, Walter Didimo, Giuseppe Liotta, and Stephen K.
Wismath. Curve-constrained drawings of planar graphs. Computational
Geometry: Theory and Applications, 30:1–23, 2005.

[DDLW06] Emilio Di Giacomo, Walter Didimo, Giuseppe Liotta, and Stephen K.
Wismath. Book embeddability of SeriesParallel digraphs. Algorithmica,
45:531–547, 2006.

[ddMP95] Hubert de Fraysseix, Patrice Ossona de Mendez, and János Pach. A left-
first search algorithm for planar graphs. Discrete & Computational Geom-
etry, 13:459–468, 1995.

[DEL+13] V. Dujmović, W. Evans, S. Lazard, W. Lenhart, G. Liotta, D. Rappaport,
and S. Wismath. On point-sets that support planar graphs. Computational
Geometry, 46(1):29–50, 2013.

[DETT99] Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G.
Tollis. Graph Drawing. Prentice Hall, Upper Saddle River, NJ, 1999.

[DFK+08] Vida Dujmović, Michael Fellows, Matthew Kitching, Giuseppe Liotta,
Catherine McCartin, Naomi Nishimura, Prabhakar Ragde, Frances Rosa-
mond, Sue Whitesides, and David Wood. On the parameterized complexity
of layered graph drawing. Algorithmica, 52:267–292, 2008.

[DGL08] E. Di Giacomo, L. Grilli, and G. Liotta. Drawing bipartite graphs on two
parallel convex curves. Journal of Graph Algorithms and Applications,
12(1):97–112, 2008.

[DGLT10] Emilio Di Giacomo, Giuseppe Liotta, and Francesco Trotta. Drawing
colored graphs with constrained vertex positions and few bends per edge.
Algorithmica, 57:796–818, 2010.

[DLT06] E. Di Giacomo, G. Liotta, and F. Trotta. On embedding a graph on two
sets of points. IJFCS, Special Issue on Graph Drawing, 17(5):1071–1094,
2006.

[dPP90] Hubert de Fraysseix, János Pach, and Richard Pollack. How to draw a
planar graph on a grid. Combinatorica, 10(1):41–51, 1990.

[ELLW10] Hazel Everett, Sylvain Lazard, Giuseppe Liotta, and Stephen Wismath.
Universal sets of n points for one-bend drawings of planar graphs with n
vertices. Discrete & Computational Geometry, 43:272–288, 2010.

[EMW86] Peter Eades, Brendan D. McKay, and Nicholas C. Wormald. On an
edge crossing problem. In 9th Australian Computer Science Conference
(ACSC9), pages 327–334, 1986.

[Fár48] István Fáry. On straight lines representations of planar graphs. Acta Sci.
Math. Szeged, 11:229–233, 1948.

REFERENCES 283

[FK97] Ulrich Fößmeier and Michael Kaufmann. Nice drawings for planar bi-
partite graphs. In 3rd Italian Conference on Algorithms and Complexity
(CIAC ’97), volume 1203 of Lecture Notes in Computer Science, pages
122–134. Springer-Verlag, 1997.

[FLW03] Stefan Felsner, Giuseppe Liotta, and Stephen K. Wismath. Straight-line
drawings on restricted integer grids in two and three dimensions. Journal
of Graph Algorithms and Applications, 7(4):363–398, 2003.

[GMPP91] Peter Gritzmann, Bojan Mohar, Janos Pach, and Richard Pollack. Em-
bedding a planar triangulation with vertices at specified points. American
Mathematical Monthly, 98(2):165–166, 1991.

[HR92] Lenwood S. Heath and Arnold L. Rosenberg. Laying out graphs using
queues. SIAM Journal on Computing, 21(5):927–958, 1992.

[HS72] Frank Harary and Allen Schwenk. A new crossing number for bipartite
graphs. Utilitas Mathematica, 1:203–209, 1972.

[IPTT94] Yoshiko Ikebe, Micha A. Perles, Akihisa Tamura, and Shinnichi Tokunaga.
The rooted tree embedding problem into points in the plane. Discrete
Computational Geometry, 11:51–63, 1994.

[Kur04] Maciej Kurowski. A 1.235 lower bound on the number of points needed to
draw all n-vertex planar graphs. Inf. Process. Lett., 92(2):95–98, 2004.

[KW02] Michael Kaufmann and Roland Wiese. Embedding vertices at points: Few
bends suffice for planar graphs. Journal of Graph Algorithms and Appli-
cations, 6(1):115–129, 2002.

[PT93] Janos Pach and Jenö Törőcsik. Layout of rooted trees. In W. T. Trotter,
editor, Planar Graphs, volume 9 of DIMACS, pages 131–137. American
Mathematical Society, 1993.

[PW01] Janos Pach and Rephael Wenger. Embedding planar graphs at fixed vertex
locations. Graphs and Combinatorics, 17:717–728, 2001.

[RM95] S. Rengarajan and C. E. Veni Madhavan. Stack and queue number of
2-trees. In Ding-Zhu Du and Ming Li, editors, COCOON, volume 959 of
Lecture Notes in Computer Science, pages 203–212. Springer, 1995.

[Sch90] Walter Schnyder. Embedding planar graphs on the grid. In Proc. 1st ACM-
SIAM Sympos. Discrete Algorithms (SODA’90), pages 138–148, 1990.

[Sud04] Matthew Suderman. Pathwidth and layered drawings of trees. Interna-
tional Journal of Computational Geometry & Applications, 14(3):203–225,
2004.

[Sud05] Matthew J. Suderman. Proper and planar drawings of graphs on three lay-
ers. In Graph Drawing, 13th International Symposium (GD 2005), volume
to appear, 2005.

[Sug02] Kozo Sugiyama. Graph Drawing and Applications. World Scientific, Sin-
gapore, 2002.

[TKY77] N. Tomii, Yahiko Kambayashi, and Shuzo Yajima. On planarization algo-
rithms of 2-level graphs. Technical Report EC77-38, Institute of Electronic
and Communication Engineers of Japan (IECEJ), 1977.

[WG86] Michael S. Waterman and Jerrold R. Griggs. Interval graphs and maps of
DNA. Bulletin of Mathematical Biology, 48(2):189–195, 1986.

284 CHAPTER 8. SPINE AND RADIAL DRAWINGS

[Wig82] Avi Wigderson. The complexity of the Hamiltonian circuit problem for
maximal planar graphs. Technical Report 298, Princeton University, EECS
Department, 1982.

9
Circular Drawing Algorithms

Janet M. Six
Lone Star Interaction Design

Ioannis G. Tollis
University of Crete and

Technology Hellas-FORTH

9.1 Introduction . 285
Other Circular Drawing Techniques • Complexity of the
Circular Graph Drawing Problem

9.2 Circular Drawings of Biconnected Graphs 288
Properties of Algorithm CIRCULAR

9.3 Further Reduction of Edge Crossings 292
Counting All the Crossings in a Circular Drawing •

Determining the New Number of Crossings after Moving a
Node

9.4 Nonbiconnected Graphs on a Single Circle 296
9.5 Nonbiconnected Graphs on Multiple Circles 297
9.6 A Framework for User-Grouped Circular Drawing 303

Circular-Track Force-Directed • A Technique for Creating
User-Grouped Circular Drawings

9.7 Implementation and Experiments . 307
Experimental Analysis of Algorithm CIRCULAR •

Implementation Issues • Experimental Analysis of Algorithm
CIRCULAR-with Radial • Implementation of Algorithm
CIRCULAR-with Forces

9.8 Conclusions . 313
References . 314

9.1 Introduction

A circular drawing of a graph (see Figure 9.1 for an example) is a visualization of a graph
with the following characteristics:

• The graph is partitioned into clusters;

• The nodes of each cluster are placed onto the circumference of an embedding

circle; and

• Each edge is drawn as a straight line.

There are many applications that would be strengthened by an accompanying circular
graph drawing. For example, the drawing techniques could be added to tools which ma-
nipulate telecommunication [Ker93], computer [Six00], and social networks [Kre96] to show
clustered views of those information structures. The partitioning of the graph into clus-
ters can show structural information such as biconnectivity, or the clusters can highlight
semantic qualities of the network such as sub-nets. Emphasizing natural group structures
within the topology of the network is vital to pinpoint strengths and weaknesses within that
design. It is essential that the number of edge crossings within each cluster remains low in

285

286 CHAPTER 9. CIRCULAR DRAWING ALGORITHMS

f

e

a

b

d

c

h

i

i

g

e

g

h

a

c

d

b

f

j

i

j

i

g

e

bc

a

d

f

h

Figure 9.1 A graph with arbitrary coordinates for the nodes and a circular drawing of
the same graph as produced by an implementation of Algorithm CIRCULAR. Figure taken
from [ST99, ST06].

order to reduce the visual complexity of the resulting drawings. Researchers have produced
several circular drawing techniques [Bra97, DMM97, KMG88, Kre96, TX95], some of which
have been integrated into commercial tools. However, the resulting drawings are visually
complex with respect to the number of crossings. In this chapter, we present circular draw-
ing techniques for simple biconnected and nonbiconnected graphs which are efficient and
also produce drawings with a low number of edge crossings. The first technique produces
single-circle drawings of biconnected graphs. The second technique produces single-circle
drawings of nonbiconnected graphs. Finally, the third technique produces multiple-circle
drawings of nonbiconnected graphs.

These techniques are very useful for many applications, however, with the exception of
the Graph Layout Toolkit (GLT) technique [DMM97, KMG88], these techniques do not
allow the user to define which nodes should be grouped together on an embedding circle.
And in the GLT technique, the layouts of the user-defined groups are themselves placed on
a single embedding circle. For some graph structures, this may not be ideal. In this chapter,
we also present a circular drawing algorithm that allows the user to define the node groups,
draws each group of nodes efficiently and effectively, and visualizes the superstructure well.
We call this approach user-grouped circular drawing.

An example of an application in which user-grouped circular drawing would be useful
is a computer network management system in which the user needs to know the current
state of the network. It would be very helpful to allow the user to group the computers
by department, floor, usage rates, or other criteria. See Figure 9.2. This graph drawing
could also represent a telecommunications network, social network, or even the elements of
a large software project. There are, of course, many other applications which would benefit
from user-grouped circular drawing: e.g., biological networks, financial market modeling,
HR management, and physical science models.

The remainder of this chapter is organized as follows: Section 9.1.1 discusses previous
work in this area. In Section 9.2, we present an O(m) time algorithm for the circular layout
of biconnected graphs. The algorithm guarantees that if a zero-crossing circular drawing
exists for a biconnected graph, then it will find it. In Section 9.2.1, we discuss properties
of circular drawings created by the technique in Section 9.2. In Section 9.3, we discuss an
approach for reducing the number of edge crossings in circular drawings. In Section 9.4, we
present an O(m) time algorithm for drawing nonbiconnected graphs on a single embedding
circle. In Section 9.5, we present an O(m) time algorithm for drawing nonbiconnected

9.1. INTRODUCTION 287

Figure 9.2 A user-grouped circular drawing. Figure taken from [ST03b].

graphs on multiple embedding circles. In Section 9.6, we introduce a framework for user-
grouped circular drawing. In Section 9.7, we discuss implementation details and give results
of experimental studies for these techniques. In Section 9.8, we present conclusions.

9.1.1 Other Circular Drawing Techniques

Kar, Madden, and Gilbert present a circular drawing technique and tool in [KMG88] for
network management. Recognizing that a clustered view of a network can be quite helpful
to its design and maintenance, the authors build a system that first partitions the network
into clusters, places the clusters onto the main embedding circle, and then sets the coordi-
nates of individual nodes. Finally, a heuristic approach is used to minimize the number of
crossings. As discussed in [DMM97], an advanced version of this O(n2) technique has been
implemented as part of Tom Sawyer Software’s successful Graph Layout Toolkit (GLT). An
early heuristic on circular drawings was presented in [Ma88].

Tollis and Xia introduced several linear time algorithms for the visualization of survivable
telecommunication networks in [TX95]. Given the ring covers of a network, these algorithms
create circular drawings such that the survivability of the network is clearly visible. Tech-
niques were presented for outside (inside) drawings such that the rings are placed outside
(inside) a root circle. An additional linear time algorithm produces drawings that are a
combination of outside and inside drawings. This type of flexibility in a tool allows each
network designer to choose the best technique given the exact application.

Citing a need for graph abstraction and reduction of today’s large information structures,
Brandenburg describes an approach to draw a path (or cycle) of cliques in [Bra97]. This
O(n3) algorithm creates a two-level abstraction of the given graph giving the ability to
project a clique on each node of the abstracted graph.

Circular drawing techniques are not limited to telecommunication and computer net-
work applications by any means. InFlow [Kre96] is a tool to visualize human networks
and produces diagrams and statistical summaries to pinpoint the strengths and weaknesses
within an organization. The usually unvisualized characteristics of self-organization, emer-
gent structures, knowledge exchange, and network dynamics can be seen in the drawings
of InFlow. Resource bottlenecks, unexpected work flows, and gaps within the organization
are clearly shown in these circular drawings.

288 CHAPTER 9. CIRCULAR DRAWING ALGORITHMS

In [KW02], new ideas are presented that extend the framework for circular drawings de-
scribed in this chapter, in order to make the framework suitable for user interaction. They
introduce the concept of hicircular drawings, a hierarchical extension of the mentioned
framework replacing the circles of single vertices by circles of circular or star-like struc-
tures. Various heuristic algorithms that find an ordering of vertices that reduce the number
of crossings in the corresponding circular drawing are presented in [HS04]. A two-phase
heuristic for crossing reduction in circular layout is proposed in [BB05]. Their extensive
experimental results indicate that they yield few crossings. Three independent, complemen-
tary techniques for lowering the density and improving the readability of circular layouts
are presented in [GK07]. First, an algorithm places the nodes on the circle such that edge
lengths are reduced. Second, the circular drawing style is enhanced by allowing a set of
carefully selected edges to be routed around the exterior of the circle. The third technique
reduces density by coupling groups of edges as bundled splines that share part of their route.

Due to lack of space, we can not describe other techniques here, but refer the reader to
other works such as [BB05, GK07, HS04, KW02, Ma88].

For more information on the algorithms presented in this chapter, see [ST06, ST03b].

9.1.2 Complexity of the Circular Graph Drawing Problem

Intuitively, the problem of creating circular graph drawings while minimizing the number
of edge crossings seems very hard. The general problem of placing nodes such that the
number of edge crossings is minimum is the well-known NP-hard crossing number problem.
Furthermore, the more restricted problem of finding a minimum crossing embedding such
that all the nodes are placed onto the circumference of a circle and all edges are repre-
sented with straight lines is also NP-hard as proven in [MKNF87]. The authors show the
NP-hardness by giving a polynomial time transformation from the NP-complete Modified

Optimal Linear Arrangement problem.

9.2 Circular Drawings of Biconnected Graphs

In order to produce circular drawings with few crossings, the algorithm tends to place edges
toward the outside of the embedding circle. This characteristic is a result of placing a few
edges in the middle of the drawing to be crossed. Also, nodes are placed near their neighbors.
In fact, this algorithm tries to maximize the number of edges appearing toward the periphery
of the embedding circle. The algorithm achieves this improvement by selectively removing
some edges and then building a depth first search (DFS) based node ordering of the resulting
graph. However, the edge placement near the periphery may decrease the readability of the
drawing. If this is an issue, an increase of scale will be helpful. An alternative approach
where selected edges are drawn outside the embedding circle is described in [GK07].

In order to selectively remove some edges, this technique visits the nodes in a wave-like
fashion. Define a wave front node to be adjacent to the last node processed; see Figure 9.3.
A wave center node is adjacent to some other node that has already been processed. The
algorithm starts at a lowest degree node and continues to visit wave front and wave center
nodes if they are of lowest degree. If none of the current wave front or wave center nodes
are of lowest degree, then some lowest degree node is chosen. The wave-like node traversal
begins again from this newly chosen node and will continue from this node and the previous
wave front and wave center nodes.

A pair edge is incident to two nodes which share at least one neighbor; see Figure 9.4.
Nodes v and w are said to be paired by u, and u is said to establish the pair edge (v, w).

9.2. CIRCULAR DRAWINGS OF BICONNECTED GRAPHS 289

Wave Center
Node

Wave Center
Node

Wave Front
Node

Wave Front
Node

1

2

3 4

56

7 8

Figure 9.3 Examples of wave front and wave center nodes. The shaded region includes
those nodes that have already been processed. The node labeled 2 is the most recently
processed. Figure taken from [ST06].

In other words, u, v, and w form a triangle. Pair edges will be removed before the DFS
step of the technique. A triangulation edge is a new pair edge that is inserted into the
graph by the technique. The triangulation edges are also removed from the graph before
the DFS portion of the algorithm. Each time a node u is visited, a list of pair edges is built.
If there is an insufficient number of pair edges in the graph, the algorithm automatically
inserts triangulation edges into the graph. With the ensuing removal of u, that node is
inherently represented by the newly found pair edges; see Figure 9.5. The illustrations
marked (a) show a degree two node u and its neighbors v and w at three different points in
the algorithm. The pair edge established by u, (v, w), is shown with a bold line in the first
illustration. The illustration immediately to the right shows the same graph fragment when
the next node is processed. Although node u and edges (u, v) and (u,w) are not in the
graph anymore, they are inherently represented by the edge (v, w). The next illustration
to the right shows the same graph fragment after the pair edge (v, w) has been removed.
At this point, the pair edge (v, w) is inherently represented by node u and edges (u, v) and
(u,w). A similar example is shown in the illustrations labeled (b), where the current node
being processed has degree three. It is this selective absorption that causes the behavior of
edge placement toward the periphery of the embedding circle.

a pair edge

u

v w

Figure 9.4 Example of a pair edge. Figure taken from [ST99, ST06].

It is important to note that we do not find all pair edges. For each node u, we visit its
neighbors v1, v2, . . . , vk in some order, say, the order in which they appear in the adjacency
list. For example, we check to see whether (v1, v2) exists: if so, we add that edge to the
removal list. If not, we add the triangulation edge (v1, v2) to the graph and to the removal
list. This part of the algorithm takes O(deg(u)) time. Notice that a new edge is added only
between two nodes that are consecutive in the adjacency list of the current node (and, of
course, if such an edge does not already exist). Also note that the first and last neighbors

290 CHAPTER 9. CIRCULAR DRAWING ALGORITHMS

u

xv w

u(b)
xv w

v w

(a)
u

u

v w

u

xv w

counter = i + 1counter = i After Step 12

u

v w

counter = i counter = i + 1 After Step 1214

14

Figure 9.5 The node and edge absorption qualities of Algorithm CIRCULAR. Part (a)
shows a degree-two node u and its neighbors v and w at three different points in the algo-
rithm. First, the pair edge established by u, (v, w), is shown. Next, after node u is processed,
node u and edges (u, v) and (u,w) are inherently represented by the edge (v, w). Finally, we
see the same graph fragment after the pair edge (v, w) has been removed in Step 14. Part (b)
shows a similar example with a degree-three node. Figure taken from [ST99, ST06].

visited cannot experience an increase in degree. For each of those nodes, the edge incident
to u is removed while at most one triangulation edge is added. Next, we show that the total
number of triangulation edges added is O(m).

The number of triangulation edges added to G over the course of the algorithm is at most∑n−3
i=1 minDegi − 1, where minDegi is the minimum degree found in G at the ith iteration

of the While loop. minDegi ≤ avgDeg before the ith iteration, ∀i ≥ 1 and where avgDeg

is the average degree of the nodes in the original graph G. It is important to note that the
visit of the neighbors starts from the lowest degree neighbor and proceeds cyclically around
the adjacency list. Since we know that minDegi ≤ avgDeg before the ith iteration, ∀i ≥ 1,
we also know that

n−3∑

i=1

minDegi − 1 <

n∑

i=1

minDegi ≤

n∑

i=1

avgDeg = 2m.

Therefore, the number of triangulation edges added is O(m).

Subsequent to the edge removal, the algorithm proceeds to build an ordering of the nodes
for the reduced graph. A traditional DFS is performed and then the nodes in a longest
path of the DFS tree are placed around the embedding circle. Alternatively, a heuristic
algorithm for finding a longest path in a graph can be used. Finally, the remaining nodes
are nicely merged into the ordering. This can be accomplished by visiting each neighbor of
u and asking if it is next to another neighbor of u on the embedding circle. If two neighbors
of u are next to each other on the embedding circle, then we place u between those two
neighbors. (If there are multiple pairs of such neighbors, we arbitrarily pick one of those
pairs.) If there are no two neighbors of u next to each other on the embedding circle, then
we place u next to some neighbor or u or, if there are no neighbors of u on the embedding
circle yet, we pick an arbitrary position for u.

9.2. CIRCULAR DRAWINGS OF BICONNECTED GRAPHS 291

Algorithm CIRCULAR

Input: A biconnected graph, G = (V,E).
Output: A circular drawing Γ of G such that each node in V lies on the periphery of a
single embedding circle.

1. Bucket sort the nodes by ascending degree into a table T .

2. Set counter to 1.

3. While counter ≤ n− 3

4. If a wave front node u has lowest degree, then currentNode = u.

5. Else If a wave center node v has lowest degree, then
currentNode = v.

6. Else set currentNode to be some node with lowest degree.

7. Visit the adjacent nodes consecutively. For each two nodes,

8. If a pair edge exists place the edge into removalList.

9. Else place a triangulation edge between the current pair of
neighbors and also into removalList.

10. Update the location of currentNode’s neighbors in T .

11. Remove currentNode and incident edges from G.

12. Increment counter by 1.

13. Restore G to its original topology.

14. Remove the edges in removalList from G.

15. Perform a DFS (or a longest path heuristic) on G.

16. Place the resulting longest path onto the embedding circle.

17. If there are any nodes that have not been placed, then place the remaining nodes
into the embedding order with the following priority:

(i) between two neighbors, (ii) next to one neighbor, (iii) next to
zero neighbors.

Figure 9.6 Algorithm CIRCULAR.

Figure 9.6 shows the pseudocode for Algorithm CIRCULAR. The time complexity of
Algorithm CIRCULAR is O(m), where m is the number of edges in G. Step 1 takes O(m)
time. Step 3 takes O(m) time over all iterations since the use of efficient data structures
(as explained in Section 6.2) allows each iteration to take only O(deg(vi)) time, where vi is
the vertex chosen during the ith iteration. Notice that the number of triangulation edges
added by Step 9 is O(m), as shown above. Clearly, Steps 13–16 require O(m) time. Finally,
Step 17 also requires O(m) time since at most

∑n

i=1 deg(vi) = O(m) possible placements
are reviewed.

9.2.1 Properties of Algorithm CIRCULAR

In this section, we give properties of Algorithm CIRCULAR. See [ST06, ST03b] for the
detailed proofs. A biconnected graph, G, is outerplanar if and only if G can be drawn on
the plane such that all nodes lie on the boundary of a single face and no two edges cross. If
the biconnected graph given to Algorithm CIRCULAR is outerplanar, then the result will
be a circular visualization such that no two edges cross. In fact, the technique has been
inspired by the algorithm for recognizing outerplanar graphs presented in [Mit79].

By the definition of outerplanar graphs, we know that there exists a plane circular draw-
ing for any outerplanar graph. Also, by that same definition, we know that a graph that

292 CHAPTER 9. CIRCULAR DRAWING ALGORITHMS

is not outerplanar does not admit a plane circular drawing. In fact, the set of biconnected
graphs that may be drawn in a circular fashion without any crossings is exactly the set
of biconnected outerplanar graphs. The requirement of placing all nodes on the periphery
of some embedding circle is equivalent to placing all nodes on a single face (say, the ex-
ternal face) of some embedding. Furthermore, if a zero-crossing visualization exists for a
biconnected graph, G, then that drawing can be found by Algorithm CIRCULAR.

Therefore, we have the following theorem:

Theorem 9.1 Given a biconnected graph G, if G admits a circular layout with zero

crossings, then Algorithm CIRCULAR produces a circular drawing with zero crossings in

O(n) time.

Also, as shown in the discussion of the time requirements for Algorithm CIRCULAR, we
have:

Theorem 9.2 Algorithm CIRCULAR produces a circular drawing of any biconnected

graph in O(m) time.

9.3 Further Reduction of Edge Crossings

As will be shown in the experimental results of Section 7.1, Algorithm CIRCULAR produces
drawings with a low number of edge crossings and works very well in practice. We can
further reduce the number of edge crossings with the technique presented in this section.
As discussed in Section 9.1.2, the problem of minimizing the number of edge crossings in
a circular graph drawing is NP-hard. The configuration of the nodes as determined by
Algorithm CIRCULAR produces drawings with a low number of crossings, which can then
be further reduced to some local minima with a monotonic crossing reduction technique.
The postprocessing step visits each node v and queries whether crossings can be reduced
further by moving v next to one of its neighbors.

See Figure 9.7 for Algorithm CIRCULAR-Postprocessing. The time complexity of Algo-
rithm CIRCULAR-Postprocessing is O(m2). This order is dominated by the required time
for counting the number of crossings (Steps 1 and 9). It is vitally important to the time
efficiency of Algorithm CIRCULAR-Postprocessing that the number of crossings be counted
in an efficient fashion. As will be shown in Lemma 9.1, Step 1 of Algorithm CIRCULAR-
Postprocessing requires O(m + χ) time to find the total number of crossings, where m is
the number of edges and χ is the number of crossings. The experimental study presented
in Section 9.7 has shown that the loop of Step 2 needs to be iterated at most 9 times. In
fact, the vast majority of drawings converged within the first two iterations. In the worst
case, Step 2 requires a constant amount of time. Steps 3 and 6 require O(n) time. Steps 4
and 5 require O(m) time since we explore

∑n

i=1 degree(i) = O(m) positions. Steps 7 and 8
require O(m) time since we know there will be at most

∑n

i=1 degree(i) = O(m) positions.
In section 12.3.2, we will show that it takes O(m) time to find the new number of crossings
in Step 9. And since over the course of the algorithm, Step 9 is repeated O(m) times Step 9
requires O(m2) time. Steps 10 and 11 require O(m) time. So the time complexity of the
entire algorithm is O(m2 + χ). Since, each edge can cross any other edge in the drawing at
most once in a circular visualization, χ is O(Σm

i=1i), which is O(m2). Therefore, Algorithm
CIRCULAR-Postprocessing has time complexity O(m2).

9.3. FURTHER REDUCTION OF EDGE CROSSINGS 293

Algorithm CIRCULAR-Postprocessing

Input: A drawing Γ of biconnected graph G = (V,E) produced by Algorithm CIRCULAR.
Output: A drawing Γ′ of G with fewer or equal number of crossings.

1. currentCrossings = current number of crossings in the drawing.

2. For a fixed number of times

3. For each node, u, in G

4. Initialize List1 to contain the embedding circle positions
which lie between two nodes adjacent to u.

5. If List1 is empty

(a) Initialize List2 to contain the embedding circle
positions which lie next to one neighbor
of u.

(b) PositionList = List2.

6. Else PositionList = List1.

7. For each location in PositionList

8. Place u at this location

9. newCrossings = the new number of crossings.

10. If newCrossings < currentCrossings then
currentCrossings = newCrossings.

11. Else Place u back into its previous position.

12. If no improvement was made during this iteration, stop.

Figure 9.7 Algorithm CIRCULAR-Postprocessing.

9.3.1 Counting All the Crossings in a Circular Drawing

Consider the straight edges ei and ej of Figure 9.8. The edge ei can cross ej if and only if
one endpoint v of ej appears between the two endpoints u and w of ei. In this case, ej is
called an open edge with respect to the arc uvw. If both endpoints of ej appear between u

and w on the perimeter of the embedding circle, then ei and ej do not cross. So, if we order
the edges as they are encountered around the embedding circle and visit their endpoints in
that order, we can determine the total number of edge crossings by counting the number of
open edges. Although the problem is one dimensional, this technique has some similarities
to the line segment intersection algorithm presented in [PS85].

u

v

w

e

e

i

j

Figure 9.8 An open edge with respect to the arc uvw. Figure taken from [ST99, ST06].

294 CHAPTER 9. CIRCULAR DRAWING ALGORITHMS

Algorithm CountAllCrossings

Input: A single circle drawing Γ of a biconnected graph G = (V,E).
Output: The number of edge crossings in Γ.

1. Order the edges as they are encountered around the circle in a clockwise order.

2. numberOfCrossings = 0.

3. For each edge endpoint, pi, of edge ei, do

4. If pi is the first endpoint of edge ei append ei to openEdgeList.

5. Else

(a) Increase numberOfCrossings by the number of open
edges with respect to the arc pgphpi, where pg and pi
are the endpoints of ei and ph is some endpoint which
was visited after pg and before pi.

(b) Remove ei from openEdgeList.

Figure 9.9 Algorithm CountAllCrossings.

Algorithm CountAllCrossings requires O(m + χ) time. Step 1 takes O(m) time. This
step can be accomplished in O(m) time by visiting the incident edges of each node as they
appear around the embedding circle. Steps 3, 4, and 5(b) require O(m) time. Step 5(a)
requires time

2m∑

i=1

χi = O(χ),

where χi is the number of edge crossings caused by the edge ei and χ is the total number
of edge crossings in the embedding. We accomplish this time requirement by traversing
openEdgeList backward from the end of the list to the element which contains ei. Therefore,
we have the following:

LEMMA 9.1 Algorithm CountAllCrossings counts the total number of edge crossings in
a single circle embedding, where m is the number of edges and χ is the number of crossings
in O(m+ χ) time.

9.3.2 Determining the New Number of Crossings after Moving a Node

Since we can determine the overall number of crossings at the beginning of the algorithm
and then move one node at a time, it is necessary to count only the number of crossings
caused by the incident edges of the current node, v, to update the number of crossings in
the drawing. During each iteration of the crossing reduction, the number of crossings in the
entire drawing is equal to the following formula:

New Number of Crossings = Old Number of Crossings− χv + χ′

v

where, χv = Number of crossings caused by v in the old location,
and χ′

v = Number of crossings caused by v in the new location.

Because we already know the old number of crossings, finding the new number of crossings
is dominated by the time to find χv and χ′

v. Any change in the edge crossings will occur
between edges incident to v and edges that have exactly one endpoint in the arc between the

9.3. FURTHER REDUCTION OF EDGE CROSSINGS 295

old and new positions of v. These pertinent edges are visited in order from the old toward
the new position of v. A counter, ctr, holds the number of open edges in the arc (not
including the open edges incident to v). Each time that an endpoint of an edge incident to
v is encountered, the number of crossings is increased by the value in ctr. At the conclusion
of this process, the number of crossings caused by v in the old position is known. The
number of crossings caused by v in its new position is found by repeating this process from
the new towards the old position of v after moving v to its new position; see Figure 9.10.

of v
old position

new position

of v

(a) (b)

v

u

1 2
3

4

5
6

7

w u

1 2
3

4

5
6

7

w

v

Figure 9.10 The arc created by moving node v to the position denoted with the arrow.
The pertinent edges of the arc are shown. Figure taken from [ST06].

Therefore, we have the following result:

LEMMA 9.2 An O(m) time algorithm exists to count the number of edge crossings
gained or lost by moving a node v within a single circle embedding.

The pseudocode for Algorithm CountSingleNodeCrossings is shown in Figure 9.11. This
algorithm requires O(m) time. Steps 3, 4, 5, 6, 7, and 8 require O(m) time since the number
of pertinent edges is O(m) as described above. Step 13 requires O(m) time. Finally, Step 14
requires O(m) time since it is a repetition of Steps 5–8.

If Algorithm CountSingleNodeCrossings is swapping the placement of two nodes which
are next to each other, u and v, on the embedding circle, then Algorithm CountSingleN-
odeCrossings only takes O(maxDegree) time, where maxDegree is the maximum degree
of all nodes in V . This is because the number of pertinent edges is the smaller degree of u
and v, see Figure 9.12. Since a swap of these two nodes can be accomplished by moving u

between v and β or moving v between α and u, we choose the move such that the number
of pertinent edges (i.e., the degree of the node which is not moved) is smaller. Both of the
moves produce the same node ordering, so we perform the move which requires less time.
In the specific case of Figure 9.12, we choose to move node u.

Given Lemma 9.1, and Lemma 9.2, Algorithm CIRCULAR-Postprocessing produces a
visualization with a reduced number of edge crossings in O(m2) time.

296 CHAPTER 9. CIRCULAR DRAWING ALGORITHMS

Algorithm CountSingleNodeCrossings

Input: A single circle drawing of a graph G = (V,E),
a node v ∈ V , and
a new position α for v.

Output: The change in the number of edge crossings caused by moving v to α.

1. ctr = 0.

2. numberOfCrossings = 0.

3. Order the pertinent edge endpoints as they are encountered around the embedding
circle.

4. Mark the pertinent edges as not seen.

5. For each pertinent edge endpoint pi of edge ei do

6. If ei is incident to v increment the numberOfCrossings by ctr.

7. Else If ei has been seen decrement ctr by 1.

8. Else increment ctr by 1 and mark ei as seen.

9. OldNumberSingleNodeCrossings = numberOfCrossings.

10. ctr = 0.

11. numberOfCrossings = 0.

12. Move v to its new position, α.

13. Mark the pertinent edges as not seen.

14. Repeat Steps 5–8 in the opposite direction.

15. NewNumberSingleNodeCrossings = numberOfCrossings.

16. changeInCrossings = NewNumberSingleNodeCrossings−

OldNumberSingleNodeCrossings.

Figure 9.11 Algorithm CountSingleNodeCrossings.

α

β

u

v

Figure 9.12 The pertinent edges for Algorithm CountSingleNodeCrossings if the two
adjacent nodes u and v are being swapped. Figure taken from [ST99, ST06].

9.4 Nonbiconnected Graphs on a Single Circle

Most networks are not biconnected. Therefore, it is important for a circular drawing tool
to provide a component that visualizes nonbiconnected graphs. An algorithm for produc-
ing circular drawings of nonbiconnected graphs on a single embedding circle is presented
in [Six00, ST06]. Given G, a nonbiconnected graph, it can be decomposed into its bicon-
nected components. The algorithm layouts the resulting block-cutpoint tree on a circle and
then it layouts each biconnected component with a variant of Algorithm CIRCULAR.

First, we consider how to obtain a circular drawing of a tree. A DFS produces a numbering
that we can use to order the nodes around the embedding circle in a crossing-free manner.
From this result, we know how to order the biconnected components around the embedding
circle. Next, we need to consider articulation points which are not adjacent to a bridge (strict

9.5. NONBICONNECTED GRAPHS ON MULTIPLE CIRCLES 297

articulation points). Strict articulation points appear in multiple biconnected components.
In which biconnected component should a strict articulation point appear in the circular
drawing? Multiple approaches to this issue are discussed in [Six00, ST99]. Due to space
restrictions, we do not discuss these solutions here. A third issue to consider is how to
transform the layout of each biconnected component to fit onto an arc of the embedding
circle. This transformation is called breaking. The resulting breaks occur at an articulation
point within the biconnected component.

The worst-case time requirement for the above algorithm is O(m) if we use Algorithm
CIRCULAR to layout each biconnected component. The resulting drawings have the prop-
erty that the nodes of each biconnected component (with the exception of some strict
articulation points) appear consecutively. Furthermore, the order of the biconnected com-
ponents on the embedding circle are placed according to a layout of the accompanying
block-cutpoint tree. Therefore, the biconnectivity structure of a graph is displayed even
though all of the nodes appear on a single circle. An example drawing is shown in Figure
9.13. More details on this algorithm can be found in [Six00, ST06].

Figure 9.13 An example drawing produced by Algorithm CIRCULAR-Nonbiconnected.

9.5 Nonbiconnected Graphs on Multiple Circles

In this section, we will present a technique for producing circular drawings of graphs
on multiple embedding circles. Given a nonbiconnected graph G we can decompose the
structure into biconnected components in O(m) time. Taking advantage of this inherent
structure, we first layout the block-cutpoint tree using a radial layout technique similar to
[Ber81, Ead92, Esp88], then we layout each biconnected component of the graph with a
variant of Algorithm CIRCULAR. See Figure 9.14.

The algorithm addresses several issues in order to produce good quality circular drawings:
1) which biconnected component is considered to be the root of the block-cutpoint tree, 2)
articulation points can appear in multiple biconnected components of the block-cutpoint
tree and need to be assigned to a unique biconnected component, 3) the nodes of the block-
cutpoint tree can represent biconnected components of differing size, and 4) the nodes of
each biconnected component should be visualized such that the articulation points appear
in good positions and also there is a low number of edge crossings. We will address each of
these issues in turn.

298 CHAPTER 9. CIRCULAR DRAWING ALGORITHMS

In order to address the first issue, we can choose the root with a recursive leaf-pruning
algorithm to find the “center” of the tree [DETT99]. Alternatively, we can pick the root
dependent on some important metric: e.g., size of the biconnected component. Next we
address the second issue. Strict articulation points (i.e., articulation points that are not
adjacent to a bridge) are duplicated in more than one biconnected component of the block-
cutpoint tree, but of course each node should appear only once in a drawing of that graph.
Therefore, we offer three approaches in which each articulation point will appear only once in
the drawing. The first approach assigns each strict articulation point, u, to the biconnected
component which contains u and is also closest to the root in the block-cutpoint tree. This
biconnected component is the parent of the other biconnected components which contain u.
See Figure 9.15(a). The second approach assigns the articulation point to the biconnected
component which contains the most neighbors of that articulation point, see Figure 9.15(b).
The third approach assigns the articulation point to a position between its biconnected
components, see Figure 9.15(c). Placing a node in this manner will highlight the fact that
this node is an important articulation point. Following the assignment step, the duplicates
of a strict articulation point are removed from the blocks in the block-cutpoint tree. We refer
to the nodes adjacent to a removed strict articulation point in a biconnected component
as inter-block nodes. In order to maintain biconnectivity for the method which will layout
this component, a thread of edges is run through the inter-block nodes. These edges will
be removed from the graph after the layout of the cluster is determined.

The third issue to be addressed while performing the layout of the block-cutpoint tree
is that the biconnected components may be of differing sizes. The node sizes are propor-
tional to the number of nodes contained in the current block. The radial layout algorithms
presented in [Ber81, Ead92, Esp88] place the root at (0, 0) and the subtrees on concen-
tric circles around the origin. These algorithms require linear time and produce plane
drawings. However, unlike the block-cutpoint trees, the nodes of the trees laid out with
[Ber81, Ead92, Esp88] are all the same size. The technique in [YFDH01] handles graphs
with different node sizes; however, node overlap is allowed. In order to produce radial
drawings of trees with differing node sizes, we present a modification of the classical radial
layout technique [Ber81, Ead92, Esp88]:

B1

B2 B3 B4

B5 B
6

B7 B
8

B1

B4

B2 B3

B7
B

8

B
6

B5

Figure 9.14 The illustration on the left shows the block-cutpoint tree of a nonbiconnected
graph. The small black tree nodes represent articulation points and the small white tree
nodes represent bridges. The right illustration is a drawing of the same graph where the
block-cutpoint tree is laid out with a radial tree layout technique. Figure taken from [ST06].

9.5. NONBICONNECTED GRAPHS ON MULTIPLE CIRCLES 299

(a) (b) (c)

Figure 9.15 Examples of three approaches for the assignment of strict articulation points
to biconnected components. The black nodes are strict articulation points. Figure taken
from [ST06].

RADIAL – with Different Node Sizes: For each node, we must assign a ρ coordinate,
which is the distance from point (0, 0) to the placement of that node and a θ coordinate
which is the angle between the line from (0, 0) to (∞, 0) and the line from (0, 0) to the
placement of that node. The ρ coordinate of node v, ρ(v), is defined to be

ρ(u) + δ +
du

2
+

max(d1, d2, . . . , dk)

2
,

where ρ(u) is the ρ coordinate of the parent u of v, δ is the minimum distance allowed
between two nodes, du is the diameter of u, and max(d1, d2, ..., dk) is the maximum of the
diameters of all the children of u. It is important to note that while all descendants of
a node i are placed on the same concentric circle, not all nodes in the same level of the
block-cutpoint tree are placed on the same concentric circle.

In order to prevent edge crossings, each subtree must be placed inside an annulus wedge,
and the width of each wedge must be restricted such that it does not overlap a wedge of any
other subtree. The θ coordinate of node v depends on the widths of the descendants of v,
not just the number of leaves as in [Ber81, Ead92, Esp88]. This assignment of coordinates
leads to a layout of the form shown in Figure 9.16.

Figure 9.16 A radial layout of a tree with differing size nodes. Figure taken from [ST06].

The fourth issue to be addressed by the circular drawing technique is the visualization of
each component. After performing RADIAL – with Different Node Sizes, we have a layout
of the block-cutpoint tree and need to visualize the nodes and edges of each biconnected
component. The radial layout of the block-cutpoint tree should be considered while drawing
each biconnected component. See Figure 9.17. Define ancestor nodes to be adjacent to nodes

300 CHAPTER 9. CIRCULAR DRAWING ALGORITHMS

in the parent biconnected component in the block-cutpoint tree. Likewise, define descendant
nodes to be adjacent to nodes in child biconnected components. In order to reduce the
number of crossings caused by inter-biconnected component edges, the technique tries to
place ancestor nodes in the arc between the points α and β. The size of the arc from α to
β is dependent on the distance between the placement of a biconnected component to the
placement of its parent in the radial layout of the block-cutpoint tree. Descendant nodes
are placed uniformly in the bottom half of the biconnected component layout. For example,
if there are three descendant nodes, they would be placed at points γ, δ, and ǫ, as shown
in Figure 9.17. These special positions for the ancestor and descendant nodes are called
ideal positions. Because of a high number of ancestor and descendant nodes, it may not
be possible to place all ancestor and descendant nodes in an ideal position; however, the
algorithm places as many as possible in ideal positions.

α β

γ
δ ε

Figure 9.17 The relation between the layout of the block-cutpoint tree and the layout of
an individual biconnected component. Figure taken from [ST06].

Placing the ancestor and descendant nodes in this manner reduces the number of crossings
caused by inter-biconnected component edges going through a biconnected component. In
fact, the only times that these edges do cause crossings are when the number of ancestor
(descendant) nodes in the biconnected component Bi is more than about ni

2 , where ni is the
number of nodes in Bi. In those cases, the set of ideal positions includes all the positions in
the upper (respectively lower) half of the embedding circle and also positions in the lower
(upper) half which are as close as possible to the upper (lower) half.

We present two algorithms for the layout of each biconnected component such that an-
cestor and descendant nodes are placed near their ideal positions. The first step of each
technique is to perform Algorithm CIRCULAR on the current biconnected component, Bi.
This requires O(mi) time, where mi is the number of edges in biconnected component Bi.
Next, this drawing is updated so that the ancestor and descendant nodes appear near their
ideal positions.

The first technique rotates the layout of the biconnected component as found by Al-
gorithm CIRCULAR such that many ancestor and descendant nodes are placed close to
their ideal positions. Then, the remaining ancestor and descendant nodes are moved to

9.5. NONBICONNECTED GRAPHS ON MULTIPLE CIRCLES 301

their closest ideal position. See Figure 9.18 for Algorithm LayoutCluster1. This algorithm
requires O(mi) time. See Figure 9.19(b) for an example.

Algorithm LayoutCluster1

Input: A biconnected component, Bi.
Output: An circular layout of Bi such that the positions of the articulation points are
placed well with respect to the ideal positions.

1. Perform Algorithm CIRCULAR on Bi and save the results in Γ1.

2. If the number of ancestor nodes in Bi is less than the number of descendant nodes,
set the block type to be descendant, otherwise, set the block type to be ancestor.

3. Loop through the nodes of Bi as they appear around the embedding circle in Γ1

and for each node which is the same type as the block type, record the clockwise
distance to the last node of that type.

4. Find the nodes that have the smallest value of the distances recorded in Step 3
and determine the median node, u, of this set.

5. If the block type is descendant, rotate the layout of Bi found in Step 1 such that
u is in the middle of the lower half of the embedding circle.

6. Else rotate the layout of Bi found in Step 1 such that u is in the middle of the
upper half of the embedding circle.

7. Place the remaining ancestor and descendant nodes in their closest ideal position.

Figure 9.18 Algorithm LayoutCluster1.

The second technique LayoutCluster2 has a higher time complexity but may lead to
layouts with fewer edge crossings. The first seven steps are the same as that of Algorithm
LayoutCluster1. During the placement of ancestor and descendant nodes that are not in
ideal positions, each such node v is placed in an ideal position, and if the number of edge
crossings added exceeds a threshold T1 or the movement of v exceeds a threshold T2, then the
size of the embedding circle is increased such that node v can be placed in an ideal position
without changing the relative order between v and its neighbors on the embedding circle.
See Figure 9.19(c) for an example. The thresholds are determined on a per application basis.
If increasing component edge crossings or node movement is undesirable for an application,
the thresholds are adjusted accordingly. The time required for Algorithm LayoutCluster2 is
O(mi) if threshold T2 (based on node movement) is used or O(mi∗k), where k is the number
of ancestor and descendant nodes in the cluster, if threshold T1 (based on the number of
crossings) is used.

Another technique for drawing a biconnected component would rotate the embedding
circle through many positions to find a good solution.

Now that we have addressed the subproblems, we present a comprehensive technique
for obtaining circular layouts of nonbiconnected graphs, called Algorithm CIRCULAR-
with Radial, see Figure 9.20 for the pseudocode of the algorithm. The time complexity
of Algorithm CIRCULAR-with Radial is O(m) if the biconnected components are laid out
with Algorithm LayoutCluster1 or O(m ∗ k), where k is the total number of ancestor and
descendant nodes in the graph if Algorithm LayoutCluster2 is used. Figure 9.21 shows an
example produced by this algorithm.

302 CHAPTER 9. CIRCULAR DRAWING ALGORITHMS

u

(b)(a)

v

v

u

v

arc
empty

(c)

Figure 9.19 This figure demonstrates Algorithms LayoutCluster1 and LayoutCluster2.
The black nodes are descendant nodes and the white nodes are ancestor nodes. (a) Draw-
ing produced by Algorithm CIRCULAR; (b) the rotated drawing of part (a) produced by
Algorithm LayoutCluster1; (c) the resulting drawing of part (a) produced by Algorithm
LayoutCluster2. Figure taken from [ST06].

Algorithm CIRCULAR-with Radial

Input: Any graph G.
Output: A circular drawing Γ of G.

1. Decompose G into a block-cutpoint tree T .

2. If G has only one biconnected component, perform Algorithm CIRCULAR on G.

3. Else

4. Assign the strict articulation points to a biconnected component.

5. Layout the root cluster of T with Algorithm CIRCULAR.

6. For each subtree S of the root cluster

7. Perform the ρ coordinate assignment phase of RADIAL –

with Different Node Sizes on S.

8. For each biconnected component, Bi, of S

9. Layout Bi with Algorithm LayoutCluster1,
or LayoutCluster2 taking into account
the radii defined for the superstructure tree
in Step 7.

10. Considering the order of the subtrees defined during the
layout of biconnected components in Step 9,
perform the θ coordinate assignment phase of
RADIAL – with Different Node Sizes on S.

11. Translate and rotate the clusters of S according to the
radial layout of S.

Figure 9.20 Algorithm CIRCULAR-with Radial.

An extension of Algorithm CIRCULAR-with Radial to include interactive schemes has
been presented by Kaufmann and Wiese in [KW02].

9.6. A FRAMEWORK FOR USER-GROUPED CIRCULAR DRAWING 303

Figure 9.21 A sample drawing as produced by Algorithm CIRCULAR-with Radial. Fig-
ure taken from [ST06].

9.6 A Framework for User-Grouped Circular Drawing

The problem of producing circular drawings of graphs grouped by biconnectivity is quite
different from the problem of drawing a graph whose grouping is user-defined. In the latter
case, there is no known structure of either the groups or the relationship between the groups.
Therefore, we must use a general method for producing this type of visualization. The four
goals of a user-grouped circular drawing technique should be:

1. the user-defined groupings are highly visible,

2. each group is laid out with a low number of edge crossings,

3. the number of crossings between intra-group and inter-group edges is low, and

4. the layout technique is fast.

We know from previous work in clustered graph drawing [EFL97, EF97, EFN99, HE98]
that the relationship between groups is often not very complex. We take advantage of this
knowledge in this framework. Define the superstructure Gs of a given graph G = (V,E, P),
where P is the node group partition, as follows: the nodes in Gs represent the elements
of P . For each edge e ∈ E which is incident to nodes in two different node groups, place
an edge between nodes representing the respective groups in Gs. The type of structure
that we expect Gs to have should be visualized well with a force-directed [DETT99, Ead84]
technique; therefore, the superstructure Gs will be drawn with this approach. Additionally,
since Gs will likely not be a very complicated graph, it should not take much time to achieve
a good drawing with a force-directed technique.

The node groups themselves will be either biconnected or not. Since Algorithms CIRCU-
LAR and CIRCULAR-Nonbiconnected can layout biconnected and nonbiconnected graphs
on a single embedding circle in linear time and have been shown to perform well in practice,
we also will use those techniques here.

We have now addressed how to achieve Goals 1 and 2 with good speed. However, in order
to produce good user-grouped circular graph drawings, we must successfully merge these
two techniques so that we can simultaneously reach Goals 1,2, and 3. And, of course, we
need a fast technique in order to achieve Goal 4. Attaining Goal 3 is very important to

304 CHAPTER 9. CIRCULAR DRAWING ALGORITHMS

the quality of drawings produced by a user-grouped circular drawing technique. As shown
in [Pur97], a drawing with fewer crossings is more readable. It is especially important to
reduce the number of intra-group and inter-group edge crossings as those can particularly
cause confusion while interpreting a drawing. See Figure 9.22. How can we achieve this
low number of crossings? We must place nodes that are adjacent to nodes in other groups
(called outnodes in [DMM97, KMG88]) close to the placement of those other nodes. A
force-directed approach is a good way to attain this goal since it would encourage outnodes
to be closer to their neighbors. Traditional force-directed approaches [DETT99, Ead84]
will not work here though, because we need to constrain the placement of nodes to circles.
In Section 9.6.1, we present a force-directed approach in which the nodes are restricted to
appear on circular tracks. With the use of this technique we will reach Goal 3. As will be
discussed, we can do this in a reasonable amount of time.

�
�
�

�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

Figure 9.22 Example of intra-group and inter-group edge crossings. Figure taken from
[ST03b].

As with most force-directed techniques, the initial placement of nodes has a very signif-
icant impact on the final drawing [DETT99, Ead84]. Therefore, it is important to have
a good initial placement. This is why we should layout the superstructure and each node
group first. At the completion of those steps, we should have the almost-final drawing.
It will then be a matter of fine-tuning the drawing with the circular-track force-directed
technique. And as shown in [ST01] (see extended version in [ST03a]), once you have an
almost-final drawing, it does not take much time for a force-directed technique to converge.

9.6.1 Circular-Track Force-Directed

In order to adapt the force-directed paradigm for circular drawing, we need a way to guar-
antee that the nodes of a group appear on the circumference of an embedding circle, the
circular track. The nodes are restricted to appear on the circular track, but are allowed to
jump over each other and appear in any order, see Figure 9.23. And as in the force-directed
approach, we want to minimize the potential energy in the spring system which is modelling
the graph. In this section, we describe how this circular-track adaptation is achieved.

First, we need to look at node coordinates in a different way. Node i belongs to group α

and is located at position (xi, yi). Given that the center of the embedding circle on which
α is located is at (xα, yα) and the radius of that circle is rα, we can restate the coordinates
of i in the following way:

xi = xα + rα ∗ cos(θi) (9.1)

yi = yα + rα ∗ sin(θi) (9.2)

9.6. A FRAMEWORK FOR USER-GROUPED CIRCULAR DRAWING 305

Figure 9.23 Circular-track force-directed technique. Figure taken from [ST03b].

Remember that Hooke’s Law [HR88] gives us the following equation for the potential
energy V in a spring system:

V =
∑

ij

kij [(xi − xj)
2 + (yi − yj)

2] (9.3)

where kij is the spring constant for the spring between nodes i and j. Equation (12.3) can
be rewritten using (12.1) and (12.2):

V =
∑

(i,j)∈E kij [((xα + rα ∗ cos(θi))− (xβ + rβ ∗ cos(θj)))
2
+

((yα + rα ∗ sin(θi))− (yβ + rβ ∗ sin(θj)))
2
] (9.4)

where node j belongs to group β, (xβ , yβ) is the center and rβ is the radius of the embedding
circle on which β appears. Thus, we have:

V =
∑

(i,j)∈E kij [(xα + rα ∗ cos(θi)− xβ − rβ ∗ cos(θj))
2 +

(yα + rα ∗ sin(θi)− yβ − rβ ∗ sin(θj))
2] (9.5)

We can find a minimal energy solution on variables x, y, and θ. It is interesting to note
that if i and j are on the same circle, then xα and xβ are equivalent as are yα and yβ . And,
of course, rα = rβ . Now we rewrite equation (5):

V =
∑

(i,j)∈E

kij [rα(cos(θi)− cos(θj))
2 + rα(sin(θi)− sin(θj))

2)] (9.6)

We can calculate rα from the number of nodes in α so that means that finding the
minimum V is now a one-dimensional problem based on finding the right set of θs. When
we combine (12.5) or (12.6) with equations for magnetic repulsion to prevent node occlusion,
we have a force-directed equation for which the nodes of a group lie on the circumference
of a circle. Now we extend equation (12.5) to include repulsive forces.

ρij = [(xα + rα ∗ cos(θi)− xβ − rβ ∗ cos(θj))
2 +

(yα + rα ∗ sin(θi)− yβ − rβ ∗ sin(θj))
2] (9.7)

V =
∑

(i,j)∈E

kijρij +
∑

(i,j)∈V×V

gij
1

ρij
(9.8)

where gij is the repulsive constant between nodes i and j.
Another important consideration is the set of spring constants used in the above equa-

tions. It is not necessary for the spring constant to be the same for each pair of nodes. It
is also possible for these constants to change during different phases of execution.

306 CHAPTER 9. CIRCULAR DRAWING ALGORITHMS

9.6.2 A Technique for Creating User-Grouped Circular Drawings

Now that we have a force-directed technique in which the nodes are placed on circular
tracks, we need to show how we will successfully merge the force-directed approach and the
circular drawing techniques discussed earlier in this chapter. We present a technique for
creating user-grouped circular drawings in Figure 9.24.

Algorithm CIRCULAR-with Forces

Input: A graph G = (V,E, P).
Output: User-grouped circular drawing of G Γ.

1. Determine the superstructure Gs of G.

2. Layout Gs with a basic force-directed technique.

3. For each group pi in P

(a) If the subgraph induced by pi, Gi, is biconnected
layout Gi with CIRCULAR.

(b) Else layout Gi with CIRCULAR-Nonbiconnected.

4. Place the layout of each group pi at the respective location found in Step 2.

5. For each group pi

(a) rotate the layout circle and keep the position which has the lowest local
potential energy.

(b) reverse the order of the nodes around the embedding circle and repeat
Step 5a.

(c) if the result of Step 5a had a lower local potential energy than that of Step 5b
revert to the result of Step 5a.

6. Apply a force-directed technique using the equations of Section 9.6.1 to G.

Figure 9.24 Algorithm CIRCULAR-with Forces.

Going back to the four goals discussed in Section 9.6, we will attain Goal 1 by using
a basic force-directed technique to layout the superstructure. We will attain Goal 2 by
laying out each group with either Algorithms CIRCULAR or CIRCULAR-Nonbiconnected.
Attaining Goal 3 means successfully merging the results of the force-directed and circular
techniques.

Once we have the layout of the superstructure and each group, we place the layout of
each group at the respective location found during the layout of the superstucture. Now
we have an almost-final layout: it is a matter of rotating the layouts of the groups and
maybe adjusting the order of nodes around the embedding circle. Since we know that
Algorithms CIRCULAR and CIRCULAR-Nonbiconnected produce good visualizations, we
should change these layouts as little as possible. So first, we will fine-tune the almost-final
drawing by rotating each layout and keeping the rotation that has the least local potential
energy. We rotate each embedding circle through nα positions, where nα is the number of
nodes in group α. With respect to determining local potential energy, we need to determine

9.7. IMPLEMENTATION AND EXPERIMENTS 307

the lengths of inter-group edges that are incident to the nodes of α. The rotation of choice
should minimize the lengths of those edges. In other words, we choose the rotation in
which as many nodes as possible are close to their other-group neighbors. Since for each
embedding circle we try nα positions and examine the length of α’s incident inter-group
edges at each position, then the rotation step will take O(n∗minter−group) time for the entire
graph, where minter−group is the number of inter-group edges. As discussed in Section 9.6,
we expect minter−group ≪ m. Then we will “flip” each layout and again rotate. We keep
the rotation which has the least local potential energy. After these steps, it is still possible
that some nodes will be badly placed with respect to their relationships with nodes in other
groups. In other words, those placements cause intra-group and inter-group edges to cross.
In order to address this problem, we will apply the force-directed technique described in
Section 9.6.1. The result of this step will be the reduction of intra-group and inter-group
edge crossings since nodes will be pulled to the side of the embedding circle which is closer
to their other-group relatives.

Because Algorithm CIRCULAR-with Forces makes use of a force-directed technique,
the worst-case time requirement is unknown. However, in practice, we expect the time
requirement to be O(n2) for the following reasons: Step 1 requires O(m) time. Step 2
will be on a small graph and should not require much time to reach convergence. Step 3
requires O(m) time. Step 4 requires O(n) time. Step 5 require O(n ∗minter−group) time.
Since Step 6 is a force-directed technique, it could take O(n3) time in practice; however, the
result of the previous steps will be an almost-final layout and thus should not need much
time to converge. It was evidenced in [ST01] (see extended version in [ST03a]) that when
a force-directed technique is applied to an almost-final layout, it does not take much more
time for convergence to occur. Therefore, in practice we expect this step to require O(n2)
time. Thus, we have attained Goal 4 from Section 9.6.

9.7 Implementation and Experiments

9.7.1 Experimental Analysis of Algorithm CIRCULAR

We have implemented Algorithm CIRCULAR in C++. The code runs on top of the Tom
Sawyer Software Graph Layout Toolkit (GLT) version 2.3.1. We also performed an extensive
experimental study to compare Algorithms CIRCULAR and CIRCULAR-Postprocessing
with the circular layout component of the GLT. The circular layout technique in the GLT
requires O(n2) time [DMM97, KMG88]. The results of the study show that the drawings
of Algorithm CIRCULAR have about 15% fewer crossings on average than those produced
by the GLT. Furthermore, the worst-case time requirement for Algorithm CIRCULAR is
O(m) versus the O(n2) worst-case time requirement for the GLT technique. Algorithm
CIRCULAR-Postprocessing is able to significantly further reduce the number of edge cross-
ings.

The set of input graphs for the experiments included 10,328 biconnected components of
minimum size 10 extracted from the 11,399 Rome graphs [DGL+97], which have between
10 and 80 nodes. The number of edge crossings is measured for Algorithm CIRCULAR,
Algorithm CIRCULAR-Postprocessing, and the circular drawing component of the GLT.
As shown in the plot of Figure 9.25, the techniques produce significantly fewer crossings
on average than the GLT. Specifically the drawings of Algorithm CIRCULAR have sig-
nificantly fewer crossings. And as the plot shows, Algorithm CIRCULAR-Postprocessing
effectively reduces the number of edge crossings even further. The percentage improvement
between Algorithm CIRCULAR-Postprocessing and GLT averages is 30%. Sample drawings
as produced by both GLT and the techniques are shown in Figures 9.26–9.28.

308 CHAPTER 9. CIRCULAR DRAWING ALGORITHMS

0

50

100

150

200

250

300

350

10 20 30 40 50 60 70 80

N
u

m
b

e
r

o
f

E
d

g
e

 C
ro

s
s
in

g
s

Number of Nodes

CIRCULAR
CIRCULAR with Postprocessing

Graph Layout Toolkit

Figure 9.25 The average number of edge crossings produced by Algorithm CIRCULAR,
Algorithm CIRCULAR-Postprocessing, and the Graph Layout Toolkit over 10,328 bicon-
nected graphs. Figure taken from [ST99, ST06].

76

64 62

65 61

66 60

63 59 1

75 67

77 68 2

78

63

60

61

65

59 1

67

68 2 78

66

77

76

75

6462

Figure 9.26 The drawing on the left is produced by the GLT. The drawing on the right is
of the same graph and is produced by Algorithm CIRCULAR-Postprocessing. The drawing
produced by Algorithm CIRCULAR-Postprocessing has 75% fewer crossings than the GLT
drawing. Figure taken from [ST99, ST06].

Untitled38
Untitled37

Untitled40 2

Untitled43 2

Untitled29

Untitled3 3

Untitled34

Untitled6 4

Untitled35

Untitled23

Untitled28

Untitled27

Untitled32 3

Untitled33

Untitled31 2

Untitled20

Untitled30

Untitled22 6

Untitled41

Untitled19
Untitled39 3

Untitled27

Untitled34

Untitled35

Untitled19

Untitled20

Untitled23

Untitled6 4

Untitled3 3

Untitled43 2

Untitled22 6

Untitled28

Untitled29

Untitled37

Untitled38

Untitled40 2

Untitled39 3

Untitled41

Untitled31 2
Untitled30

Untitled33

Untitled32 3

Figure 9.27 The drawing on the left is produced by the GLT. The drawing on the right is
of the same graph and is produced by Algorithm CIRCULAR-Postprocessing. The drawing
produced by Algorithm CIRCULAR-Postprocessing has 53% fewer crossings. Figure taken
from [ST99, ST06].

9.7. IMPLEMENTATION AND EXPERIMENTS 309

134

135 136

131 1 138

132 139

133 140

152 142

154 144

137 145

141 143

153 151

155 150

156 149

146 148

147

137

134

131 1

135

132

136

150

148

149

147

151

143

152

146

156144

155

154

153

142

145

140139

141

133

138

Figure 9.28 The drawing on the left is produced by the GLT. The drawing on the right is
of the same graph and is produced by Algorithm CIRCULAR-Postprocessing. The drawing
produced by Algorithm CIRCULAR-Postprocessing has 55% fewer crossings. Figure taken
from [ST99, ST06].

9.7.2 Implementation Issues

During Step 4 of Algorithm CIRCULAR, the technique chooses a node of lowest degree with
the following priority: a wave front node, a wave center node, or some lowest degree node.
An efficient way to execute this is to initially sort the nodes by degree into a table of lists
that reflect those categories. The table is updated as nodes and edges are removed from
the graph. A bucket sort is initially used to place each node into its respective category. In
order to keep the table updated, when node v, is processed, we simply move each neighbor
of v into the front of its respective degree list during each iteration (similar to self-adjusting
lists). This way the nodes are retrieved in the desired priority: neighbor, previous neighbor,
and lowest degree node, see Figure 9.29.

Neighbors

Previous Neighbors

Lowest Degree Nodes

...deg

Figure 9.29 The construction of each degree list within the node table. Figure taken
from [ST99, ST06].

During Step 15, the algorithm performs a DFS which will result in a DFS tree. Then we
place the nodes from the longest path within that DFS tree onto the embedding circle and
we merge in the nodes of the remaining DFS tree branches. See Figure 9.30. The longest
path does not necessarily go through the root of the DFS tree as it does in this example.

If the input graph is outerplanar, the drawing produced by Algorithm CIRCULAR will
always be plane; if not, then there might be crossings. In this case, it may be possible
to further reduce the number of crossings by moving nodes to a better position on the

310 CHAPTER 9. CIRCULAR DRAWING ALGORITHMS

Figure 9.30 A DFS tree with the edges of the longest path designated by thick lines.
Figure taken from [ST99, ST06].

embedding circle. As noted in the time complexity analysis of Algorithm CIRCULAR-
Postprocessing, the order is dominated by the time required for counting the number of
crossings. Therefore, it is vitally important to the time efficiency of the implementation of
this algorithm that the number of crossings be counted in an effective manner. In order to
lower the average time cost of counting crossings in the drawing, we ignore all edges that
lie on the periphery of the embedding circle. These edges cannot possibly cause crossings.
Also, in the step that determines the number of crossings caused by a single node, either the
clockwise or counter-clockwise direction is first chosen dependent on which has the shorter
arc.

9.7.3 Experimental Analysis of Algorithm CIRCULAR-with Radial

We have implemented Algorithm CIRCULAR-with Radial using Algorithm LayoutCluster1
and edge reduction postprocessing in C++ and run experiments with 11,399 graphs from
[DGL+97]. The plot in Figure 9.31 shows the average number of edge crossings produced
by the circular layout component of the GLT and Algorithm CIRCULAR-with Radial. As
is shown by these results, the average number of crossings in the drawings produced by the
technique is about 35% less than that of the GLT technique [DMM97, KMG88]. Sample
drawings from both the GLT and Algorithm CIRCULAR-with Radial are shown in Figures
9.32 and 9.33.

The drawings produced by Algorithm CIRCULAR-with Radial clearly show the bicon-
nectivity characteristics of networks. And although these drawings have a low number of
edge crossings, they may show more details than a user would wish to see at one time.
Therefore, we suggest that Algorithm CIRCULAR-with Radial can be used in an interac-
tive environment in which the superstructure would be shown and the user would click on
a node to see the details of the cluster; see Figure 9.34 for an example. Alternatively, the
levels of visualization could be combined and some clusters shown in detail while others are
shown with a single node.

9.7. IMPLEMENTATION AND EXPERIMENTS 311

0

50

100

150

200

250

300

350

10 20 30 40 50 60 70 80 90 100

N
u
m

b
e
r

o
f
E

d
g
e
 C

ro
s
s
in

g
s

Size Of Graph

CIRCULAR - with Radial
GLT

Figure 9.31 This plot shows the average number of edge crossings produced by Algorithm
CIRCULAR-with Radial and the Graph Layout Toolkit when executed on 11,399 graphs
from [DGL+97]. Figure taken from [ST06].

1

15

14

3

30

11

16

8 27

9 28

17 24

7 23

6 18

19 26

20 4

12 13

10 25

21 5

2 22

29

Figure 9.32 The drawing on the left is produced by the GLT and the drawing on the
right is of the same graph and is produced by Algorithm CIRCULAR-with Radial. Figure
taken from [ST06].

9.7.4 Implementation of Algorithm CIRCULAR-with Forces

We have implemented Algorithm CIRCULAR-with Forces so that all nodes and embedding
circles are given an arbitrary initial placement. Then the force-directed equations of Section
9.6.1 are applied to the graph with the placement of group embedding circles frozen. See
Figure 9.35 for a sample drawing.

An interesting behavior we noticed is that the drawing with minimal energy is not nec-
essarily the best circular drawing. In circular drawing, a major goal is to reduce edge

312 CHAPTER 9. CIRCULAR DRAWING ALGORITHMS

3

2

154

46
8

33
10

1

47

5

22

35

18

11

38

6

17

39

32

16

48

13

36

7

12

49

20

31

45

14

30

9

43

29

24

41

27

34

40

19

42

37
23

21
44

2526
28

Figure 9.33 The drawing on the left is produced by the GLT and the drawing on the
right is of the same graph and is produced by Algorithm CIRCULAR-with Radial. Figure
taken from [ST06].

Cluster c2

c1

c2

c3c4

c5

mouse
click

visualization of cluster

Figure 9.34 Example of interactive circular visualization. Figure taken from [ST06].

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Figure 9.35 Sample user-grouped circular drawing from the preliminary implementation.
Figure taken from [ST03b].

9.8. CONCLUSIONS 313

crossings. However, it is well known [DETT99] that reducing crossings sometimes means
the compromise of other aesthetics, especially area, and area is related to minimum energy
in spring systems. We propose adding springs from each node to its initial placement on
the plane with the spring constants for these springs being high. This should keep these
nodes from gravitating toward each other too much and causing extra crossings. We also
suggest creating dummy nodes which are placed in the center of each embedding circle and
attaching strong springs from them to every node in their respective group.

9.8 Conclusions

Circular visualizations of networks which show the inherent strengths and weaknesses of
structures with clustered views are advantageous additions to many design tools.
We have presented an O(m) time algorithm for drawing circular visualizations of bicon-

nected graphs on a single embedding circle. Not only is this technique efficient, but it also
produces a plane drawing of the biconnected graph if such exists. Extensive experiments
show that the technique works very well in practice. We have also presented an O(m) time
technique which decomposes the given graph into biconnected components and visualizes
each cluster on a separate embedding circle. This technique has been implemented and
results of an experimental study also show this algorithm to perform very well in practice.
Both techniques produce drawings that clearly show the biconnectivity structure of the
given graphs and also have a low number of crossings. We have also discussed a framework
for creating circular graph drawings in which the grouping is defined by the user. This
framework includes the successful merging of the force-directed and circular graph drawing
paradigms. Algorithm CIRCULAR-with Forces is fast and produces drawings in which the
user-defined groupings are highly visible, each group is laid out with a low number of edge
crossings, and the number of crossings between intra-group and inter-group edges is low.

314 CHAPTER 9. CIRCULAR DRAWING ALGORITHMS

References

[BB05] M. Baur and U. Brandes. Crossing Reduction in Circular Layouts In Proc.

WG ’04, LNCS 3353, pages 332–343, 2005.

[Ber81] M. A. Bernard. On the automated drawing of graphs. In Proc. 3rd

Caribbean Conf. on Combinatorics and Computing, pages 43–55, 1981.

[Bra97] F. J. Brandenburg. Graph clustering I: Cycles of cliques. In Proc. GD ’97,

LNCS 1353, pages 158–168, 1997.

[DETT99] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing.
Prentice Hall, Upper Saddle River, NJ, 1999.

[DGL+97] G. Di Battista, A. Garg, G. Liotta, R. Tamassia, E. Tassinari, and
F. Vargiu. An experimental comparison of four graph drawing algorithms.
Comput. Geom. Theory Appl., 7:303–325, 1997.

[DMM97] U. Dogrusoz, B. Madden, and P. Madden. Circular layout in the graph
layout toolkit. In Proc. GD ’96, LNCS 1190, pages 92–100, 1997.

[Ead84] P. Eades. A heuristic for graph drawing. Congr. Numer., 42:149–160, 1984.

[Ead92] P. D. Eades. Drawing free trees. Bulletin of the Institute for Combinatorics

and its Applications, 5:10–36, 1992.

[EF97] P. Eades and Q. Feng. Multilevel visualization of clustered graphs. In Proc.

GD ’96, LNCS 1190, pages 101–112, 1997.

[EFL97] P. Eades, Q. Feng, and X. Lin. Straight-line drawing algorithms for hier-
archical graphs and clustered graphs. In Proc. GD ’96, LNCS 1190, pages
113–128, 1997.

[EFN99] P. Eades, Q. W. Feng, and H. Nagamochi. Drawing clustered graphs on an
orthogonal grid. Jrnl. of Graph Algorithms and Applications, pages 3–29,
1999.

[Esp88] C. Esposito. Graph graphics: Theory and practice. Comput. Math. Appl.,
15(4):247–253, 1988.

[GK07] E. Gansner and Y. Koren. Improved Circular Layouts. In Proc. GD ’06,

LNCS 4372, pages 386–398, 2007.

[HS04] H. He and O. Sýkora. New Circular Drawing Algorithms. Unpublished
manuscript, Creative Commons License, 2004.

[HE98] M. L. Huang and P. Eades. A fully animated interactive system for clus-
tering and navigating huge graphs. In Proc. GD ’98, LNCS 1547, pages
107–116, 1998.

[HR88] D. Halliday and R. Resnick. Fundamentals of Physics: 3rd Edition Ex-

tended. Wiley, New York, NY, 1988.

[KMG88] G. Kar, B. Madden, and R. Gilbert. Heuristic layout algorithms for network
presentation services. IEEE Network, pages 29–36, 11 1988.

[KW02] M. Kaufmann and R. Wiese. Maintaining the Mental Map for Circular
Drawings. In Proc. GD 2002, LNCS 2528, Pages 12–22, 2002.

[Ker93] A. Kershenbaum. Telecommunications Network Design Algorithms.
McGraw-Hill, 1993.

[Kre96] V. Krebs. Visualizing human networks. Release 1.0: Esther Dyson’s

Monthly Report, pages 1–25, February 12 1996.

REFERENCES 315

[Ma88] E. Mäkinen. On Circular Layouts. In Intl. Jrnl of Computer Mathematics,
pages 29–37, 24(1988).

[Mit79] S. Mitchell. Linear algorithms to recognize outerplanar and maximal out-
erplanar graphs. Information Processing Letters, pages 229–232, 9(5) 1979.

[MKNF87] S. Masuda, T. Kashiwabara, K. Nakajima, and T. Fujisawa. On the NP-
completeness of a computer network layout problem. In Proc. IEEE 1987

International Symposium on Circuits and Systems, Philadelphia, PA, pages
292–295, 1987.

[PS85] F. P. Preparata and M. I. Shamos. Computational Geometry: An Intro-

duction. Springer-Verlag, New York, NY, 1985.

[Pur97] Helen Purchase. Which aesthetic has the greatest effect on human under-
standing? In GD ’97, LNCS 1353, pages 248–261, 1997.

[Six00] J. M. Six(Urquhart). Vistool: A Tool For Visualizing Graphs. PhD thesis,
The University of Texas at Dallas, 2000.

[ST99] J. M. Six and I. G. Tollis. Circular drawings of biconnected graphs. In
Proc. of ALENEX ’99, LNCS 1619, pages 57–73, 1999.

[ST01] J. M. Six and I. G. Tollis. Effective graph visualization via node grouping.
In Proc. of IEEE InfoVis 2001, pages 51–58, 2001. (see extended version
in [ST03a])

[ST03a] J. M. Six and I. G. Tollis. Effective graph visualization via node grouping.
In K. Zhang Ed., editor, Software Visualization: From Theory to Practice,

The Kluwer Intl. Series in Engineering and Computer Science Vol. 734.
Kluwer Academic Publishers, 2003.

[ST06] J. M. Six and I. G. Tollis. A framework and algorithms for circular drawings
of graphs. Jrnl. of Discrete Algorithms, 4(1), pages 25–50, 2006.

[ST03b] J. M. Six and I. G. Tollis. A framework for user-grouped circular drawings.
In Proc of GD 2003, LNCS 2912, pages 135–146, 2003.

[TX95] I. G. Tollis and C. Xia. Drawing telecommunication networks. In Proc.

GD ’94, LNCS 894, pages 206–217, 1995.

[YFDH01] K. Yee, D. Fisher, R. Dhamija, and M. Hearst. Animated exploration of
dynamic graphs with radial layout. In Proc. of InfoVis 2001, pages 43–50.
IEEE, 2001.

10
Rectangular Drawing Algorithms

Takao Nishizeki
Kwansei Gakuin University,

Japan

Md. Saidur Rahman
BUET, Bangladesh

10.1 Introduction . 317
10.2 Rectangular Drawing and Matching . 320
10.3 Linear Algorithms for Rectangular Drawing 323

Thomassen’s Theorem • Drawing Algorithms • Drawing
without Designated Corners

10.4 Box-Rectangular Drawing . 337
10.5 Conclusions . 344
References . 347

10.1 Introduction

A rectangular drawing of a plane graph G, a planar graph G with a fixed embedding, is a
drawing of G in which each vertex is drawn as a point, each edge is drawn as a horizontal
or vertical line segment without edge-crossings, and each face is drawn as a rectangle.
Figure 10.1(b) illustrates a rectangular drawing of the plane graph in Fig. 10.1(a).

Rectangular drawings have practical applications in VLSI floorplanning and architectural
floorplanning [NR04]. In a VLSI floorplanning problem, an input is a plane graph F as
illustrated in Fig. 10.2(a); F represents the functional entities of a chip, called modules, and
interconnections among the modules; each vertex of F represents a module, and an edge
between two vertices of F represents the interconnections between the two corresponding
modules. An output of the problem for the input graph F is a partition of a rectangular
chip area into smaller rectangles as illustrated in Fig. 10.2(d); each module is assigned
to a smaller rectangle, and furthermore, if two modules have interconnections, then their
corresponding rectangles must be adjacent, that is, must have a common boundary.

A similar problem arises in architectural floorplanning. When building a house, the owner
may have some preference; for example, a bedroom should be adjacent to a reading room.
The owner’s choice of room adjacencies can be easily modeled by a plane graph F , as
illustrated in Fig. 10.2(a); each vertex represents a room and an edge between two vertices
represents the desired adjacency between the corresponding rooms. A rectangular drawing
of a plane graph may provide a suitable solution of the floorplanning problem described
above. First, obtain a plane graph F ′ by triangulating all inner faces of F as illustrated
in Fig. 10.2(b), where dotted lines indicate new edges added to F . Then obtain a dual-
like graph G of F ′ as illustrated in Fig. 10.2(c), where the four vertices of degree 2 drawn
by white circles correspond to the four corners of the rectangular area. Finally, find a
rectangular drawing of the plane graph G to obtain a possible floorplan for F as illustrated
in Fig. 10.2(d).

317

318 CHAPTER 10. RECTANGULAR DRAWING ALGORITHMS

(a) (b)

a
b

a

d

b

c

c

d

Figure 10.1 (a) Plane graph, and (b) its rectangular drawing for the designated corners
a, b, c and d. (Figure taken from [NR04].)

(d)(c)(b)(a)

e

a
b

c
d

g

f
e

d

a

b

c

g

f

e

a

d

c

b

g

f

ed

a

c

b

g

f

Figure 10.2 (a) Graph F , (b) triangulated graph F ′, (c) dual-like graph G, and (d)
rectangular drawing of G. (Figure taken from [NR04].)

In a rectangular drawing of G, the outer cycle Co(G) is drawn as a rectangle and hence
has four convex corners such as a, b, c and d drawn by white circles in Fig. 10.1. Such a
convex corner is an outer vertex of degree two and is called a corner of the rectangular
drawing. Not every plane graph G has a rectangular drawing. Of course, G must be 2-
connected and the maximum degree ∆ of G is at most four if G has a rectangular drawing.
Miura et al. showed that a plane graph G with ∆ ≤ 4 has rectangular drawing D if and
only if a new bipartite graph constructed from G has a perfect matching, and D can be
found in time O(n1.5/ log n) whenever G has D [MHN06]. In Section 10.2 we present their
result on rectangular drawings of plane graphs with ∆ ≤ 4.

Since a planar graph with ∆ ≤ 3 often appears in many practical applications, much
works are devoted to rectangular drawings of planar graphs with ∆ ≤ 3 [BS88, Tho84,
RNN98, RNN02]. In Section 10.3 we present a necessary and sufficient condition for a
plane graph G with ∆ ≤ 3 to have a rectangular drawing when four outer vertices of
degree two are designated as the corners [Tho84], and also present a linear-time algorithm
to obtain a rectangular drawing with the designated corners [RNN98]. The problem of
examining whether a plane graph has a rectangular drawing becomes difficult when four

10.1. INTRODUCTION 319

outer vertices are not designated as the corners. We also present a necessary and sufficient
condition for a plane graph with ∆ ≤ 3 to have a rectangular drawing for some quadruplet
of outer vertices appropriately chosen as the corners; the condition leads to a linear-time
algorithm [RNN02, NR04].

In the floorplan described in Fig. 10.2(d), two rectangles are always adjacent if the mod-
ules corresponding to them have interconnections in F in Fig. 10.2(a). However, two rect-
angles may be adjacent even if the modules corresponding to them have no interconnections
in F . For example, module e and module g have no interconnection in F , but their corre-
sponding rectangles are adjacent in the floorplan in Fig. 10.2(d). Such unwanted adjacencies
are not desirable in some other floorplanning problems.

In floorplanning of a MultiChip Module (MCM), two chips generating excessive heat
should not be adjacent, or two chips operating on high frequency should not be adjacent
to avoid malfunctioning due to their interference [She95]. Unwanted adjacencies may cause
a dangerous situation in some architectural floorplanning, too [FW74]. For example, in
a chemical industry, a processing unit that deals with poisonous chemicals should not be
adjacent to a cafeteria. We can avoid the unwanted adjacencies if we obtain a floorplan
for F by using a “box-rectangular drawing” instead of a rectangular drawing. A box-
rectangular drawing of a plane graph G is a drawing of G such that each vertex is drawn as
a rectangle, called a box, each edge is drawn as a straight line segment joining points on the
two boxes corresponding to the ends, and the contour of each face is drawn as a rectangle, as
illustrated in Fig. 10.3(c). A vertex may be drawn as a degenerate rectangle, that is, a point.
A floorplan can be obtained by using a box-rectangular drawing as follows. First, without
triangulating the inner faces of F , find a dual-like graph G of F as illustrated in Fig. 10.3(b).
Then find a box-rectangular drawing of G to obtain a possible floorplan for F as illustrated
in Fig. 10.3(c). In Fig. 10.3(c) rectangles e and g are not adjacent although there is a
dead space corresponding to a vertex of G drawn by a rectangular box. Such a dead space
to separate two rectangles in floorplanning is desirable for dissipating excessive heat in an
MCM or for ensuring safety in a chemical industry. If G has multiple edges or a vertex of
degree five or more, then G has no rectangular drawing but may have a box-rectangular
drawing. However, not every plane graph has a box-rectangular drawing. Section 10.4
presents a necessary and sufficient condition for the existence of a box-rectangular drawing
of a plane graph, and gives a linear algorithm to find a box-rectangular drawing if it exists.

(a) (b) (c)

e e e

a

d

f

g

c

b

a

d

c

b

g

f

a

d

c

bf

g

Figure 10.3 (a) F , (b) G, and (c) box-rectangular drawing of G. (Figure taken
from [NR04].)

320 CHAPTER 10. RECTANGULAR DRAWING ALGORITHMS

10.2 Rectangular Drawing and Matching

This section deals with rectangular drawings of plane graphs with ∆ ≤ 4, and shows that a
plane graph G with ∆ ≤ 4 has rectangular drawing D if and only if a new bipartite graph
Gd constructed from G has a perfect matching, and D can be found in time O(n1.5/ log n)
if D exists [MHN06, NR04]. Gd is called a decision graph.

One may assume without loss of generality that G is 2-connected and ∆ ≤ 4, and hence
every vertex of G has degree two, three or four.

An angle formed by two edges e and e′ incident to a vertex v in G is called an angle of
v if e and e′ appear consecutively around v. An angle of a vertex in G is called an angle of
G. An angle formed by two consecutive edges on a boundary of a face F in G is called an
angle of F . An angle of the outer face is called an outer angle of G, while an angle of an
inner face is called an inner angle.

In any rectangular drawing, every inner angle is 90◦ or 180◦, and every outer angle is
180◦ or 270◦. Consider a labeling Θ which assigns a label 1, 2, or 3 to every angle of G,
as illustrated in Fig. 10.4(b). Labels 1, 2 and 3 correspond to angles 90◦, 180◦ and 270◦,
respectively. Therefore each inner angle has label either 1 or 2, exactly four outer angles
have label 3, and all other outer angles have label 2.

a

d

b

c

2

2

2

x
x

x

x

1

2

1 1

3

1
2

22

1

1

3
1

3

2 2

2

1 1

2

1

1
1

1

1

x

1

x x

x

xx
x

x

2

1 1

(a) (b)

(c)

3

cd

ba

1

1

1

3
1

2

2

2

1 1

2
1

11 1

21

1
2

2
1

1 2

1 1

2

1 11

3 3
1

22

3
1

1 1

11

1 1

2 2

1 1

2

2

a b

d c

1

1
2

Figure 10.4 (a) Plane graph G, (b) rectangular drawing D and regular labeling Θ of G,
and (c) decision graph Gd. (Figure taken from [NR04].)

10.2. RECTANGULAR DRAWING AND MATCHING 321

We call Θ a regular labeling of G if Θ satisfies the following three conditions (a)–(c):

(a) For each vertex v of G, the sum of the labels of all the angles of v is equal to 4;

(b) The label of any inner angle is 1 or 2, and every inner face has exactly four angles
of label 1; and

(c) The label of any outer angle is 2 or 3, and the outer face has exactly four angles
of label 3;

Figure 10.4(b) depicts a regular labeling Θ of the plane graph in Fig. 10.4(a) and a rectan-
gular drawing D corresponding to Θ. A regular labeling is a special case of an orthogonal
representation of an orthogonal drawing presented in [Tam87].

Conditions (a) and (b) imply the following (i)–(iii):

(i) If a non-corner vertex v has degree two, that is, d(v) = 2, then the two labels of
v are 2 and 2.

(ii) If d(v) = 3, then exactly one of the three angles of v has label 2 and the other
two have label 1.

(iii) If d(v) = 4, then all the four angles of v have label 1.

If G has a rectangular drawing, then clearly G has a regular labeling. Conversely, if G
has a regular labeling, then G has a rectangular drawing, as can be proved by means of
elementary geometric considerations. We thus have the following fact.

Fact 10.1 A plane graph G has a rectangular drawing if and only if G has a regular
labeling.

Assume now that four outer vertices a, b, c and d of degree two are designated as corners.
Then the outer angles of a, b, c and d must be labeled with 3, and all the other outer angles
of G must be labeled with 2, as illustrated in Fig. 10.4(a). Some of the inner angles of G
can be immediately determined, as illustrated in Fig. 10.4(a). If v is a non-corner outer
vertex of degree two, then the inner angle of v must be labeled with 2. The two angles of
any inner vertex of degree two must be labeled with 2. If v is an outer vertex of degree
three, then the outer angle of v must be labeled with 2 and both of the inner angles of v
must be labeled with 1. All the four angles of each vertex of degree four must be labeled
with 1. On the other hand we label all the three angles of an inner vertex of degree three
with x, because one cannot determine their labels although exactly one of them must be
labeled with 2 and the others with 1. Label x means that x is either 1 or 2, and exactly
one of the three labels x’s attached to the same vertex must be 2 and the other two must
be 1. (See Figs. 10.4(a) and (b).)

We now present how to construct a decision graph Gd of G. Let all vertices of G that
have been attached label x be vertices of Gd. Thus all the inner vertices of degree three are
vertices of Gd, and none of the other vertices of G is a vertex of Gd. We then add to Gd a
complete bipartite graph inside each inner face F of G, as illustrated in Fig. 10.5 where Gd

is drawn by solid lines and G by dotted lines. Let nx be the number of angles of F labeled
with x. For example, nx = 3 for the face F in Fig. 10.5. Let n1 be the number of angles of
F which have been labeled with 1. Then n1 is the number of vertices v on F such that one
of the following (i)–(iii) holds:

(i) v is a corner vertex, that is, v is an outer vertex of degree 2 and the outer angle
of v is labeled with 3;

(ii) v is an outer vertex of degree 3 and the outer angle of v is labeled with 2; and

322 CHAPTER 10. RECTANGULAR DRAWING ALGORITHMS

(iii) d(v) = 4.

Thus n1 = 2 for the example in Fig. 10.5. One may assume as a trivial necessary condition
that n1 ≤ 4; otherwise, G has no rectangular drawing. Exactly 4 − n1 of the nx angles of
F labeled with x must be labeled with 1 by a regular labeling. Add a complete bipartite
graph K(4−n1),nx

in F , and join each of the nx vertices in the second partite set with one of
the nx vertices on F whose angles are labeled with x. Repeat the operation above for each
inner face F of G. The resulting graph is a decision graph Gd of G. The decision graph
Gd of the plane graph G in Fig. 10.4(a) is drawn by solid lines in Fig. 10.4(c), where G is
drawn by dotted lines.

4 −n

n1

F

xx

x

1

1

x

Figure 10.5 Construction of Gd for an inner face F of G. (Figure taken from [NR04].)

A matching of Gd is a set of pairwise non-adjacent edges in Gd. A maximum matching
of Gd is a matching of the maximum cardinality. A matching M of Gd is called a perfect
matching if an edge in M is incident to each vertex of Gd. A perfect matching of Gd is
drawn by thick solid lines in Figs. 10.4(c) and 10.5.

Each edge e of Gd incident to a vertex v attached a label x corresponds to an angle α of
v labeled with x. A fact that e is contained in a perfect matching M of Gd means that the
label x of α is 2. Conversely, a fact that e is not contained in M means that the label x of
α is 1. Then one can easily observe that G has a rectangular labeling if and only if Gd has
a perfect matching.

Clearly, Gd is a bipartite graph, and 4−n1 ≤ 4. Obviously, nx is no more than the number
of edges on face F . Let n be the number of vertices, and let m be the number of edges in G,
then we have 2m ≤ 4n since ∆ ≤ 4. Therefore the sum 2m of the numbers of edges on all
faces is at most 4n. One can thus know that both the number nd of vertices in Gd and the
number md of edges in Gd are O(n). Since Gd is a bipartite graph, a maximum matching
of Gd can be found either in time O(

√
ndmd) = O(n1.5) by an ordinary bipartite matching

algorithm [HK73, MV80, PS82] or in time O(n1.5/ log n) by a pseudoflow-based bipartite
matching algorithm using boolean word operations on log n-bit words [Hoc04, HC04]. One
can find a regular labeling Θ of G from a perfect matching of Gd in linear time. It is easy
to find a rectangular drawing of G from Θ in linear time. Thus the following theorem holds
[MHN06].

Theorem 10.1 Let G be a plane graph with ∆ ≤ 4 and four outer vertices a, b, c and d
be designated as corners. Then G has a rectangular drawing D with the designated corners
if and only if the decision graph Gd of G has a perfect matching. D can be found in time
O(n1.5/ log n) whenever G has D.

10.3. LINEAR ALGORITHMS FOR RECTANGULAR DRAWING 323

10.3 Linear Algorithms for Rectangular Drawing

This section presents Thomassen’s theorem on a necessary and sufficient condition for a
plane graph G with ∆ ≤ 3 to have a rectangular drawing when four outer vertices of
degree two are designated as the corners [Tho84], and gives a linear-time algorithm to find
a rectangular drawing of G if it exists [RNN98].

10.3.1 Thomassen’s Theorem

Before presenting Thomassen’s theorem we recall some definitions. An edge of a plane
graph G is called a leg of a cycle C if it is incident to exactly one vertex of C and located
outside C. The vertex of C to which a leg is incident is called a leg-vertex of C. A cycle
in G is called a k-legged cycle of G if C has exactly k legs in G and there is no edge which
joins two vertices on C and is located outside C. Figure 10.6(a) illustrates 2-legged cycles
C1, C2, C3 and C4, while Fig. 10.6(b) illustrates 3-legged cycles C5, C6, C7 and C8, where
corners are drawn by white circles.

If a 2-legged cycle contains at most one corner like C1, C2 and C3 in Fig. 10.6(a), then
some inner face cannot be drawn as a rectangle and hence G has no rectangular drawing.
Similarly, if a 3-legged cycle contains no corner like C5 and C8 in Fig. 10.6(b), then G has
no rectangular drawing. One can thus observe the following fact.

C5

6

C

C

C 4

C

C7

3

1

8

(a) 2−legged cycles (b) 3−legged cycles

C
2 C

Figure 10.6 Good cycles C4, C6 and C7, and bad cycles C1, C2, C3, C5 and C8. (Figure
taken from [NR04].)

Fact 10.2 In any rectangular drawing D of G, every 2-legged cycle of G contains two or
more corners, every 3-legged cycle of G contains one or more corner, and every cycle with
four or more legs may contain no corner, as illustrated in Fig. 10.7.

The necessity of the following Thomassen’s theorem [Tho84] is immediate from Fact 10.2.

Theorem 10.2 Assume that G is a 2-connected plane graph with ∆ ≤ 3 and four outer
vertices of degree two are designated as the corners a, b, c and d. Then G has a rectangular
drawing if and only if

(r1) any 2-legged cycle contains two or more corners, and

(r2) any 3-legged cycle contains one or more corners.

324 CHAPTER 10. RECTANGULAR DRAWING ALGORITHMS

>

0 1 2 3 4

2−legged cycle

3−legged cycle

−legged cyclek

k 4

none

none

the number of corners contained in a cycle

 none

Figure 10.7 Numbers of corners in drawings of cycles. (Figure taken from [NR04].)

A cycle of type (r1) or (r2) is called good. Cycles C4, C6 and C7 in Fig. 10.6 are good
cycles; the 2-legged cycle C4 contains two corners, and the 3-legged cycles C6 and C7 contain
one or two corners. On the other hand, a 2-legged or 3-legged cycle is called bad if it is not
good. Thus 2-legged cycles C1, C2 and C3 and 3-legged cycles C5 and C8 are bad cycles.
Thus Theorem 10.2 can be rephrased as follows: G has a rectangular drawing if and only if
G has no bad cycle.

The rest of this section outlines a constructive proof of the sufficiency of Theorem 10.2
[RNN98].

The union G = G′∪G′′ of two graphs G′ and G′′ is a graph G = (V (G′)∪V (G′′), E(G′)∪
E(G′′)).

In a given 2-connected plane graph G, four outer vertices of degree two are designated
as the corners a, b, c and d. These four corners divide the outer cycle Co(G) of G into four
paths, the north path PN , the east path PE , the south path PS , and the west path PW ,
as illustrated in Fig. 10.8(a). The north and south paths will be drawn as two horizontal
straight line segments, and the east and west paths as two vertical line segments. Thus the
embedding of Co(G) is fixed as a rectangle, which is called the outer rectangle of G.

A graph of a single edge, not in the outer cycle Co(G), joining two vertices in Co(G)
is called a Co(G)-component of G. A graph which consists of a connected component of
G − V (Co(G)) and all edges joining vertices in that component and vertices in Co(G) is
also called a Co(G)-component. The outer cycle Co(G) of the plane graph G in Fig. 10.8(a)
is drawn by thick lines, and the Co(G)-components J1, J2 and J3 of G are depicted in
Fig. 10.8(b). Clearly the following lemma holds.

LEMMA 10.1 Let J1, J2, · · · , Jp be the Co(G)-components of a plane graph G, and let
Gi = Co(G) ∪ Ji, 1 ≤ i ≤ p, as illustrated in Fig. 10.9. Then G has a rectangular drawing
with corners a, b, c and d if and only if, for each index i, 1 ≤ i ≤ p, Gi has a rectangular
drawing with corners a, b, c and d.

10.3. LINEAR ALGORITHMS FOR RECTANGULAR DRAWING 325

(b)

J1

J2

J
3

(a)

P

P

P

P

N

E

S

W

a b

cd

Figure 10.8 (a) Plane graph G, and (b) Co(G)-components. (Figure taken from [NR04].)

a b

d c

G
1

P

P

P

P
E

N

S

W

(b)

J
1

a b

d c

G
2

(c)

P

P

P

P
E

N

S

W

J
2

P

P

P

P
E

N

S

W

(d)

a b

d
c

Gp

Jp

(a)

...

P

P

P

P
E

N

S

W

a b

cd

G

J J J
1 2

p

Figure 10.9 (a) G, (b) G1, (c) G2, and (d) Gp. (Figure taken from [NR04].)

326 CHAPTER 10. RECTANGULAR DRAWING ALGORITHMS

In the remainder of this section, because of Lemma 10.1, one may assume that G has
exactly one Co(G)-component J .

The proof of the sufficiency of Theorem 10.2 is now outlined as follows. Assume that G
has no bad cycle. We divide G into two subgraphs having no bad cycle by slicing G along
one or two paths. For example, the graph G in Fig. 10.10(a) is divided into two subgraphs
G1 and G2, each having no bad cycle, by slicing G along a path drawn by thick lines,
as illustrated in Fig. 10.10(b). We then recursively find rectangular drawings of the two
subgraphs as illustrated in Fig. 10.10(c), and obtain a rectangular drawing of G by patching
them, as illustrated in Fig. 10.10(d). However, the problem is not so simple, because, for
some graphs having no bad cycles like one in Fig. 10.11(a), there is no such path that the
resulting two subgraphs have no bad cycle. For any path, one of the resulting two subgraphs
has a bad 3-legged cycle C although C is not a bad cycle in G, as illustrated in Fig. 10.11(b)
where a bad cycle C in a subgraph is indicated by dotted lines. For such a case, we split G
into two or more subgraphs by slicing G along two paths Pc and Pcc having the same ends
on PN and PS . For example, as illustrated in Fig. 10.11(c), the graph G in Fig. 10.11(a) is
divided into three subgraphs G1, G2 and G3, each having no bad cycle, by slicing G along
path Pc indicated by dotted lines and path Pcc drawn by thick lines in Fig. 10.11(a). We
then recursively find rectangular drawings of G1, G2 and G3 as illustrated in Fig. 10.11(d),
and slightly deform the drawings of G1 and G2, as illustrated in Fig. 10.11(e). We finally
obtain a rectangular drawing of G by patching the drawings of the three subgraphs as
illustrated in Fig. 10.11(f).

(b)

P

G G1 2

a b

d c

P

(d)

a b

c
d

(c)
G1

G
2

a b

cd

(a)

Pa b

cd

Figure 10.10 (a) G and P , (b) G1 and G2, (c) rectangular drawings of G1 and G2, and
(d) rectangular drawing of G. (Figure taken from [NR04].)

We need some definitions before presenting the detail of a constructive proof. A cycle C
in G like one in Fig. 10.11(a) is called “critical,” because C is not a bad cycle in G but C
would become a bad cycle in a subgraph obtained from G by splitting G along a path P .
We now give a formal definition of a critical cycle. A cycle C in a plane graph G is attached
to a path P if

10.3. LINEAR ALGORITHMS FOR RECTANGULAR DRAWING 327

(b)

C

(d)

G G1 2

G
3

(f)

P

C

(a)

(e)

G

G

1 2G

3

G

G
3

1
G

2

(c)

P
cc c

Figure 10.11 (a) G, (b) splitting G along a single path Pcc, (c) splitting G along two
paths Pcc and Pc, (d) rectangular drawings of three subgraphs, (e) deformation, and (f)
rectangular drawing of G. (Figure taken from [NR04].)

(i) P does not contain any vertex in the proper inside of C, and

(ii) the intersection of C and P is a single subpath of P ,

as illustrated in Fig. 10.12. Let vt be the starting vertex of the subpath, and let vh be the
ending vertex. We then call vt the tail vertex of C for P , and vh the head vertex. Denote
by Qc(C) the path on C turning clockwise around C from vt to vh, and denote by Qcc(C)
the path on C turning counterclockwise around C from vt to vh. A leg of C is called a
clockwise leg for P if it is incident to a vertex in V (Qc(C))−{vt, vh}. Denote by nc(C) the
number of clockwise legs of C for P . Similarly we define a counterclockwise leg and denote
by ncc(C) the number of counterclockwise legs of C for P . A cycle C attached to P is
called a clockwise cycle if Qcc(C) is a subpath of P , and is called a counterclockwise cycle if
Qc(C) is a subpath of P . A cycle C is called a critical cycle if either C is a clockwise cycle
and nc(C) ≤ 1 or C is a counterclockwise cycle and ncc(C) ≤ 1. Figure 10.12 illustrates a
clockwise critical cycle with nc(C) = 1.

328 CHAPTER 10. RECTANGULAR DRAWING ALGORITHMS

C

Q (C)
c

v

Q (C)
cc

v

counterclockwise

legs
clockwise leg

t

h

P

Figure 10.12 Clockwise critical cycle C attached to path P . (Figure taken from [NR04].)

We are now ready to give a constructive proof for the sufficiency of Theorem 10.2. Assume
that G has no bad cycle. By Lemma 10.1, we further assume that G has exactly one Co(G)-
component. Let PN = v0, v1, · · · , vp where v0 = a and vp = b, and let PS = u0, u1, · · · , uq
where u0 = c and uq = d, as illustrated in Fig. 10.13(a). An NS-path P is defined to be a
path starting at a vertex vi on PN and ending at a vertex uj on PS without passing through
any outer edge and any outer vertex other than the ends vi and uj . An NS-path P divides
graph G into two subgraphs GP

W and GP
E ; GP

W is the west part of G including P and has
four corners a, vi, uj and d, and GP

E is the east part of G including P and has four corners
vi, b, c and uj . G

P
E and GP

W are illustrated in Figs. 10.13(b) and (c), respectively. We say
that P is an NS-partitioning path if neither GP

W nor GP
E has a bad cycle. Similarly we define

a WE-partitioning path. If G has a partitioning path, say an NS-partitioning path P , then
one can obtain a rectangular drawing of G by recursively finding rectangular drawings of
GP

W and GP
E and patching them together along P , as illustrated in Fig. 10.10.

An inner face of G is called a boundary face if its contour contains at least one outer edge.
A boundary path is a maximal path on the contour of a boundary face connecting two outer
vertices without passing through any outer edge. Note that the direction of a boundary path
is the same as the contour of the face, and hence is clockwise. For X,Y ∈ {N,E, S,W},
a boundary XY-path is a boundary path starting at a vertex on path PX and ending at a
vertex on path PY . One can easily verify the following lemma [RNN98].

LEMMA 10.2 If G has no bad cycle, then every boundary NS-, SN-, EW- or WE-path
P of G is a partitioning path, that is, G can be split along P into two subgraphs, each
having no bad cycle.

Thus one may assume that G has no boundary NS-, SN-, EW- or WE-paths. Then the
Co(G)-component J has at least one vertex on each of the paths PN , PE , PS and PW . In this
case we find a pair of partitioning paths Pc and Pcc, and divide G into two or more subgraphs
having no bad cycles by splitting G along Pc and Pcc. Both Pc and Pcc are NS-paths which
have the same ends and do not cross each other in the plane although they may share several
edges. Thus, if Pc 6= Pcc, then the edge set E(Pc)⊕E(Pcc) = E(Pc)∪E(Pcc)−E(Pc)∩E(Pcc)

10.3. LINEAR ALGORITHMS FOR RECTANGULAR DRAWING 329

P

P

P
E

S

W

P

u u uq j 0

i
v

P
Nv

0 pv

v
p

P P

P
N

P
S

’

’

P
E

P
W

S
P’

N
’P

uu
j

u
q

v
0 v

i
v
i

j

a = = b

d = = c

a = = b

u
0
= cd =

(b) G
W

P
(c) G

P

E

(a) G

Figure 10.13 (a) Plane graph G and NS-path P , (b) GP
W , and (c) GP

E . (Figure taken
from [NR04].)

induces vertex-disjoint cycles C1, C2, · · · , Ck, k ≥ 1, as illustrated in Figs. 10.14 and 10.15
where Pc and Pcc are indicated by dotted lines. Thus Pc and Pcc share k + 1 maximal
subpaths P1, P2, · · · , Pk+1, as illustrated in Fig. 10.14(a). We assume that Pc turns around
cycles C1, C2, · · · , Ck clockwise, and Pcc turns around them counterclockwise. We choose Pc

and Pcc so that each cycle Ci has exactly four legs; assuming clockwise order, the first one
is contained in Pi, 1 ≤ i ≤ k, the second one is a clockwise leg, the third one is contained
in Pi+1 and the fourth one is a counterclockwise leg; and the four leg-vertices of Ci will
be designated as the corners of the subgraph G(Ci) of G inside Ci. Thus G is divided
into subgraphs GPcc

W , GPc

E , G(C1), G(C2), · · · , G(Ck), as illustrated in Figs. 10.14(b) and

10.15(b). GPcc

W has a, d and the two ends of Pcc as the corners, while GPc

E has b, c and the
two ends of Pc as the corners. Gi(Ci), 1 ≤ i ≤ k, has the four leg-vertices of Ci as the
corners. Then the following lemma holds [RNN98].

LEMMA 10.3 Assume that a cycle C in the Co(G)-component J has exactly four legs.
Then the subgraph G(C) of G inside C has no bad cycle when the four leg-vertices are
designated as corners of G(C).

330 CHAPTER 10. RECTANGULAR DRAWING ALGORITHMS

()

()

()

(a) (b)

G C1

G C2

G C3

P
ccc

P

P
P

E
W

N
P

P
S

G
W

G
E

a b a b

d ccd

P

P

P

1

1

1

2

k+

C

C
2

k

C

P

P

cc

c

Figure 10.14 (a) G with partition-pair Pc and Pcc, and (b) splitting G along Pc and Pcc.
(Figure taken from [NR04].)

By Lemma 10.3 one may assume that none of G(C1), G(C2), · · · , G(Ck) has a bad cycle.
For each cycle Ci, 1 ≤ i ≤ k, there are two alternative rectangular embeddings of Ci as
illustrated in Fig. 10.16, where P ′N , P ′E , P ′S and P ′W are the four subpaths of Ci divided
by the four leg-vertices. We arbitrarily choose one of them. Let G1 be the graph obtained
from GPcc

W by contracting all edges of Pcc that are on the horizontal sides of rectangular
embeddings of C1, C2, · · · , Ck, as illustrated in Fig. 10.15(c). Note that every intermediate
vertex on such a horizontal side has degree two in GP

W . We denote by P ′cc the resulting
path obtained from Pcc by the contraction above. Let G1 have four corners a, d and the
two ends of Pcc. Then one can observe that if G1 has a rectangular drawing, in which
the path P ′cc is drawn as a vertical straight line segment, then the rectangular drawing of
G1 can be easily modified to a drawing of GPcc

W fitted in the area for GPcc

W where Pcc is
drawn as an alternating sequence of horizontal and vertical line segments, as illustrated in
Figs. 10.15(b) and (c). Let G2 be the graph obtained from GPc

E by contracting all edges of
Pc that are on the horizontal sides of rectangular embeddings of C1, C2, · · · , Ck, and let P ′c
be the resulting path obtained from Pc by the contraction, as illustrated in Fig. 10.15(d).
Then, if G2 has a rectangular drawing, then it can be easily modified to a drawing of GPc

E

fitted in the area for GPc

E where Pc is drawn as an alternating sequence of horizontal and
vertical line segments, as illustrated in Figs. 10.15(b) and (d). Thus if we have drawings
of graphs GPcc

W , GPc

E , G(C1), G(C2), · · · , G(Ck), then we can immediately patch them to get
a rectangular drawing of G. One can observe that G1 and G2 have no bad cycles if and
only if GPcc

W and GPc

E have no bad cycles, respectively. We thus call Pc and Pcc a pair

of partitioning paths or simply a partition-pair if neither GPc

E nor GPcc

W has a bad cycle.
Especially when Pc = Pcc, it is a single partitioning path.

Thus the problem is how to prove that G has a partition-pair and to find a partition-pair
efficiently. The following lemma was proved in [RNN98], and one can derive from the proof
a linear algorithm to find a partition pair.

10.3. LINEAR ALGORITHMS FOR RECTANGULAR DRAWING 331

G G
1 2(c) (d)

Pcc P
c

a b

d
c

E

P

1

2

G

G(C)

G(C)

P

P

c

cc

c

v
0 1v

P
W P

E

NP

S
P

u u
01

v5v4v
3

v2

u
4

u
3 u

2

a = = b

d = = c

a b

d c

G
W

Pcc

(a)

(b)

Figure 10.15 (a) G with Pc and Pcc, (b) splitting G along Pc and Pcc, (c) drawings of
G1, and (d) drawing of G2. (Figure taken from [NR04].)

332 CHAPTER 10. RECTANGULAR DRAWING ALGORITHMS

P
W

P
N

P
E

P
S

C

S

P
W

P
N

P
E

P

C

P

P

P
P
N

P
W

P
S

P
E

P
W

P
S

P
N

P
Ei i

i

i

i

+1+1
P

i

Figure 10.16 Two alternative rectangular embeddings of cycle Ci. (Figure taken
from [NR04].)

LEMMA 10.4 If G has no bad cycle and has no boundary NS-, SN-, EW- or WE-path,
then G has a partition-pair Pc and Pcc.

Using Lemmas 10.1, 10.2, 10.3 and 10.4, one can recursively find a rectangular drawing
of a given plane graph G if G has no bad cycle. Thus the sufficiency of Theorem 10.2 can
be constructively proved.

10.3.2 Drawing Algorithms

In this section, we assume that a given plane graph G has no bad cycle, and present an
algorithm Rectangular-Draw to find a rectangular drawing of G. The algorithm outputs
only the directions (vertical or horizontal) of edges of G. From the directions one can decide
the integer coordinates of vertices as shown later in this section. It is easy to modify the
algorithm so that it examines whether a given plane graph has a bad cycle or not.

We treat each Co(G)-component independently as in Lemma 10.1. If there exists a
boundary NS-, SN-, WE-, or EW-path, we choose it as a partitioning path. Otherwise,
we find a partition-pair Pc and Pcc from the westmost NS-path, and then recurse to the
subgraphs divided by Pc and Pcc.

Algorithm Rectangular-Draw(G)
begin

1 Draw the outer cycle Co(G) of G as a rectangle by two horizontal line segments
PN and PS and two vertical line segments PE and PW ;

{The directions of edges on Co(G) are decided.}
2 Find all Co(G)-components J1, J2, · · · , Jp; {See Fig. 10.9(a).}
3 for each component Ji do

begin
4 Gi = Co(G) ∪ Ji;

{Gi is the union of graphs Co(G) and Ji.}
5 Draw(Gi, Ji)

end
end.

10.3. LINEAR ALGORITHMS FOR RECTANGULAR DRAWING 333

Procedure Draw(G, J)
begin {G has exactly one Co(G)-component J .}

1 if G has a boundary NS-, SN-, EW-, or WE-path P
then {P is a partitioning path.}

begin {See Fig. 10.17.}
2 Assume without loss of generality that P is a boundary NS-path;
3 Draw all edges of P on a vertical line;
4 if |E(P)| ≥ 2 then

begin
5 Let F1, F2, · · · , Fq be the Co-components of GP

E ;
6 for each component Fi, 1 ≤ i ≤ q, do
7 Draw(Co(GP

E) ∪ Fi, Fi)
end

end
else {G has no boundary NS-, SN-, EW-, or WE-path. }

begin
8 Find a partition-pair Pc and Pcc as in the proof

of Lemma 10.4 in [RNN98];
9 if Pc = Pcc then {See Fig. 10.10.}

begin
10 Draw all edges of Pc on a vertical line segment;
11 Let G1 = GPc

W and G2 = GPc

E be the two resulting subgraphs;
12 for each subgraph Gi, i = 1, 2, do

begin
13 Let F1, F2, · · · , Fq be the Co-components of Gi;
14 for each component Fj , 1 ≤ j ≤ q, do
15 Draw(Co(Gi) ∪ Fj , Fj)

end
end

16 else {Pc 6= Pcc. See Fig. 10.15.}
begin

17 Draw all edges of Pc and Pcc on alternating sequences
of horizontal and vertical line segments as in Fig. 10.15(b);

18 Let G1 be the graph obtained from GPcc

W by contracting
all edges of Pcc that are on horizontal sides of rectangular
embeddings of C1, C2, · · · , Ck;

19 Let G2 be the graph obtained from GPc

E by contracting
all edges of Pc that are on horizontal sides of rectangular
embeddings of C1, C2, · · · , Ck;

20 Let G3 = G(C1), G4 = G(C2), · · · , Gk+2 = G(Ck);
21 for each graph Gi, 1 ≤ i ≤ k + 2, do

begin
22 Let F1, F2, · · · , Fq be the Co-components of Gi;
23 for each component Fj , 1 ≤ j ≤ q, do
24 DRAW(Co(Gi) ∪ Fj , Fj)

end
end

end
end

334 CHAPTER 10. RECTANGULAR DRAWING ALGORITHMS

P

P

P

P
W

S

E

N

F

F

F

1

2

q

P

Figure 10.17 Co-Components F1, F2, · · · , Fq of GP
E . (Figure taken from [NR04].)

The algorithm Rectangular-Draw(G) finds only the directions of all edges in G. From
the directions the integer coordinates of vertices in G can be determined in linear time as
follows. From now on one may assume for simplicity that all vertices other than the four
corners have degree three.

We now give a method of determining y-coordinates of the vertices in G; x-coordinates
can be determined similarly. Consider a graph Ty obtained from G by deleting all upward
vertical edges of three types drawn by dotted lines in Fig. 10.18. Thus any upward edge
drawn by a thick line in Fig. 10.19 is not deleted. Clearly Ty is a spanning tree of G.
(Ty for the graph G in Fig. 10.15(a) is drawn by thick lines in Fig. 10.20.) A rectangular
drawing of G is composed of several maximal horizontal and vertical line segments. The
drawing in Fig. 10.20 is composed of 16 maximal vertical line segments together with 15
maximal horizontal line segments. All these maximal horizontal line segments are contained
in Ty, and every vertex of G is contained in one of them. For each maximal horizontal line
segment L, we will assign an integer y(L) as the y-coordinate of every vertex on L. PS is
the lowermost maximal horizontal line segment, while PN is the topmost one. We first set
y(PS) = 0. We then compute y(L) from bottom to top. For each vertex v in G we will
assign an integer temp(v) as a temporary value of the y-coordinate of v.

Figure 10.18 Deleted upward edges. (Figure taken from [NR04].)

For every vertex v on L there are two cases: either v has a neighbor u located below v
or v has no neighbor u located below v. For the former case, we set temp(v) = y(L′) + 1
where L′ is the maximal horizontal line segment containing vertex u. For the latter case,
we set temp(v) = 0. We then set y(L) = max

v
{temp(v)} where the maximum is taken over

10.3. LINEAR ALGORITHMS FOR RECTANGULAR DRAWING 335

Figure 10.19 Non-deleted upward edges. (Figure taken from [NR04].)

all vertices v on L. One can easily compute y(L) for all maximal horizontal line segments
L from bottom to top using the counterclockwise depth-first search on Ty starting from the
downward edge incident to the north-west corner a.

Thus the integer coordinates of all vertices in a rectangular grid drawing can be computed
in linear time.

We now give upper bounds on the area and half perimeter of a grid for a rectangular
grid drawing. Let the coordinate of the south-west corner d be (0, 0), and let that of the
north-east corner b be (W,H). Then the grid drawing is “compact” in a sense that there is
at least one vertical line segment of x-coordinate i for each integer i, 0 ≤ i ≤W , and there
is at least one horizontal line segment of y-coordinate j for each integer j, 0 ≤ j ≤ H. The
following theorem holds on the sizes of a compact rectangular grid drawing [RNN98].

(0,0)

W H(,)

P
P
E

N
P

a b

cd

W

P
S

Figure 10.20 Illustration of Ty by thick lines. (Figure taken from [NR04].)

Theorem 10.3 If all vertices of a plane graph G have degree three except the four corners,
then the sizes of any compact rectangular grid drawing D of G satisfy W + H ≤ n

2 and

W ·H ≤ n2

16 .

336 CHAPTER 10. RECTANGULAR DRAWING ALGORITHMS

The bounds in Theorem 10.3 are tight, because there are an infinite number of examples
attaining the bounds, as one in Fig. 10.21.

Figure 10.21 An example of a rectangular grid drawing attaining the upper bounds.
(Figure taken from [NR04].)

10.3.3 Drawing without Designated Corners

In Sections 10.3.1– 10.3.2 we considered a rectangular drawing of a plane graph G with
∆ ≤ 3 for the case where four outer vertices of degree two are designated as the corners. In
this section we consider a general case where corners are not designated in advance. Then
our problem is how to examine whether G has four outer vertices of degree two such that
there is a rectangular drawing of G having them as the corners, and how to efficiently find
them if there is.

For a cycle C in a plane graph G we denote by G(C) the subgraph of G inside C. We
say that cycles C and C ′ in a plane graph G are independent if G(C) and G(C ′) have no
common vertex, and that a set S of cycles is independent if any pair of cycles in S are
independent. Figure 10.22 illustrates a 2-connected plane graph G with ∆ ≤ 3. Since every
vertex of G has degree two or three, all 3-legged cycles are “laminar” in essence. Some of
2-legged and 3-legged cycles are indicated by dotted lines; C1 and C2 are 2-legged cycles,
and C3, C4, C5 and C6 are 3-legged cycles. C3 and C4 are contained in G(C1), C5 and C6

are contained in G(C2), and C5 is contained in G(C6). There are many independent sets of
cycles. For example, S1 = {C1, C2} and S2 = {C2, C3, C4} are independent sets of cycles.

We are now ready to present a necessary and sufficient condition for the existence of
appropriate four outer vertices as in Theorem 10.4 [RNN02].

Theorem 10.4 Assume that G is a 2-connected plane graph with ∆ ≤ 3 and has four or
more outer vertices of degree two. Then four of them can be designated as the corners so
that G has a rectangular drawing with the designated corners if and only if G satisfies the
following three conditions:

(a) every 2-legged cycle in G contains at least two outer vertices of degree two;

(b) every 3-legged cycle in G contains at least one outer vertex of degree two; and

10.4. BOX-RECTANGULAR DRAWING 337

(c) 2c2+c3 ≤ 4 for every independent set S of cycles consisting of 2-legged cycles and
3-legged cycles, where c2 and c3 are the numbers of 2-legged cycles and 3-legged
cycles in S, respectively.

a

d

G

C1

C2

6
C

C
5

c

b

3
C

C
4

Figure 10.22 Plane graph. (Figure taken from [NR04].)

For the set S1 = {C1, C2} above c2 = 2, c3 = 0 and hence 2c2 + c3 = 4, while for
S2 = {C2, C3, C4} c2 = 1 and c3 = 2 and hence 2c2 + c3 = 4.

It is rather easy to prove the necessity of Theorem 10.4.
In order to prove the sufficiency of Theorem 10.4, it suffices to show that if the three

conditions (a)–(c) in Theorem 10.4 hold then one can choose four outer vertices of degree
two as the corners a, b, c and d so that the conditions (r1) and (r2) in Theorem 10.2 hold.
See [RNN02] for the detail of a proof and a linear algorithm to find appropriate four outer
vertices of degree two.

10.4 Box-Rectangular Drawing

A box-rectangular drawing of a plane graph G is a drawing of G such that each vertex is
drawn as a rectangle, called a box, each edge is drawn as a straight line segment joining
points on the two boxes corresponding to the ends, and the contour of each face is drawn
as a rectangle, as illustrated in Fig. 10.24(b). A vertex may be drawn as a degenerate
rectangle, that is, a point. We have seen in Section 10.1 that box-rectangular drawings have
practical applications in floorplanning of MultiChip Modules (MCM) and in architectural
floorplanning. If G has multiple edges or a vertex of degree five or more, then G has
no rectangular drawing but may have a box-rectangular drawing. However, not every
plane graph has a box-rectangular drawing. This section presents a necessary and sufficient
condition for the existence of a box-rectangular drawing of a plane graph, and gives a linear
algorithm to find a box-rectangular drawing if it exists [RNN00].

Before presenting the condition and the algorithm we need to present some definitions
and preliminary observations regarding box-rectangular drawings.

Throughout this section we assume that a graph G is a so-called multigraph, which may
have multiple edges, i.e., edges sharing both ends. If G has no multiple edges, then G is

338 CHAPTER 10. RECTANGULAR DRAWING ALGORITHMS

called a simple graph. For simplicity we assume that G has three or more vertices and is
2-connected.

We call a box-rectangular drawing D of G a box-rectangular grid drawing if each edge as
well as each side of a box is drawn along a grid line. A vertex may be drawn as a degenerate
box, that is, a point, in a box-rectangular drawing D. We often call a degenerate box in D
a point and call a non-degenerate box a real box. We call a rectangle corresponding to an
outer cycle Co(G) the outer rectangle, which has exactly four corners. We call a corner of
the outer rectangle simply a corner. A box in D is called a corner box if it contains at least
one corner. A corner box may be degenerate.

We now have the following four facts and a lemma.

Fact 10.3 Any box-rectangular drawing has either two, three, or four corner boxes.

Fact 10.4 Any corner box contains either one or two corners.

Figure 10.23(a) illustrates a box-rectangular drawing having two corner boxes; each of
them is a real box and contains two corners. Figure 10.23(b) illustrates a box-rectangular
drawing having three corner boxes. Figure 10.24(b) illustrates a box-rectangular drawing
having four corner boxes, one of which is degenerate.

(a) (b)

Figure 10.23 (a) Two corner boxes, and (b) three corner boxes. (Figure taken
from [NR04].)

Fact 10.5 In a box-rectangular drawing D of G, any vertex v of degree two or three
satisfies one of the following (i), (ii) and (iii).

(i) Vertex v is drawn as a point containing no corner;

(ii) v is drawn as a corner box containing exactly one corner; and

(iii) v is drawn as a corner real box containing exactly two corners.

Fact 10.6 In any box-rectangular drawing D of G, every vertex of degree five or more is
drawn as a real box.

LEMMA 10.5 [RNN00] IfG has a box-rectangular drawing, thenG has a box-rectangular
drawing in which every vertex of degree four or more is drawn as a real box.

The choice of vertices as corner boxes plays an important role in finding a box-rectangular
drawing. For example, the graph in Fig. 10.24(a) has a box-rectangular drawing if we choose
outer vertices a, b, c and d as corner boxes as illustrated in Fig. 10.24(b). However, the graph

10.4. BOX-RECTANGULAR DRAWING 339

has no box-rectangular drawing if we choose outer vertices p, q, r and s as corner boxes. If
all vertices corresponding to corner boxes are designated for a drawing, then it is rather
easy to examine whether G has a box-rectangular drawing with the designated corner boxes.
We thus first concentrate our attention to the case where all vertices of G corresponding to
corner boxes are designated.

(b)(a)

a b

c

p

q

r

s
d

G

c

b

d

a

p

q

r
s

Figure 10.24 A graph G and its box-rectangular drawing with four corner boxes a, b, c
and d. (Figure taken from [NR04].)

We now define two operations on a graph as follows. Let v be a vertex of degree two in
G. Replace the two edges u1v and u2v incident to v with a single edge u1u2, and delete v.
We call the operation above the removal of a vertex of degree two from G. Let v be a vertex
of degree d in a plane graph, let e1 = vw1, e2 = vw2, · · · , ed = vwd be the edges incident
to v, and assume that these edges e1, e2, · · · , ed appear clockwise around v in this order as
illustrated in Fig. 10.25(a). Replace v with a cycle v1, v2, · · · , vd, v1, and replace edge vwi

with viwi for i = 1, 2, · · · , d, as illustrated in Fig. 10.25(b). We call the operation above
the replacement of a vertex by a cycle. The cycle v1, v2, · · · , vd, v1 in the resulting graph is
called the replaced cycle corresponding to vertex v.

w

v v

vv

vw

1

5

1 2

34
5

w

w

w
2

3

4

(b)

v

w

w

w
w

w
1

2

4

5

3

(a)

Figure 10.25 Replacement of a vertex by a cycle. (Figure taken from [NR04].)

By Fact 10.3, any box-rectangular drawing has either two, three or four corner boxes.
However, we consider only box-rectangular drawings having four corner boxes for simplicity,
and assume that exactly four outer vertices a, b, c and d in G are designated as the four

340 CHAPTER 10. RECTANGULAR DRAWING ALGORITHMS

corner boxes. We construct a new graph G′′, called the cycled graph, from G through an
intermediate graph G′, and reduce the problem of finding a box-rectangular drawing of G
with the four designated vertices to a problem of finding a rectangular drawing of the cycled
graph G′′.

We first construct G′ from G as follows. If a vertex v of degree two in G, as vertex
d in Fig. 10.26(a), is designated as a corner, then v must be drawn as a corner point in
a box-rectangular drawing of G. On the other hand, if a vertex v of degree two is not
designated as a corner, then the two edges incident to v must be drawn on a straight line
segment. We thus remove all non-designated vertices of degree two one by one from G, as
illustrated in Fig. 10.26(b). The resulting graph is G′. Thus all vertices of degree two in G′

are designated vertices.
Clearly, G has a box-rectangular drawing with the four designated corner boxes if and only

if G′ has a box-rectangular drawing with the four designated corner boxes. Figure 10.26(f)
illustrates a box-rectangular drawing D′ of G′ in Fig. 10.26(b), and Fig. 10.26(g) illustrates
a box-rectangular drawing D of G in Fig. 10.26(a).

Since every vertex of degree two in G′ is a designated vertex, it must be drawn as a corner
point in any box-rectangular drawing of G′. Every designated vertex of degree three in G′,
as vertex a in Fig. 10.26(b), must be drawn as a real box since it is a corner. On the other
hand, every non-designated vertex of degree three in G′ must be drawn as a point. These
facts together with Lemma 10.5 imply that if G′ has a box-rectangular drawing then G′

has a box-rectangular drawing D′ in which all designated vertices of degree three and all
vertices of degree four or more in G′ are drawn as real boxes.

The cycled graph G′′ is built from G′ as follows. Replace by a cycle each of the designated
vertices of degree three and the vertices of degree four or more, as illustrated in Fig. 10.26(c).
The replaced cycle corresponding to a designated vertex x of degree three or more contains
exactly one outer edge, say ex, where x = a, b, c or d. Put a dummy vertex x′ of degree two
on ex, as shown in Fig. 10.26(d). The resulting graph is G′′. We let x′ = x if a designated
vertex x has degree two. The cycled graph G′′ is a simple graph and has exactly four outer
vertices a′, b′, c′, and d′ of degree two, and all the other vertices have degree three.

Then the following theorem holds.

Theorem 10.5 Let G be a plane graph with four designated outer vertices a, b, c and
d. Then G has a box-rectangular drawing with corner boxes a, b, c and d if and only if the
cycled graph G′′ has a rectangular drawing with designated corners a′, b′, c′ and d′.

Proof: The necessity is trivial, and hence it suffices to prove the sufficiency.
Assume that G′′ has a rectangular drawing D′′ as illustrated in Fig. 10.26(e). In D′′,

each replaced cycle is drawn as a rectangle, since it is a face in G′′. Furthermore, the four
outer vertices a′, b′, c′ and d′ of degree two in G′′ are drawn as the corners of the rectangle
corresponding to Co(G′′). Therefore, D′′ immediately gives a box-rectangular drawing D′

of G′ having the four vertices a, b, c and d as corner boxes, as illustrated in Fig. 10.26(f).
Then, inserting non-designated vertices of degree two on horizontal or vertical line segments
in D′, one can immediately obtain from D′ a box-rectangular drawing D of G having the
designated vertices a, b, c and d as corner boxes, as illustrated in Fig. 10.26(g). 2

Furthermore the following theorem holds [RNN00].

Theorem 10.6 Given a plane graph G of m edges and four designated outer vertices
a, b, c and d, one can examine in time O(m) whether G has a box-rectangular drawing D
with corner boxes a, b, c and d, and if G has D, then one can find D in time O(m). The
half perimeter of the box-rectangular grid drawing is bounded by m+ 2.

10.4. BOX-RECTANGULAR DRAWING 341

(a) (b)

(c) (d)

(e) (f) (g)

G

G

D D

c

b
a

D

a b

c

designated corner vertex

G

a b

c

a
b

c

d

a b

c

dummy vertex

a b

c
d

a b

c

a b

c
d

a b

c

d=d

d
d

d=d

Figure 10.26 Illustration of G, G′, G′′, D′′, D′ and D. (Figure taken from [NR04].)

342 CHAPTER 10. RECTANGULAR DRAWING ALGORITHMS

There are infinitely many cycles with four designated vertices for which the sum of the
width and the height of any box-rectangular drawing of the cycles is m− 2.

The rest of this section deals with a general case where no vertices are designated as corner
boxes in advance. Then our problem is how to examine whether G has some set of outer
vertices such that there is a box-rectangular drawing of G having them as the corner boxes,
and how to find them if there are. We first present a necessary and sufficient condition
for a plane graph G with ∆ ≤ 3 to have a box-rectangular drawing D as in Theorem 10.7
[RNN00], and then give a linear-time algorithm to find D if it exists. We then reduce the
box-rectangular drawing problem of a plane graph G with ∆ ≥ 4 to that of a new plane
graph J with ∆ ≤ 3 as in Theorem 10.9.

Theorem 10.7 A plane graph G with ∆ ≤ 3 has a box-rectangular drawing if and only
if G satisfies the following four conditions:

(c1) every 2-legged or 3-legged cycle in G has an outer edge;

(c2) at most two 2-legged cycles of G are independent of each other;

(c3) at most four 3-legged cycles of G are independent of each other; and

(c4) if G has a pair of independent 2-legged cycles C1 and C2, then {C1, C2, C3} is
not independent for any 3-legged cycle C3 in G, and neither G(C1) nor G(C2)
has more than two independent 3-legged cycles of G.

Then the following theorem holds.

Theorem 10.8 Given a plane graph with ∆ ≤ 3, one can examine in time O(m) whether
G has a box-rectangular drawing D or not, and if G has D, one can find D in time O(m),
where m is the number of edges in G.

Proof: One can find all 2-legged and 3-legged cycles in G, as follows. We first traverse
the contour of each inner face of G containing an outer edge as illustrated in Fig. 10.27,
where the traversed contours of faces are indicated by dotted lines. Clearly each outer edge
is traversed exactly once, and each inner edge is traversed at most twice. The inner edges
traversed exactly once form cycles, called singly traced cycles, the insides of which have not
been traversed. In Fig. 10.27 C4, C8 and C9 are singly traced cycles, the insides of which
are shaded. During this traversal one can easily find all 2-legged and all 3-legged cycles
that contain outer edges; C1, C2 and C3 drawn by thick lines in Fig. 10.27 are some of

C2

C

C5

C

C7 C

C

C
1

6

C8

9

3

4

C (G)o

Figure 10.27 Finding all 2-legged and 3-legged cycles. (Figure taken from [NR04].)

10.4. BOX-RECTANGULAR DRAWING 343

these cycles. (Note that a 3-legged cycle containing outer edges has two legs on Co(G)
and the other leg is an inner edge which is traversed twice; if an end of a doubly traversed
inner edge is an inner vertex, then it is a leg-vertex of such a 3-legged cycle.) Any of the
remaining 2-legged and 3-legged cycles either is a singly traced cycle or is located inside
a singly traced cycle. One can find all 2-legged and 3-legged cycles inside a singly traced
cycle by recursively applying the method to the singly traced cycle. The method traverses
the contour of each face by a constant number of times. Hence one can examine in time
O(m) whether G satisfies Condition (c1) in Theorem 10.7 or not.

One can examine Condition (c2) in Theorem 10.7 as follows. Assume that G satisfies
Condition (c1). Then each 2-legged cycle must have an outer edge, and hence has the
two leg-vertices on Co(G). By traversing the faces of G containing an outer edge, one can
detect the leg-vertices of all 2-legged cycles of G on Co(G). While detecting the leg-vertices
of 2-legged cycles, we give labels to the two leg-vertices of each 2-legged cycle; the labels
indicate the name of the cycle. In Fig. 10.28, the leg-vertices of 2-legged cycles are drawn by
white circles, and their labels are written next to them. It is clear that if G has k 2-legged
cycles which are independent of each other then G has k minimal 2-legged cycles which are
independent of each other. A 2-legged cycle C is minimal if and only if no intermediate
vertex of the maximal subpath of C on Co(G) is a leg-vertex of any other 2-legged cycle.
Therefore, traversing the outer vertices and checking the labels of leg-vertices, one can
find all minimal 2-legged cycles, and one can also know whether two 2-legged cycles are
independent or not. In Fig. 10.28 C1, C2 and C3 are minimal 2-legged cycles, and they are
independent. Thus one can examine Condition (c2) by traversing the edges on the contours
of faces containing an outer edge by a constant number of times, and hence one can examine
Condition (c2) in linear time.

C

C

C

1

2

3

1

1

7

7

6

2

5

3, 4

2

3

4

5

6

Figure 10.28 Illustration for minimal 2-legged cycles. (Figure taken from [NR04].)

One can examine Condition (c3) in linear time using a similar technique used to examine
Condition (c2). One can easily examine Condition (c4) by checking the labels of the leg-
vertices of minimal 2-legged cycles and minimal 3-legged cycles.

If G satisfies the conditions in Theorem 10.7, then a box-rectangular drawing of G can be
found by choosing appropriate four corner boxes [RNN00, NR04]. One can find all minimal
2-legged cycles and all minimal 3-legged cycles in linear time by the technique used to

344 CHAPTER 10. RECTANGULAR DRAWING ALGORITHMS

examine Conditions (c2) and (c3), and hence one can choose the four designated vertices in
linear time. Thus one can find a box-rectangular drawing of G in linear time. 2

We now reduce the box-rectangular drawing problem (without given corners) of a plane
graph G with ∆ ≥ 4 to that of a new plane graph J with ∆ ≤ 3. Let G be a plane graph
with ∆ ≥ 4. We construct a new plane graph J from G by replacing each vertex v of degree
four or more in G by a cycle. Figures 10.29(a) and (b) illustrate G and J , respectively.
A replaced cycle corresponds to a real box in a box-rectangular drawing of G. We do not
replace a vertex of degree two or three by a cycle since such a vertex may be drawn as a
point by Fact 10.5. Thus ∆(J) ≤ 3. Then the following theorem holds.

Theorem 10.9 Let G be a plane graph with ∆ ≥ 4, and let J be the graph trans-
formed from G as above. Then G has a box-rectangular drawing if and only if J has a
box-rectangular drawing.

Figures 10.29(c) and (d) illustrate D and DJ , respectively. Box f in D is a non-corner
real box, and it is regarded as a face in DJ . Corner boxes a and b in D are vertices of
degree three in G, and they remain as boxes in DJ . Corner boxes c and d in D are vertices
of degree four or more in G, and are transformed to a drawing of a replaced cycle with one
real box in DJ as illustrated in Fig. 10.29(e). We omit the proof of Theorem 10.9, which
can be found in [RNN00].

10.5 Conclusions

The outer face boundary must be rectangular in a rectangular drawing, as illustrated in
Fig. 10.1(b). However, the outer boundary of a VLSI chip or an architectural floor plan
is not always rectangular, but is often a rectilinear polygon of L-shape, T-shape, Z-shape
etc., as illustrated in Figs. 10.30(a)–(c). Such a drawing of a plane graph G is called an
inner rectangular drawing if every inner face of G is a rectangle although the outer face
boundary is not always a rectangle. Miura et al. [MHN06] reduced the problem of finding
an inner rectangular drawing of a plane graph G with ∆ ≤ 4 to a problem of finding a
perfect matching of a new bipartite graph constructed from G. It immediately yields the
result presented in Section 10.2 on an ordinary rectangular drawing of plane graphs with
∆ ≤ 4.

Kozminski and Kinnen [KK84] established a necessary and sufficient condition for the
existence of a “rectangular dual” of an inner triangulated plane graph, that is, a rectangular
drawing of the dual graph of an inner triangulated plane graph, and gave an O(n2) algorithm
to obtain it. Based on the characterization of [KK84], Bhasker and Sahni [BS88] and Xin He
[He93] developed linear-time algorithms to find a rectangular dual. Kant and Xin He [KH97]
presented two more linear-time algorithms. Xin He [He95] presented a parallel algorithm
for finding a rectangular dual. Lai and Leinwand [LL90] reduced the problem of finding a
rectangular dual of an inner triangulated plane graph G to a problem of finding a perfect
matching of a new bipartite graph constructed from G. Their construction is different from
that in Section 10.2, their bipartite graph has an O(n2) number of edges, and hence their
method takes time O(n2.5) to find a rectangular dual or a rectangular drawing of a plane
graph with ∆ ≤ 3.

A planar graph may have many embeddings. We say that a planar graph G has a
rectangular drawing if at least one of the plane embeddings of G has a rectangular drawing.
Since a planar graph may have an exponential number of embeddings, it is not a trivial
problem to examine whether a planar graph has a rectangular drawing.

10.5. CONCLUSIONS 345

(c)

(e)

(a)

(d)

(b)

D
J

a b

f

c

d

a
b

f

c

d

a b

f

cd

a b

f

d
c

G

D

J

Figure 10.29 Illustration of G, J , DJ , D and a transformation. (Figure taken
from [NR04].)

346 CHAPTER 10. RECTANGULAR DRAWING ALGORITHMS

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�

�
�
�

��
��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

(a) (b) (c)

Figure 10.30 Inner rectangular drawings of (a) L-shape, (b) T-shape, (c) Z-shape.

Rahman et al. gave a linear-time algorithm to examine whether a planar graph G with
∆ ≤ 3 has a rectangular drawing or not, and find a rectangular drawing of G if it exists
[RNG04].

A similar concept of a box-rectangular drawing, called a strict 2-box drawing, is presented
by Thomassen in [Tho86]. A polynomial-time algorithm can be designed for finding a strict
2-box drawing of a graph by following his method.

A box-rectangular drawing of G is called a proper box-rectangular drawing if every vertex
of G is drawn as a real box, i.e., no vertex of G is drawn as a degenerate box. Xin He
[He01] presents a necessary and sufficient condition for a plane graph G to have a proper
box-rectangular drawing and gives a linear algorithm for finding a proper box-rectangular
drawing of G if it exists.

In a VLSI floorplanning problem each module needs some physical area and hence each
face in the drawing should satisfy some area requirements. However, when the area of each
face of G is prescribed, there may not exist a rectangular drawing of G. In such a case it
is desirable that each inner face of G is drawn as a rectilinear polygon of a simple shape.
Recently several results have been published on rectilinear drawings of plane graphs with
prescribed face areas [KN07, KN09, RMN09].

REFERENCES 347

References

[BS88] J. Bhasker and S. Sahni, A linear algorithm to find a rectangular dual of a
planar triangulated graph, Algorithmica, 3, pp. 247-278, 1988.

[DETT99] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing.
Prentice Hall, Upper Saddle River, NJ, 1999.

[FW74] R. L. Francis and J. A. White, Facility Layout and Location, Prentice-Hall,
New Jersey, 1974.

[He01] X. He, A simple linear time algorithm for proper box rectangular drawings
of plane graphs, Journal of Algorithms, 40(1), pp. 82-101, 2001.

[He93] X. He, On finding the rectangular duals of planar triangular graphs, SIAM
J. Comput., 22(6), pp. 1218-1226, 1993.

[He95] X. He, An efficient parallel algorithm for finding rectangular duals of plane
triangulated graphs, Algorithmica, 13, pp. 553-572, 1995.

[HK73] J. E. Hopcroft and R. M. Karp, An n5/2 algorithm for maximum matching
in bipartite graphs, SIAM J. Comput., 2, pp. 225-231, 1973.

[Hoc04] D. S. Hochbaum, Faster pseudoflow-based algorithms for the bipartite
matching and the closure problems, Abstract, CORS/SCRO-INFORMS
Joint Int. Meeting, Banff, Canada, p. 46, 2004.

[HC04] D. S. Hochbaum and B. G. Chandran, Further below the flow decomposition
barrier of maximum flow for bipartite matching and maximum closure,
Working paper, 2004.

[KH97] G. Kant and X. He, Regular edge labeling of 4-connected plane graphs and
its applications in graph drawing problems, Theoretical Computer Science,
172, pp. 175-193, 1997.

[KK84] K. Kozminski and E. Kinnen, An algorithm for finding a rectangular dual
of a planar graph for use in area planning for VLSI integrated circuits, Proc.
Design Automation Conference, Albuquerque, pp. 655-656, 1984.

[KN07] A. Kawaguchi and H. Nagamochi, Orthogonal drawings of plane graphs
with prescribed face areas, Proc. of 4th International Conference on Theory
and Applications of Models of Computation, Lecture Notes in Computer
Science, 4484, Springer, pp. 584-594, 2007.

[KN09] A. Kawaguchi and H. Nagamochi, Drawing slicing graphs with face areas,
Theoretical Computer Science, 410, pp. 1061-1072, 2009.

[LL90] Y.-T. Lai and S. M. Leinwand, A theory of rectangular dual graphs, Algo-
rithmica, 5, pp. 467-483, 1990.

[MHN06] K. Miura, H. Haga and T. Nishizeki, Inner rectangular drawings of plane
graphs, Int. J. Computational Geometry & Applications, 16,2 & 3, pp. 247-
270, 2006.

[MV80] S. Micali and V. V. Vazirani, An O(
√
|V| · |E|) algorithm for finding max-

imum matching in general graphs, Proc. Symposium on Foundations of
Computer Science, pp. 17-27, 1980.

[NR04] T. Nishizeki and M. S. Rahman, Planar Graph Drawing, World Scientific,
Singapore, 2004.

[PS82] C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization, Prentice
Hall, Englewood Cliffs, New Jersey, 1982.

348 CHAPTER 10. RECTANGULAR DRAWING ALGORITHMS

[RMN09] M. S. Rahman, K. Miura and T. Nishizeki, Octagonal drawings of plane
graphs with prescribed face areas, Comp. Geom. Theo. and Appl., 42, pp.
214-230, 2009.

[RNG04] M. S. Rahman, T. Nishizeki, and S. Ghosh Rectangular drawings of planar
graphs, Journal of Algorithms, 50, pp. 62-78, 2004.

[RNN98] M. S. Rahman, S. Nakano and T. Nishizeki, Rectangular grid drawings of
plane graphs, Comp. Geom. Theo. Appl., 10(3), pp. 203-220, 1998.

[RNN00] M. S. Rahman, S. Nakano and T. Nishizeki, Box-rectangular drawings of
plane graphs, Journal of Algorithms, 37, pp. 363-398, 2000.

[RNN02] M. S. Rahman, S. Nakano and T. Nishizeki, Rectangular drawings of plane
graphs without designated corners, Comp. Geom. Theo. and Appl., 21(3),
pp. 121-138, 2002.

[She95] N. Sherwani, Algorithms for VLSI Physical Design Automation, 2nd edi-
tion, Kluwer Academic Publishers, Boston, 1995.

[Tam87] R. Tamassia, On embedding a graph in the grid with the minimum number
of bends, SIAM J. Computing, 16(3), pp. 421-444, 1987.

[Tho84] C. Thomassen, Plane representations of graphs, (Eds.) J. A. Bondy and
U. S. R. Murty, Progress in Graph Theory, Academic Press Canada, pp.
43-69, 1984.

[Tho86] C. Thomassen, Interval representations of planar graphs, J. of Combinat.
Theory, Series B, 40, pp. 9-20, 1986.

11
Simultaneous Embedding of Planar

Graphs

Thomas Bläsius
Karlsruhe Institute of

Technology

Stephen G. Kobourov
University of Arizona

Ignaz Rutter
Karlsruhe Institute of

Technology

11.1 Introduction . 349
Problem Definitions • Overview and Outline

11.2 Simultaneous Geometric Embedding . 352
Graph Classes with SGE • Examples without SGE • Related
Work

11.3 Simultaneous Embedding with Fixed Edges 357
Positive and Negative Examples • Testing SEFE • Related
Work

11.4 Simultaneous Embedding . 364
11.5 Colored Simultaneous Embedding . 365
11.6 Matched Drawings . 367
11.7 Other Simultaneous Representations . 367

A Plane Graph and Its Dual • Intersection Representations

11.8 Practical Approaches to Dynamic Graph Drawing 369
11.9 Morphing Planar Drawings . 371
11.10 Open Problems . 372
References . 374

11.1 Introduction

Traditional problems in graph drawing involve the layout of a single graph, whereas in
simultaneous graph drawing we are concerned with the layout of multiple related graphs.
In particular, consider the problem of drawing a series of graphs that share all, or parts
of the same vertex set. The graphs may represent different relations between the same set
of objects, or alternatively, the graphs may be the result of a single relation that changes
through time.

In this chapter we survey efforts to address the following problem: Given a series of
graphs that share all, or parts of the same vertex set, what is a natural way to layout and
display them? The layout and display of the graphs are different aspects of the problem,
but also closely related, as a particular layout algorithm is likely to be matched best with
a specific visualization technique. As stated above, however, the problem is too general
and it is unlikely that one particular layout algorithm will be best for all possible scenarios.
Consider the case where we only have a pair of graphs in the series, and the case where we
have hundreds of related graphs. The “best” way to layout and display the two series is
likely going to be different. Similarly, if the graphs in the sequence are very closely related
or not related at all, different layout and display techniques may be more appropriate.

349

350 Simultaneous Embedding of Planar Graphs

For the layout of the graphs, there are two important criteria to consider: the readability
of the individual layouts and the mental map preservation in the series of drawings. The
readability of individual drawings depends on aesthetic criteria such as display of symme-
tries, uniform edge lengths, and minimal number of crossings. Preservation of the mental
map can be achieved by ensuring that vertices that appear in consecutive graphs in the
series, remain in the same positions. These two criteria are often contradictory. If we indi-
vidually layout each graph, without regard to other graphs in the series, we may optimize
readability at the expense of mental map preservation. Conversely, if we fix the vertex
positions in all graphs, we are optimizing the mental map preservation but the individual
layouts may be far from readable. In simultaneous graph embedding, vertices are placed in
the exact same locations in all the graphs, while the layout of the edges may differ.

Visualization of related graphs, that is, graphs that are defined on the same set of ver-
tices, arise in many different settings. Software engineering, databases, and social network
analysis are all examples of areas where multiple relationships on the same set of objects are
often studied. In evolutionary biology, phylogenetic trees are used to visualize the ances-
tral relationship among groups of species. Depending on the assumptions made, different
algorithms produce different phylogenetic trees. Comparing the outputs and determining
the most likely evolutionary hypothesis can be difficult if the drawings of the trees are laid
out independently of each other.

While in some of the above examples the graphs are not necessarily planar, solving the
planar case can provide intuition and ideas for the more general case. With this in mind, here
we concentrate on the problem of simultaneous embedding of planar graphs. Simultaneous
embedding of planar graphs generalizes the notion of traditional graph planarity and is
motivated by its relationship with problems of graph thickness, geometric thickness, and
applications such as the visualization of graphs that evolve through time.

The thickness of a graph is the minimum number of planar subgraphs into which the
edges of the graph can be partitioned; see [MOS98] for a survey. Thickness is an important
concept in VLSI design, since a graph of thickness k can be embedded in k layers, with
any two edges drawn in the same layer intersecting only at a common vertex and vertices
placed in the same location in all layers. A related graph property is geometric thickness,
defined to be the minimum number of layers for which a drawing of G exists having all
edges drawn as straight-line segments [DEH00]. Finally, the book thickness of a graph G is
the minimum number of layers for which a drawing of G exists, in which edges are drawn as
straight-line segments and vertices are in convex position [BK79]. It has been shown that
the book thickness of planar graphs is no greater than four [Yan89].

11.1.1 Problem Definitions

This chapter is structured along three basic simultaneous embedding results for planar
graphs, Simultaneous Geometric Embedding (SGE), Simultaneous Embedding
with Fixed Edges (SEFE), and Simultaneous Embedding (SE), Figure 11.1 illustrates
the three cases. For all three problems the input always consists of two planar graphs G1 =
(V1, E1) and G2 = (V2, E2) sharing a common subgraph G = (V,E) = (V1 ∩ V2, E1 ∩ E2).

The most strict variant is Simultaneous Geometric Embedding (SGE), which asks
for planar straight-line drawings of G1 and G2 such that common vertices have the same
coordinates in both drawings. The requirements of SGE are very strict, and as we will
see in Section 11.2, there exist a lot of examples that do not admit such an embedding.
While the problem Simultaneous Embedding with Fixed Edges still requires common
vertices to have the same coordinates, it relaxes the straight-line requirement by allowing
arbitrary curves for representing edges. To maintain the mental map, common edges are

11.1. INTRODUCTION 351

1 2

3 4

5

67

8

1

2

3
4

5

6

7 8

1

2

34

5

6 7

8 1

2

3
4

5

6

7

8
1

2

3

4

5

67

8

G1

G2

SGE SEFE SE

Figure 11.1 Two graphs G1 and G2 together with an SGE, a SEFE and an SE. In the
SGE all edges are straight line segments while some edges in the SEFE are not. The SE
contains common edges ({3, 7} and {5, 6}) that are drawn differently with respect to G1

and G2.

still required to be represented by the same curves. Finally, Simultaneous Embedding
drops the constraints on the curves altogether and just requires common vertices to have
the same coordinates.

For all these problems it is common to also use the problem name to denote a correspond-
ing embedding, that is, we also say that G1 and G2 have an SGE, SEFE or SE if they
admit solutions to these problems. Moreover, all these problems readily generalize to k > 2
input graphs G1, . . . , Gk, by requiring that the conditions hold for each pair of graphs. In
this case a common restriction is to require that all input graphs share exactly the same
graph G, that is, G = Gi ∩Gj for i 6= j. We call this behavior sunflower intersection.

We note that simultaneous embedding problems are closely related to constrained em-
bedding problems. For example if the planar embedding of one of the two graphs of an
instance of SEFE is already fixed, the problem of finding a SEFE is equivalent to find-
ing an embedding of the second graph respecting a prescribed embedding for a subgraph,
namely the common graph. This constrained embedding problem is known as Partially
Embedded Planarity. Angelini et al. [ADF+10] show that this problem can be solved
in linear time and, in the spirit of Kuratowski’s theorem, Jeĺınek et al. [JKR11] character-
ize the yes-instances by forbidden substructures. A similar tie to constrained embedding
problems exists in the case of SE. After fixing the drawing of one of the two input graphs it
remains to draw a single graph without crossings at prescribed vertex positions. This prob-
lem is known as Point Set Embedding and Pach and Wenger show that this is always
possible [PW98]. There are other, less obvious relations between simultaneous embedding
and constrained embedding problems, which will be described later.

11.1.2 Overview and Outline

This chapter starts with the three simultaneous embedding problems SGE, SEFE, and SE,
and we discuss each of them in one of the following sections. There are three major classes
of results on simultaneous embedding problems. The first class contains algorithms that, for
given graphs with certain properties, always produce a simultaneous embedding, perhaps
with additional quality guarantees. These results show the existence of simultaneous em-
beddings for the corresponding graph classes. The second class contains counterexamples
that do not admit a simultaneous embedding. The third class contains algorithms and com-
plexity results for the problem of testing whether a given instance admits a simultaneous
embedding.

We present a survey of the results on SGE in Section 11.2. Due to the strong requirements
of SGE results of the first type, which identify classes of graphs that always admit a
simultaneous embedding, exist only for very few and strongly restricted graph classes. For

352 Simultaneous Embedding of Planar Graphs

example, even a path and a tree of depth 4 may not have an SGE [AGKN12]. Moreover,
it is NP-hard to decide SGE and there are no further results of the third type, that is,
algorithms testing whether an instance has an SGE or not, even for restricted instances.

Section 11.3 presents the SEFE problem, which turns out to be much less restrictive than
SGE. For example a tree and a path do always admit a SEFE although they do not have an
SGE [Fra07]. On the other hand, examples not having a SEFE are also counterexamples
for SGE. Moreover, it is still open whether SEFE can be tested in polynomial time for two
graphs, whereas it is NP-complete for three or more graphs [GJP+06]. However, for two
graphs, there exist several results of the third type, that is, testing algorithms, for restricted
inputs. For example, it is possible to decide in linear time whether a pair of graphs admits
a SEFE or not, if the common graph is biconnected [ABF+12, HJL10].

In Section 11.4, we consider the least restrictive simultaneous embedding problem, SE,
which only requires common vertices to have the same coordinates in all drawings. As
every planar graph can be drawn without crossings even if the position of every vertex is
fixed [PW98], there are no counterexamples for SE and it is not necessary to have a testing
algorithm. The results on SE focus on creating simultaneous embeddings such that edges
have few bends and the resulting drawings use small area.

Sections 11.5–11.8 presents several variants of approaches to simultaneous embedding that
do not quite fall into the categories of the three main problems. The problem variants dis-
cussed in Section 11.5 relax the requirement of having a fixed mapping between the vertices
of G1 and G2. They rather ask whether a suitable mapping can be found such that a SEFE
exists [BCD+07]. Colored SGEs are somewhere between and allow the mapping to identify
only vertices having the same color [BEEB+11]. Section 11.6 deals with matched drawings
requiring straight-line drawings of the two input graph such that each common vertex has
only the same y-coordinate in both drawings. Other work, discussed in Section 11.7, deals
with the problem of simultaneously representing a planar graph and its dual [Tut63] and
considers different types of simultaneous representations, such as simultaneous intersection
representations, as introduced by Jampani and Lubiw [JL09]. Section 11.8 presents several
practical approaches to simultaneous embedding problems.

In Section 11.9 results on morphing between different planar drawings of the same graph
are presented. A morph aims to preserve the mental map between different drawings of
the same graph, which can be seen as the opposite to drawing different graphs such that
the common part is drawn the same. Finally, in Section 11.10, we present a list of open
questions. The list contains questions that have been open for several years, as well as
questions that are motivated by recent research results.

11.2 Simultaneous Geometric Embedding

In this section we consider the most desirable (and most restrictive) kind of simultaneous
drawings, the SGEs. Most results on that problem are summarized in Table 11.1. Fig-
ure 11.3 illustrates the relation between these results. Before we describe the results in
more detail we start with a small example. While it may be tempting to say that if the
union of two graphs contains a subdivision of K5 or K3,3 then the two graphs have no
simultaneous geometric embedding, this is not the case; see Figure 11.2. In fact, while pla-
narity testing for a single graph can be done in linear time [HT74], Estrella-Balderrama et
al. [EBGJ+08] show that the decision problem SGE is NP-hard. Other results concerning
the complexity of SGE (for example for restricted graph classes) are not known.

In the following we describe the results illustrated in Figure 11.3. We start with algorithms
always creating an SGE when the input is restricted to special graph classes. We then

11.2. SIMULTANEOUS GEOMETRIC EMBEDDING 353

SGE Instance Existence Area Ref.

G1 & G2 paths 3 n× n [BCD+07]
G1 path & G2 extended star 3 O(n2) ×O(n) [BCD+07]
G1 caterpillar & G2 path 3 n× 2n [BCD+07]
G1 & G2 caterpillar 3 3n× 3n [BCD+07]
2 stars 3 3 × (n− 2) [BCD+07]
k stars 3 O(n) ×O(n) [BCD+07]
G1 & G2 cycles 3 4n× 4n [BCD+07]
G1 & G2 have maximum degree 2 3 — [DEK04]
G1 wheel & G2 cycle 3 — [CvKL+11]
G1 tree & G2 matching 3 — [CvKL+11]
G1 outerpath & G2 matching 3 — [CvKL+11]
G1 tree of depth 2 & G2 path 3 — [AGKN12]
G1 level-planar w.r.t. path G2 3 — [CEBFK09]

G1 & G2 planar 7 — [BCD+07]
G1 path & G2 planar 7 — [BCD+07, EK05a]
G1 path & G2 edge disjoint 7 — [FKK09]
three paths 7 — [BCD+07]
G1 matching & G2 planar 7 — [CvKL+11]
six matchings 7 — [CvKL+11]
G1 & G2 outerplanar 7 — [BCD+07]
G1 & G2 trees 7 — [GKV09]
G1 tree of depth 4 & G2 edge disjoint path 7 — [AGKN12]

Table 11.1 A list of classes of graphs that are either known to always have an SGE
or that contain counterexamples. For the positive cases, the area consumption is given,
provided that it is known.

continue with graph classes containing counterexamples. Finally, we consider the results
not fitting in one of these two cases.

1

2

3

4 5

1

2

3

4 5

1 3

2

5

4

Figure 11.2 The union of the graph on the left and the graph on the right is a K5, but
the middle drawing shows a simultaneous geometric embedding of the two graphs.

11.2.1 Graph Classes with SGE

Brass et al. [BCD+07] give several algorithms for different restricted graph classes always
creating an SGE. In the simplest case G1 and G2 are both required to be paths. This result
is easy to prove and also provides good intuition for most of the positive results:

354 Simultaneous Embedding of Planar Graphs
354 Simultaneous Embedding of Planar Graphs

[BCD+07] [BCD+07] [BCD+07]

[BCD+07] [BCD+07] [BCD+07] [BCD+07]

[CvKL+11] [DEK04]

[CvKL+11]

[CvKL+11]

[AGKN12]

[CEBFK09]

[FKK09] [AGKN12]

[BCD+07, EK05a] [CvKL+11] [GKV09] [CvKL+11]

[BCD+07] [BCD+07] [BCD+07]

in
st
an

ce
s
a
lw
ay
s
h
av
in
g
a
n
S
G
E

G1 & G2 caterpillar
3n× 3n

ex
am

p
le
s
w
it
h
ou

t
an

S
G
E

G1 path

k stars
O(n)×O(n)

G1 path & G2 ext. star
O(n2)×O(n)

G1 & G2 tree

G1 depth-4 tree & G2 edge disj. path

G1 matching six matchings

G1 path, G2 edge disj.

G1 & G2 planar G1 & G2 outerplanar three paths

G1 & G2 path
n× n

G1 & G2 cycle
4n× 4n

G1 caterpillar & G2 path
n× 2n

G1 wheel & G2 cycle

G1 outerpath & G2 matching

G1 tree & G2 matching G1 level-planar w.r.t. path G2

G1 depth-2 tree & G2 path

G1 & G2 max-deg 2

2 stars
3× (n− 2)

Figure 11.3 Overview over the so far known results on SGE. Each box represents one
result and an arrow highlights that the source-result is extended by the target-result. The
arrowheads are empty for the cases in which this is only true if the grid size is neglected.
Note that transitive arrows are omitted.

Theorem 11.1 For two paths P1 and P2 on the same vertex set V of size n an SGE on
a grid of size n× n can be found in linear time.

Proof: For each vertex u ∈ V , we embed u at the integer grid point (p1, p2), where
pi ∈ {1, 2, . . . , n} is the vertex’s position in the path Pi, i ∈ {1, 2}. Then, P1 is embedded
as an x-monotone polygonal chain, and P2 is embedded as a y-monotone chain. Thus,
neither path is self-intersecting; see Figure 11.4 for an example. 2

Figure 11.3 Overview over the so far known results on SGE. Each box represents one
result and an arrow highlights that the source-result is extended by the target-result. The
arrowheads are empty for the cases in which this is only true if the grid size is neglected.
Note that transitive arrows are omitted.

Theorem 11.1 For two paths P1 and P2 on the same vertex set V of size n an SGE on
a grid of size n× n can be found in linear time.

Proof: For each vertex u ∈ V , we embed u at the integer grid point (p1, p2), where
pi ∈ {1, 2, . . . , n} is the vertex’s position in the path Pi, i ∈ {1, 2}. Then, P1 is embedded
as an x-monotone polygonal chain, and P2 is embedded as a y-monotone chain. Thus,
neither path is self-intersecting; see Figure 11.4 for an example. 2

11.2. SIMULTANEOUS GEOMETRIC EMBEDDING 355

1 2 3 4 5 6 7

12 345 6 7
1

2

3

4

5

6
7

Figure 11.4 Two paths simultaneously embedded such that one path is x-monotone and
the other is y-monotone.

Brass et al. [BCD+07] also consider more general graph classes, such as caterpillars (trees
being paths after the removal of all leaves), stars (trees with at most one inner vertex called
center), and extended stars (collection of stars with an additional special root and paths
from the special root to the centers of all stars). They show that a caterpillar and a path
admit an SGE on a grid of size n× 2n, which can be extended to two caterpillars on a grid
of size 3n× 3n. Moreover, they can simultaneously embed two stars on a 3× (n− 2) grid
and extend it to the case of k stars on an O(n) × O(n)-grid. Finally, the pairs path plus
extended star and cycle plus cycle can be embedded on O(n2) × O(n) and 4n × 4n grids,
respectively. The latter two results both extend the case of two paths (when neglecting the
grid size).

The result for two cycles was further extended by Duncan et al. [DEK04] and Cabello
et al. [CvKL+11]. Duncan et al. [DEK04] show that a graph with maximum degree 4 has
geometric thickness 2. To this end, they show that two graphs with maximum degree 2
always admit a simultaneous geometric embedding. However, their algorithm computes
drawings with potentially large area.

Cabello et al. [CvKL+11] show the existence of an SGE for a wheel (union of a star and
a cycle on its leaves) and a cycle. They moreover give algorithms for the pairs tree plus
matching (graph with maximum degree 1) and outerpath (outerplanar graph whose weak
dual is a path) plus matching. The former algorithm uses only two slope for the matching
edges, for the latter one slope suffices.

Given a planar graph and a path on the same vertices, the order of the vertices in the path
induces a layering on the vertices. Cappos et al. [CEBFK09] give a linear-time algorithm
that computes an SGE of a planar graph and a path if the planar graph is level-planar with
respect to the layering induced by the path. Angelini et al. [AGKN12] show that every tree
of depth 2 has an SGE with every path.

11.2.2 Examples without SGE

In contrast to the positive results, Brass et al. [BCD+07] give several examples not admitting
an SGE. They show the existence of two planar graphs without a simultaneous embedding
and extended this result to two outerplanar graphs. Two results we present in more detail
are the counterexample for a planar graph and a path by Brass et al. [BCD+07] and Erten
and Kobourov [EK05a] and the counterexample of three paths by Brass et al. [BCD+07].

Theorem 11.2 There exists a planar graph G and a path P not admitting an SGE.

Proof Sketch: Consider the graph G and the path P as shown in Figure 11.5. Let G′

be the subgraph of G induced on the vertices {1, 2, 3, 4, 5}, and let G′′ be the subgraph of

356 Simultaneous Embedding of Planar Graphs

1 5

6

7

8
92

3

4

6

7

8
92

1 5

2

3

4

Figure 11.5 A planar graph G and a path P that do not allow an SGE.

G induced on the vertices {2, 6, 7, 8, 9}. Since G is triconnected fixing the outer face fixes
an embedding for G. With the given outer face of G, the path P contains two crossings:
one involving (2, 4), and the other one involving (6, 8).

Graph G′ has six faces and unless we change the outer face of G′ such that it contains the
edge (1, 3) or (3, 5), the edge (2, 4) is involved in a crossing in the path. Similarly for G′′,
unless we change its outer face such that it contains (2, 7) or (7, 9), the edge (6, 8) is involved
in a crossing in the path. However G′ and G′′ do not share any faces and removing both
crossings depends on taking two different outer faces, which is impossible. Thus, regardless
of the choice for the outer face of G, path P contains a crossing. 2

Theorem 11.3 There exist three paths P1, P2 and P3 not admitting an SGE.

Proof: A path of n vertices is simply an ordered sequence of n numbers. The three
paths we consider are: 714269358, 824357169 and 758261439. For example, the sequence
714269358 represents the path (v7, v1, v4, v2, v6, v9, v3, v5, v8). We will write ij for the edge
connecting vi to vj . The union of these paths contain the following twelve edges.

E = {14, 16, 17, 24, 26, 28, 34, 35, 39, 57, 58, 69}
It is easy to see that the graph G consisting of these edges is a subdivision of K3,3

and therefore non-planar: collapsing 1 and 7, 2 and 8, 3 and 9 yields the classes {1, 2, 3}
and {4, 5, 6}.

It follows that there are two nonadjacent edges of G that cross each other. It is easy
to check that every pair of nonadjacent edges from E appears in at least one of the paths
given above. Therefore, at least one path will cross itself which completes the proof. 2

Cabello et al. [CvKL+11] extend the counterexample for the case that G1 is a path to
the case where G1 is a matching. Moreover, they give an example of six matchings not
admitting an SGE. Note that this does not directly follow by dividing three paths without
an SGE into six matchings, as the resulting matchings allow crossings that were not allowed
before. Another extension of the case where G1 is a path was given by Frati et al. [FKK09]
who give a counterexample where G1 is a path and G is a set of isolated vertices, that is,
G1 and G2 are edge disjoint.

The question of whether two trees always admit an SGE was open for several years, before
it was answered in the negative by Geyer et al. [GKV09] with a construction involving two
very large trees. This of course extends the result of two outerplanar graphs not having an

11.3. SIMULTANEOUS EMBEDDING WITH FIXED EDGES 357

SGE by Brass et al. [BCD+07]. Angelini et al. [AGKN12] further extended it to the case
of a tree and a path without an SGE. More precisely, they give an example of a tree of
depth 4 and an edge disjoint path not having an SGE. Recall that a tree of depth 2 does
always admit a simultaneous embedding with a path, thus in this case the gap between
positive and negative results is quite small.

11.2.3 Related Work

Frati et al. [FKK09] consider the restricted case where each input graph has a prescribed
combinatorial embedding. They show that the pair path plus star admits an SGE even
if the embedding of the star is fixed. They can extend this result to a double-star (tree
with up to two inner vertices) if it is edge disjoint to the path. On the other hand they
show that fixing the embedding of two caterpillars may lead to an counterexample, whereas
they admit an SGE if the embedding is not fixed. Another counterexample is the pair
outerplanar graph with fixed embedding plus edge-disjoint path.

An interesting additional restriction to SGEs was considered by Argyriou et al. [ABKS12],
combining SGE with the RAC drawing convention (RAC – Right-Angular Crossing). They
try to find an SGE such that crossings between exclusive edges of different graphs are
restricted to right-angular crossings. Argyriou et al. consider only the case where the edge
sets of both graphs are disjoint. They present one negative and one positive result for this
problem. The negative result consists of a wheel and a cycle not admitting an SGE with
right-angular crossings. On the other hand they show the existence of such a drawing on a
small integer grid for the case that one of the graphs is a path or a cycle and the other is a
matching. Moreover, they give a linear-time algorithm to compute such a drawing.

11.3 Simultaneous Embedding with Fixed Edges

In this section we drop the requirement that edges have to be straight line segments and
consider the SEFE problem. Figure 11.6 shows a SEFE of the graph and the path from
Figure 11.5 not admitting an SGE. Figure 11.7 and Table 11.2 illustrate the results on the
problem SEFE classified in the three categories described before.

1 5

6

7

8
92

3

4 1 5

6

7

8
92

3
4

Figure 11.6 A graph and a path not admitting an SGE but a SEFE.

358 Simultaneous Embedding of Planar Graphs
358 Simultaneous Embedding of Planar Graphs

[EK05a]

[DL07] [DL07]

[DL07]

[Fra07] [Fra07] [FGJ+09]

[JS09][FJKS11]
[FJKS11]

[BCD+07][BCD+07]

[BCD+07] [Fra07]

[HJL10, ABF+12][ABF+12]

[GJP+06]

[FGJ+09] [FGJ+09]

[BR13b]

[BR13a] [BR13a]

[Sch13] [Sch13] [Sch13]

G1 tree

in
st
a
n
ce
s
a
lw
ay
s
h
av
in
g
a
S
E
F
E

G1 pseudoforest & G forest G1 has disjoint cycles & G forest

characterization of G1

G1 tree & G2 path
1 & 0 bends; O(n)×O(n2)

G1, G2 outerpl. & G paths
1 bend; O(n2)×O(n2)

G1 outerplanar & G2 cycle
1 bend; O(n2)×O(n2)

G1 outerplanar & G2 path
1 & 0 bends; O(n)×O(n2)

characterization of G1

for G1, G2 outerplanar
characterization of G

three pathsk outerplanar graphs

G1 outerplanar G1 & G2 outerplanar

ex
am

p
le
s
w
it
h
ou

t
a
S
E
F
E

G biconn. components

G1 pseudoforest (O(n)) G1 has ≤ 2 cycles & G pseudoforest (O(n))

three graphs NP-complete

G star (O(n)) G biconn. (O(n)) G1 & G2 biconn. & G conn. (O(n2))te
st
in
g
S
E
F
E

G cycles (O(n)) G fixed edge-orders (O(n2))

G max-deg 3 G1 subdiv. of triconn. components

Figure 11.7 Overview over the so far known results on SEFE. Each box represents one
result and an arrow highlights that the source-result is extended by the target-result. The
arrowheads are empty for the cases in which this is only true, if the number of bends per
edge, the consumed grid size or the necessary running time is neglected. Note that transitive
arrows are omitted.

Figure 11.7 Overview over the so far known results on SEFE. Each box represents one
result and an arrow highlights that the source-result is extended by the target-result. The
arrowheads are empty for the cases in which this is only true, if the number of bends per
edge, the consumed grid size or the necessary running time is neglected. Note that transitive
arrows are omitted.

11.3. SIMULTANEOUS EMBEDDING WITH FIXED EDGES 359

SEFE Instance Exist. Area Bends Ref.

G1 tree & G2 path 3 O(n) ×O(n2) 1 & 0 [EK05a]
G1 outerplanar & G2 path 3 O(n) ×O(n2) 1 & 0 [DL07]
G1 outerplanar & G2 cycle 3 O(n2) ×O(n2) 1 [DL07]
G1, G2 outerplanar & G collection of paths 3 O(n2) ×O(n2) 1 [DL07]
G1 tree & G2 planar 3 — [Fra07]
G1 pseudoforest, G2 planar & G forest 3 — [Fra07]
G1 has disjoint cycles, G2 planar & G forest 3 — [FGJ+09]

characterization of G 3/ 7 — [JS09]
characterization of G1 3/ 7 — [FJKS11]
characterization of G1 (G1, G2 outerplanar) 3/ 7 — [FJKS11]

G1 outerplanar & G2 planar 7 — [BCD+07]
k outerplanar graphs 7 — [BCD+07]
three paths 7 — [BCD+07]
G1 & G2 outerplanar 7 — [Fra07]

SEFE Instance Complexity Ref.

three planar graphs NP-complete [GJP+06]

G1 pseudoforest & G2 planar O(n) [FGJ+09]

G1 has ≤ 2 cycles, G2 planar & G pseudoforest O(n) [FGJ+09]

G star O(n) [ABF+12]

G consists of disjoint cycles O(n) [BR13a]

G consists of components with fixed embeddings O(n2) [BR13a]

G has maximum degree 3 polynomial [Sch13]

G1 subdivision of triconnected components & G2 planar polynomial [Sch13]

G biconnected O(n) [HJL10]

G biconnected O(n) [ABF+12]

G consists of biconnected components polynomial [Sch13]

G1, G2 biconnected & G connected O(n2) [BR13b]

Table 11.2 A list of graph classes that are either known to always have a SEFE or
that contain counterexamples (table at the top). For the positive examples bounds on the
required area and number of bends per edge are given, provided that they are known. The
symbol 3/ 7 denotes that a complete characterization of positive and negative instances is
given. The table at the bottom shows results concerning the computational complexity of
SEFE.

11.3.1 Positive and Negative Examples

We start with instances that always admit a SEFE. Erten and Kobourov [EK05a] show
that a tree and a path can always be embedded simultaneously. They additionally give an
algorithm finding a simultaneous embedding in O(n) time on a grid of size O(n) × O(n2)
such that the edges of G1 and G2 have at most one and zero bends per edge, respectively.
Note that a grid of size O(n2)×O(n3) is necessary if the bends are required to be drawn on
grid points. Di Giacomo and Liotta [DL07] extend this result to the case of an outerplanar
graph and a path with the same grid and bend requirements. They extend it further to the
case where G1 and G2 are outerplanar and the common graph G is a collection of paths and
to the case where G1 is outerplanar and G2 is a cycle. However, in both cases a grid of size
O(n2)×O(n2) and up to one bend per edge are required. If the grid and bend requirements

360 Simultaneous Embedding of Planar Graphs

are completely neglected, the results considering the pairs tree plus path and outerplanar
graph plus path can be extended to the case where one of the two graphs is a tree.

Frati [Fra07] shows how a tree G1 can be simultaneously embedded with an arbitrary
planar graph G2. This algorithm still works if G1 contains one additional edge that is not a
common edge, yielding the result that every graph with at most one cycle (a pseudoforest)
can be embedded simultaneously with every other planar graph if the common graph does
not contain this cycle. Fowler et al. [FGJ+09] extend this result further to the case where
G1 contains only disjoint cycles and the common graph G does not contain a cycle.

Aside from instances always having a SEFE, there are also examples that cannot be
simultaneously embedded. Brass et al. [BCD+07] give examples for k outerplanar graphs,
three paths and an outerplanar graph plus a planar graph not having a SEFE. The re-
sults concerning outerplanar graphs can be extended to the case where both graphs are
outerplanar [Fra07].

In between the positive and negative results there are some characterizations stating
which instances have a SEFE and which do possibly not. Fowler et al. [FJKS11] give a
characterization of the graphs G1 having a SEFE with every other planar graph. This
of course extends all results concerning only G1. In particular, the results that a tree
can be simultaneously embedded with every other graph, whereas an outerplanar graph
cannot, are extended. This characterization essentially requires that G1 must not contain
a subgraph homeomorphic to K3 (a triangle) and an edge not attached to this K3; see
Figure 11.8 for an example. The considerations made for this characterization additionally
yield a characterization for the biconnected outerplanar graphs G1 having a simultaneous
embedding with every other outerplanar graph G2. This of course extends the result that
two outerplanar graphs possibly do not have a SEFE.

4

1

2

3

5

1

2

3

4 5

4

1

2

3

5

(a) (b) (c)

Figure 11.8 G1 (a) and G2 (b) do not admit a SEFE (c) as G2 forces the vertices 4 and
5 to different sides of the triangle ∆123.

A different characterization, in terms of the common graph, is given by Jünger and
Schulz [JS09]. They show that two graphs can be simultaneously embedded if the common
graph G has only two embeddings, whereas in all other cases graphs G1 and G2 with
the common graph G not having a SEFE can be constructed. They additionally show
that finding a SEFE is equivalent to finding combinatorial embeddings of G1 and G2

inducing the same combinatorial embedding, that is the same orders of edges around vertices
and the same relative positions of connected components to one another, on the common
graph G [JS09, Theorem 4]. Note that it is not obvious and not even true for more than
two graphs [ADF11]. As this result is heavily used in most algorithms solving the decision
problem SEFE, we state it as a theorem.

Theorem 11.4 Two graphs G1 and G2 with common subgraph G admit a SEFE if and
only if they admit combinatorial embeddings inducing the same embedding on G.

11.3. SIMULTANEOUS EMBEDDING WITH FIXED EDGES 361

11.3.2 Testing SEFE

Since SEFE has positive and negative instances, it would be nice to have an algorithm
deciding for given graphs, whether they can be embedded simultaneously. If more than
two graphs are allowed, this problem is known to be NP-complete [GJP+06], whereas the
complexity for two graphs is still open. However, there are several results solving SEFE
for special cases.

Fowler et al. [FGJ+09] show how to test SEFE, if G1 is a pseudoforest, that is, a graph
with at most one cycle. Note that, as mentioned above, such an instance always has a
SEFE if this single cycle is not contained in G. This result can be extended to the case
where G1 contains up to two cycles, if G does not contain the second cycle, that is, G is
a pseudoforest. To achieve this result the following auxiliary problem was solved. Given a
planar graph G with a designated cycle C and a partition P = {P1, . . . , Pk} of the vertices
not contained in C, does G admit a planar embedding, such that all vertices in Pi are on
the same side of the cycle for every set Pi? Note that this again is a constrained embedding
problem, showing that constrained and simultaneous embedding are closely related. Despite
early effort [FJKS11], testing SEFE for two outerplanar graphs remains open.

Haeupler et al. [HJL10] give a linear-time algorithm to solve SEFE for the case that
the common graph is biconnected. Their solution is an extension of the planarity testing
algorithm by Haeupler and Tarjan [HT08]. This planarity testing algorithm starts with a
completely unembedded graph and adds vertices iteratively, such that the unembedded part
is always connected, ensuring that it can be assumed to lie in the outer face of all embedded
components. While inserting vertices, they keep track of the possible embeddings of the
embedded parts by representing the possible orders of half-embedded edges around every
component with a PQ-tree having these edges as leaves. In a PQ-tree every inner node is
either a Q-node fixing the order of edges incident to it up to a flip or a P-node allowing
arbitrary orders. In this way a PQ-tree represents a set of possible orders of its leaves.

A completely different approach is used by Angelini et al. [ABF+12] to solve SEFE in
linear time if the common graph is biconnected. They choose an order for the common
graph bottom up in its SPQR-tree such that the private edges can be added.

Another approach by Bläsius and Rutter [BR13b] also uses PQ-trees. They use that
the possible orders of edges around every vertex of a biconnected planar graph can be
represented by a PQ-tree, yielding a set of PQ-trees, one for each vertex. To obtain a
planar embedding, the orders for the PQ-trees have to be chosen consistently. Bläsius and
Rutter define the problem Simultaneous PQ-Ordering asking for orders in PQ-trees
that are chosen consistently, which can, among other applications, be used to represent all
planar embeddings of a biconnected graph. This extends to the case of two biconnected
planar graphs enforcing shared edges to be ordered the same and thus yields a quadratic
time algorithm for SEFE if G1 and G2 are biconnected and G is connected. The latter
requirement comes from the fact that only orders of edges around vertices are taken into
account, relative positions of connected components to one another are neglected. Note
that this result extends the case where G is biconnected for the following reason. If G
is biconnected, then G is completely contained in a single block (maximal biconnected
component) of G1 and G2. Thus, even if G1 or G2 are not biconnected, they contain only
one block that is of interest, all other blocks can simply be attached to this block.

The result by Bläsius and Rutter can be slightly extended to the case where the graphs G1

and G2 contain cut-vertices incident to at most two non-trivial blocks (blocks not consisting
of a single edge), including the special case where both graphs have maximum degree 5. The
Simultaneous PQ-Ordering approach again shows the strong relation between simulta-

362 Simultaneous Embedding of Planar Graphs

neous and constrained embedding as in an instance of SEFE the two input graphs constrain
the possible orders of some of the edges around vertices of one another with PQ-trees.

Angelini et al. [ABF+12] show the equivalence between SEFE and a constrained version
of the Partitioned 2-Page Book Embedding problem. An instance of Partitioned
2-Page Book Embedding is a graph and a partition of its edges into two subsets. It asks
whether all vertices can be arranged on a straight line (the spine) such that each of the
edge partitions can be embedded without crossings in one of the two incident half-planes
(pages of the book). Partitioned T -Coherent 2-Page Book Embedding additionally
has a tree as input with the vertices of the graph as leaves. It is then required that the tree
admits an embedding such that the order of its leaves is equal to the order of vertices on
the spine. In other words, the allowed orders of vertices on the spine is constrained by a
PQ-tree containing no Q-nodes. Angelini et al. [ABF+12] prove the following theorem and
we sketch their proof here.

Theorem 11.5 The problems SEFE for two graphs with connected intersection and
Partitioned T -Coherent 2-Page Book Embedding have the same time complexity.

Proof Sketch: Angelini et al. [ABF+12] first show that an instance of SEFE where the
common graph is connected can be modified (yielding an equivalent instance) such that the
common graph is a tree. Moreover, each private edge is incident to leaves of this tree. They
then show the equivalence to an instance of Partitioned T -Coherent 2-Page Book
Embedding where the common graph is the constraining tree, the leaves of this tree are
the vertices that need to be placed on the spine and the private edges of each of the graphs
is one of the partitions.

In the following we sketch this construction using the example in Figure 11.9. The
instance in (a) having a tree T as common graph such that each private edge is incident to
a leaf admits a SEFE. All private edges are embedded outside the dashed cycle around T
in (b) containing all its leaves. Choosing another face as outer face and cutting the cycle
at an arbitrary position yields a SEFE where all leaves of T are embedded on a straight
line (c) with all private edges on the same side. This directly yields the Partitioned
T -Coherent 2-Page Book Embedding in (d) of the private edges respecting the tree
T . This shows the equivalence of SEFE and Partitioned T -Coherent 2-Page Book
Embedding as the constructions works the same in the opposite direction. 2

1

2

3
4 5

6

7 8
910

1 2 3 4 5 6

7 8

9
10

1 2 3 4 5 6

7 8

9
10

(a) (b) (c) (d)

Figure 11.9 Equivalence of an instance of SEFE and the corresponding instance of Par-
titioned T -Coherent 2-Page Book Embedding.

For the restricted case that T is a star, Partitioned T -Coherent 2-Page Book
Embedding reduces to the problem Partitioned 2-Page Book Embedding that can

11.3. SIMULTANEOUS EMBEDDING WITH FIXED EDGES 363

be solved in linear time [HN09]. Thus the above result directly implies that SEFE can be
solved in linear time if the common graph is a star.

All results mentioned thus far require G to be connected and most results also require
G1 and G2 to be connected. Bläsius and Rutter [BR13a] consider the case where this does
not hold. They show that it can be assumed without loss of generality that both graphs G1

and G2 are connected.
In the case that G is connected, one only has to deal with orders of edges around vertices

and can neglect relative positions of connected components to one another. Bläsius and
Rutter approach SEFE from the opposite direction, caring only about the relative positions,
neglecting the orders of edges around vertices. More precisely, they give a linear-time
algorithm solving SEFE if the common graph is a set of disjoint cycles. They can extend
this result to a quadratic-time algorithm for the case where G consists of arbitrary connected
components, each with a fixed planar embedding. Both results extend to an arbitrary
number of graphs with sunflower intersection. Recall that sunflower intersection means
that all graphs intersect in the same common subgraph. Moreover, they give a succinct
representation of all simultaneous embeddings.

A completely different, algebraic approach is presented by Schaefer [Sch13]. It is based
on the Hanani-Tutte theorem [Cho34, Tut70] stating that a graph is planar if and only
if its independent odd crossing number is 0. The independent odd crossing number of a
drawing is the number of pairs of non-adjacent edges whose number of crossings is odd.
The independent odd crossing number of a graph is its minimum over all drawings. Thus,
by the Hanani-Tutte theorem, testing planarity is equivalent to testing whether this crossing
number is 0. The latter condition can be formulated as a system of linear equations over
the field of two elements, leading to a simple polynomial-time planarity algorithm. Schaefer
extends this result to other notions of planarity. In particular, it is shown that SEFE can
be solved in polynomial time for three interesting cases, namely (1) if the common graph G
consists of disjoint biconnected components and isolated vertices, (2) if the common graph
has maximum degree 3, and (3) if G1 is the disjoint union of subdivisions of triconnected
graphs. When neglecting the slower running time, this extends several of the results known
before; see Figure 11.7.

11.3.3 Related Work

A result not really fitting in one of the three above classes by Duncan et al. [DEK04]
considers the restricted case of SEFE where each edge has to be a sequence of horizontal
and vertical segments with at most one bend per edge. They show that two graphs with
maximum degree 2 always admit such a SEFE on a grid of size O(n)× O(n) by adapting
their linear-time algorithm computing an SGE for these types of graphs (on a larger grid).

Angelini et al. [ADF11] consider the case where the embedding of each of the input graphs
is already fixed. With this restriction SEFE becomes trivial for two graphs since it remains
to test whether the two graphs induce the same embedding on the common graph. They
show that it can also be decided efficiently for three graphs. However, it becomes NP-hard
for at least fourteen graphs. They also consider the problem SGE for the case that the
embedding of each graph is fixed and show that it is NP-hard for at least thirteen graphs.

Schaefer [Sch13] shows that several other notions of planarity are related to SEFE. In
particular, the well-studied cluster planarity problem reduces to SEFE, providing further
incentive to study its complexity.

364 Simultaneous Embedding of Planar Graphs

11.4 Simultaneous Embedding

In the most restricted version of the problem, SGE, we insist that vertices are placed in
the same position, and edges must be straight-line segments. The SEFE setting relaxes the
straight-line condition but maintains that edges common to multiple graphs are realized
the same way in each. In the least restrictive setting, SE, we allow the same edge to be
realized differently in different graphs.

It has already been mentioned that simultaneous embedding of multiple graphs can be
thought of as a generalization of the notion of planarity. A classical result about planar
graphs connects the notion of a planar graph with that of a straight-line, crossing-free
drawing thereof. Specifically, Wagner in 1936 [Wag36], Fáry in 1948 [Fár48], and Stein
in 1951 [Ste51] independently show that if a graph has a drawing without crossings, using
arbitrary curves as edges, then there exists a drawing of the graph also without crossings,
but with edges drawn as straight-line segments. For multiple graphs, however, this result
does not hold. That is, given several graphs on the same n vertices, we can surely realize
each graph without crossings, using arbitrary curves as edges and the same vertex positions
for each graph. But (except in very special circumstances such as the positive examples
in the Section 11.2) we cannot guarantee that there exist vertex positions that allow the
realization of each graph with straight-line segments and without crossings. If this were
true, then the vertex positions would be a universal pointset for graphs on n vertices, and
it is known that universal pointsets of linear size do not exist [dFPP90].

Pach and Wenger [PW98] show that every planar graph can be drawn without crossings
with a prespecified position for every vertex. Thus, for every pair of planar graphs an SE
can be created by drawing the first graph arbitrarily and the second graph to the vertex
positions specified by the first drawing. Thus, there are neither negative examples nor is it
necessary to have testing algorithms. However, the drawing of the second graph may have
linearly many bends per edge, thus it is of interest to find an SE with fewer bends.

Erten and Kobourov [EK05a] show that every two graphs can be drawn simultaneously
in O(n) time with at most three bends per edge on an O(n2)×O(n2) grid (O(n3)×O(n3) if
bends need to be placed on grid points), where n is the number of vertices. To achieve this
result, they combine the construction of Brass et al. [BCD+07] to create an SGE of two
paths (see Theorem 11.1 in Section 11.2) with a technique by Kaufmann and Wiese [KW02],
who show that every planar graph can be drawn with at most two bends per edge if the
allowed vertex positions are restricted to a set of points. We include the main result from
this paper along with a proof sketch.

1

2

3
4

5

6

1

2
3

4

5

6

1 2345 6

(a) (b)

δ δ′

Figure 11.10 (a) The cycle H2 (gray) with the path P2 (not dashed) and the graph
G1 containing the Hamiltonian cycle H1 (bold) and the Hamiltonian path P1 (bold, not
dashed). (b) The drawing of G1 and P2 according to the construction of Theorem 11.6.

11.5. COLORED SIMULTANEOUS EMBEDDING 365

Theorem 11.6 For two planar graphs G1 and G2 an SE with at most three bends per
edge on an O(n2)×O(n2) grid can be found in linear time.

Proof Sketch: Initially, assume that G1 and G2 are 4-connected. This assumption is
removed later using the technique of Kaufmann and Wiese.

We can compute Hamiltonian cycles H1 and H2 of G1 and G2, respectively, using the
algorithm of Chiba and Nishizeki [CN89]. Let P1 and P2 be Hamiltonian paths contained
in H1 and H2, respectively; see Figure 11.10(a) for an example. As in the proof of The-
orem 11.1, we can construct an SGE of P1 and P2 such that P1 is y-monotone, while P2

is x-monotone. We show how to add the remaining edges of G1 and the construction is
similar for G2.

We consider the absolute values of the slopes the edges in P1 have and define δ to be
their minimum. Let further δ′ be slightly smaller. We first close the cycle H1 by adding the
missing edge using two straight-line segments with slopes δ′ and −δ′; see Figure 11.10(b).
Similarly, all remaining edges of G1 are drawn with two straight-line segments with slopes
appropriately chosen between δ′ and δ and between −δ and −δ′. Dealing similarly with
the remaining edges of G2 yields an SE with at most one bend per edge on a grid of size
O(n2)×O(n2).

For the case that G1 and G2 are not 4-connected, Kaufmann and Wiese [KW02] showed
how they can be augmented to 4-connected planar graphs by adding new edges and sub-
dividing every edge at most once. Drawing these augmented graphs as described above,
removing the additional edges and replacing each subdivision vertex with a bend yields an
SE of G1 and G2 with at most three bends per edge on an O(n2)×O(n2) grid. 2

The result of Erten and Kobourov was improved by Di Giacomo and Liotta [DL05, DL07]
to at most two bends per edge in general and one bend per edge, if G1 and G2 are both sub-
Hamiltonian. That is, they can be augmented to become Hamiltonian maintaining planarity,
and an augmentation together with a Hamiltonian cycle is given with the input. Similar
results were obtained by Kammer [Kam06]. As series-parallel graphs [DDLW06], trees
and outerplanar graphs [CLR87, BK79] are always sub-Hamiltonian and an augmentation
together with a Hamiltonian cycle can be computed in linear-time this result yields a linear
time algorithm to compute an SE of G1 and G2 with one bend per edge on a grid of size
O(n2)×O(n2) if each of the graphs G1 and G2 is series-parallel, a tree or outerplanar.

Cappos et al. [CEBFK09] show that a path and an outerplanar graph can be simulta-
neously embedded in linear time such that edges in the outerplanar graph are straight-line
segments and each edge in the path consists of a single circular arc. Alternatively, the path
edges may be piecewise linear with at most two bends per edge.

11.5 Colored Simultaneous Embedding

Since SGE can be too restrictive, various relaxations have been considered. The two relaxed
versions already mentioned, SEFE and SE relax the requirement of straight-line edges,
and even the requirement that common edges are drawn the same way in both drawings.
Another way to relax the constraints of the original SGE problem is to allow changes in
vertex positions in different graphs.

Until this point we had assumed that multiple input graphs have labeled vertices and
thus the mapping between the vertices of the graphs is part of the input. In simultaneous
embedding without mapping we are interested in computing plane drawings for each of the
given graphs on the same set of points, where any vertex can be placed at any of the points

366 Simultaneous Embedding of Planar Graphs

6a

5c 1d

a b c
d
e

f

g
7b 2f

4e

3g

6a

7b
5c

2d

1f

3e

4g

1 2

3 4

5
6

7

Figure 11.11 Two 2-colored graphs with two CSEs corresponding to different mappings.

in the point set. This setting of the problem was investigated in the very first paper on
SGE [BCD+07] and is the source of one of the longest-standing open problems in the area.

A common generalization of the problems above is Colored Simultaneous Embed-
dings (CSE), which was introduced by Brandes et al. [BEEB+11], and contains both, the
version with and without mapping. Formally, the problem of CSE is defined as follows.
The input is a set of planar graphs G1 = (V,E1), G2 = (V,E2), . . . , Gk = (V,Ek) on the
same vertex set V and a partition of V into c classes, which we refer to as colors. The
goal is to find plane straight-line drawings Di of Gi using the same |V | points in the plane
for all i = 1, . . . , k, where vertices mapped to the same point are required to be of the
same color. We call such graphs c-colored graphs; see Figure 11.11 for an example. Given
the above definition, simultaneous embeddings with and without mapping correspond to
colored simultaneous embeddings with c = |V | and c = 1, respectively. Thus, when a set
of input graphs allows for a simultaneous embedding without mapping but does not allow
for a simultaneous embedding with mapping, there must be a threshold for the number of
colors beyond which the graphs can no longer be embedded simultaneously.

Colored simultaneous embeddings provide a way to obtain near-simultaneous embeddings,
where we place corresponding vertices nearly, but not necessarily exactly, at the same
locations. Relaxing the constraint on the size of the pointset allows for a way to more easily
obtain near-simultaneous embeddings, where we attempt to place corresponding vertices
relatively close to one another in each drawing. For example, if each cluster of points in
the plane has a distinct color, then even if a red vertex v placed at a red point p ∈ G1 has
moved to another red point q ∈ G2, the movement is limited to the area covered by the red
points.

Brandes et al. [BEEB+11] show several positive and negative results about CSE. In par-
ticular they show that there exist universal pointsets of size n for 2-colored paths and spiders
as well as 3-colored paths and caterpillars. It is also shown that a 2-colored tree (or even
a 2-colored outerplanar graph) and any number of 2-colored paths can be simultaneously
embedded. In the negative direction, there exist a 2-colored planar graph and pseudo-forest,
three 3-colored outerplanar graphs, four 4-colored pseudo-forests, three 5-colored pseudo-
forests, five 5-colored paths, two 6-colored biconnected outerplanar graphs, three 6-colored
cycles, four 6-colored paths, and three 9-colored paths that cannot be simultaneously em-
bedded.

Frati et al. [FKK09] continue the investigation of near-SGE’s, that is, they try to find
straight-line drawings of the input graphs with a small distance between every pair of
common vertices in different drawings. As a negative result, they present a pair of graphs
such that in every pair of drawings there exists a common vertex with distance linear in
the size of the input. On the other hand, they present positive results for a sequence of
paths and a sequence of trees for the case that every two consecutive graphs in the sequence
are similar with respect to a parameter measuring their similarity. It can then be shown

11.6. MATCHED DRAWINGS 367

1

2

3

4

5

6

1

2

3

4

5

6

Figure 11.12 A matched drawing: corresponding vertices have the same y-coordinate.

that the distance of a common vertex in two consecutive drawings depends linearly on this
parameter.

11.6 Matched Drawings

Another approach to relax requirements of SGE are the so-called matched drawings in-
troduced by Di Giacomo et al. [DDvK+09]. A matched drawing of a pair of graphs is a
planar straight-line drawing of each of the graphs such that each common vertex has the
same y-coordinate in both drawings (instead of the same y- and x-coordinate as required
for SGE); see Figure 11.12 for an example.

Di Giacomo et al. [DDvK+09] give a small counterexample consisting of two small tri-
connected planar graphs not admitting a matched drawing. Moreover, they give a larger
example (620 vertices) of a biconnected graph and a tree not having a matched drawing.

Apart from that they also have some results on the positive side. They show that two trees
are always matched drawable. Moreover, they observe that any planar graph has a matched
drawing with a so-called unlabeled level planar (ULP) graph, that is, a graph that admits a
planar straight-line drawing even if the y-coordinate of each vertex is prespecified such that
no two vertices have the same y-coordinate. A characterization of ULP graphs is given by
Fowler and Kobourov [FK08]. Di Giacomo et al. [DDvK+09] moreover show for a graph
class containing non-ULP graphs (the carousel graphs) that they admit matched drawings
with arbitrary planar graphs. A special case of a carousel graph is a graph consisting of a
single vertex v0 and a set of disjoint subgraphs S1, . . . , Sk, each Si connected to v0 over a
single edge {v0, vi} such that Si is either a caterpillar with vi on its spine, a radius-2 star
with vi as center or a cycle.

Grilli et al. [GHL+09] present further positive results on matched drawings. They show
how to draw the pairs outerplane plus wheel, wheel plus wheel, outerplane plus maximal
outerpillar (outerplane graph with triangulated inner faces and caterpillar as weak dual),
and outerplane plus generalized outerpath (outerpath where some edges on the outer face
may be replaced by some small subgraphs). Moreover, they consider matched drawings
for graph triples and give algorithms creating matched drawings of three cycles, and a
caterpillar and two ULP graphs.

11.7 Other Simultaneous Representations

Apart from simultaneously drawing two graphs sharing some common parts there are other
ways to represent graphs simultaneously. In this section we describe how a plane graph
and its dual can be represented simultaneously, and what is known about simultaneous
intersection representations of (not necessarily planar) graphs.

368 Simultaneous Embedding of Planar Graphs

11.7.1 A Plane Graph and Its Dual

In a simultaneous drawing of a planar graph and its dual each vertex in the dual graph
is required to be placed inside the corresponding face of the primal graph. Moreover, no
crossings are allowed except for crossings between a dual and its corresponding primal edge.
Tutte [Tut63] first considered this problem and showed that every triconnected planar graph
admits a simultaneous straight-line drawing with its dual. However, the resulting drawings
may have exponentially large area. Erten and Kobourov [EK05b] provide a linear-time
algorithm simultaneously embedding a triconnected planar graph and its dual on a grid of
size (2n− 2)× (2n− 2) such that all edges are drawn as straight-line segments. Zhang and
He [ZH06] improved this result to a grid of size (n− 1)× n.

Brightwell and Scheinerman [BS93] show the existence of a simultaneous straight-line
drawing of a triconnected planar graph and its weak dual such that the crossings between
dual and the corresponding primal edges are right-angular crossings. A circle packing
of a planar graph represents the vertices as non-crossing circles such that two vertices are
adjacent if and only if their corresponding circles touch. Given a circle packing of a planar
graph, one obtains a planar straight-line drawing by placing each vertex at the center of
its corresponding circle. Mohar [Moh97] shows that every triconnected planar graph has
a simultaneous circle packing with its dual such that in the corresponding straight-line
drawings primal and dual edges have right-angular crossings. Argyriou et al. [ABKS12]
give a simple example of a graph that is not triconnected not admitting such a drawing.
On the positive side they give an algorithm that creates such drawings for the case that the
primal graph is outerplanar.

Another way of simultaneously representing a planar graph and its dual is the tessellation
representation introduced by Tamassia and Tollis [TT89]. In a tessellation representation,
every edge, every vertex and every face is represented by a (possibly degenerated) rectangle,
a so-called tile, such that the interiors of these tiles are pairwise disjoint, that their union
forms a rectangle, and that the incidences in the graph are represented by side contacts of
the tiles in the following way: (i) Two tiles share a horizontal line segment if and only if
they represent an edge and an incident face; and (ii) two tiles share a vertical line segment
if and only if they represent an edge and an incident vertex. Tamassia and Tollis [TT89], in
particular, showed that every biconnected planar graph admits a tessellation representation
where the tiles representing vertices and faces are vertical and horizontal line segments,
respectively.

The textbook by Di Battista et al. [DETT99, Sections 4.3 and 4.4] contains a short
description of the algorithm computing tessellation representations and of the relation to
visibility representations. Moreover, tessellation representations were also considered on
other surfaces such as the torus [MR98].

11.7.2 Intersection Representations

Jampani and Lubiw [JL09] introduce the concept of simultaneous graph representations
for other representations than drawings. An intersection representation of a graph assigns
a geometric object to each vertex such that two vertices are adjacent if and only if their
corresponding geometric objects intersect. Two graphs sharing a common subgraph are
simultaneous intersection graphs if each of them has an intersection representation such that
the common vertices are represented by the same objects. Note that every planar drawing
of a graph can be interpreted as intersection representation, each vertex is represented by
the union of its edges. This shows that deciding SEFE as a special case of recognizing
simultaneous intersection graphs.

11.8. PRACTICAL APPROACHES TO DYNAMIC GRAPH DRAWING 369

Other popular intersection representations are the following. In an interval representation
of a graph each vertex is represented by an interval on the real line. A graph is chordal if
each induced cycle has length three. Gavril [Gav74] shows that chordal graphs are exactly
the intersection graphs of subtrees in a tree. This shows that the class of interval graphs
is contained in the class of chordal graphs. Permutation graphs are the intersection graphs
that can be represented by a set of line segments connecting two parallel lines. Jampani
and Lubiw [JL09] give O(n3)-time algorithms recognizing simultaneous permutation graphs
and simultaneous chordal graphs. The algorithm for simultaneous permutation graphs can
be extended to more than two graphs with sunflower intersection. On the other hand, it is
NP-hard to recognize simultaneous chordal graphs of this kind (for a constant number k of
graphs, the complexity is still open).

In a follow-up paper Jampani and Lubiw [JL10] give an algorithm recognizing simulta-
neous interval graphs in O(n2 log n) time. As interval graphs can be characterized in terms
of PQ-trees, recognizing simultaneous interval graphs leads to a problem of finding orders
in several PQ-trees simultaneously. Bläsius and Rutter [BR13b] consider this kind of prob-
lem in a more general leading to a O(n)-time algorithm recognizing simultaneous interval
graphs.

Related to simultaneous intersection graphs are simultaneous comparability graphs also
introduced by Jampani and Lubiw [JL09]. A comparability graph is a graph that can be
oriented transitively where transitively means that a directed path implies the existence of
a directed edge. Two graphs are simultaneous comparability graphs if each of them can be
oriented transitively such that common edges are oriented the same in both. Jampani and
Lubiw give an O(nm)-time algorithm recognizing simultaneous comparability graphs. It can
also be used to recognize an arbitrary number of comparability graphs with sunflower in-
tersection. Comparability graphs are related to intersection graphs as comparability graphs
are exactly the graphs whose complement is a function graph, that is the intersection graph
with respect to continuous functions on an interval [GRU83].

As for the problem SEFE, finding simultaneous representations is related to extending
a representation of a subgraph to one of the whole graph. For interval graphs Klav́ık et
al. [KKV11] give a O(nm)-time algorithm testing whether a partial interval representation
can be extended. Bläsius and Rutter [BR13b] were able to improve the running time to
O(m) by constructing a second graph such that both graphs are simultaneous interval
graphs if and only if the partial interval representation can be extended.

11.8 Practical Approaches to Dynamic Graph Drawing

The majority of the results reviewed above focused on the theoretical aspects of dynamic
graph drawing. In this section we review practical approaches to this problem. As we have
seen in the previous sections, numerous negative results show that in many of the interesting
settings we cannot guarantee simultaneous embeddings. On the other hand, several efficient
algorithms for different variants of the problem do exist, but they usually place additional
restrictions on the number of input graphs, or limit the graphs to special sub-classes of
planar graphs.

As discussed in the introduction, the problem is well motivated in practice. Of particular
interest are applications to visualization of dynamic graphs and the related issues of mental
map preservation and good graph readability. With this in mind we mention several more
practical results here. First we focus on drawing algorithms that aim to produce simultane-
ous embeddings or layouts that are in some sense close to being a simultaneous embedding.
Afterwards, we briefly discuss other approaches to dynamic graph drawing.

370 Simultaneous Embedding of Planar Graphs

Erten et al. [EKLN05] adapt force-directed algorithms to create drawings of a series
of graphs sharing subgraphs finding a tradeoff between nice drawings and similarities of
common parts. Kobourov and Pitta [KP05] describe an interactive system that allows
multiple users to interactively modify a pair of graphs simultaneously using a multi-user,
touch-sensitive input device. While those two approaches focus on straight-line drawings
(corresponding to SGE), the GraphSET system by Estrella-Balderrama et al. [EBFK10]
also allows edges to have bends. GraphSET is a tool helping the user to investigate the
theoretical problems SGE and SEFE and it contains implementations of several testing
and drawing algorithms. Chimani et al. [CJS08] create simultaneous drawings of graphs by
drawing the union of the graphs. Their objective is to minimize the number of crossings
in the drawing, where crossings between edges of different graphs do not count, yielding a
simultaneous embedding if and only if the number of crossings is zero.

Misue et al. [MELS95] initiated the study of drawing dynamically changing graphs and
first proposed several models to capture the notion of preserving the user’s mental map. In
particular they suggested preservation of orthogonal orderings, proximity relations, or the
topology as a formalization. Bridgeman and Tamassia [BT98] describe and evaluate differ-
ence metrics that are specialized to orthogonal graph drawings. Purchase et al. [PHG07]
provide empirical evidence that preserving the user’s mental map indeed assists in compre-
hending the evolving graph. Purchase and Samra [PS08] argue that for minimizing the node
movement, finding a trade-off is worse than either keeping the exact node positions or just
layouting the next graph from scratch for memorizing tasks. In a recent study, Archambault
and Purchase [AP13] observed positive effects of mental map preservation for localization
tasks, both in terms of speed and accuracy. Sallaberry et al. [SMM13] consider mental map
preservation for large graphs and argue that restricting node movements to small distances
is not sufficient for this case. They propose to cluster nodes into groups that perform the
same movement in order to increase the stability of the drawing.

Bridgeman et al. [BFG+97] present InteractiveGiotto, a bend-minimization algorithm for
orthogonal drawings that is designed for dynamic and interactive scenarios. Their algorithm
supports arbitrary graph changes and preserves the embedding, all edge crossings, and the
bends of edges.

Brandes and Wagner [BW97] suggest a Bayesian framework for dynamic graph drawing
that can in principle be applied to all layout styles and allows to choose a trade-off between
quality and stability. Diel and Görg [DG02] introduce foresighted layouts, where the basic
idea is to layout the union of the graph over all time steps and to combine vertices and edges
whose life times are disjoint, in order to reduce the size of the drawing. This automatically
guarantees a high stability of the layout, but possibly incurs a negative impact on the
quality of individual drawings. Görg et al. [GBPD04] enhance this method by an additional
step that improves the quality of the individual layouts while keeping them close to the
foresighted layout.

North and Woodhull [NW02] propose a heuristic for online hierarchical graph drawing by
dynamizing the classical Sugiyama algorithm [STT81]. Collberg et al. [CKN+03] describe
a system for visualizing the evolution of software based on force-directed methods applied
to so-called time-sliced graphs. A time-sliced graph consists of disjoint copies of the graph
at each point in time together with time-slice edges, which connect corresponding vertices
from different points in time. The algorithm attempts to place vertices that are connected
by a time-slice edge in roughly the same position. Frishman and Tal [FT08] describe an
algorithm for online dynamic graph drawing that can be implemented to run on a GPU.

11.9. MORPHING PLANAR DRAWINGS 371

11.9 Morphing Planar Drawings

The main motivation for simultaneously embedding different (but related) graphs is to
preserve the mental map between the unchanged parts by drawing them the same. As
opposed to this, morphing tries to match different drawings of the same graph. More
precisely, let Γ1 and Γ2 be two drawings of the same graph G, a morph between them is a
motion of the vertices along trajectories starting at the vertex positions in Γ1 and ending
at their positions in Γ2.

The simplest possible morph between two drawings Γ1 and Γ2 is the linear morph where
each vertex moves at constant speed along a line segment from its origin in Γ1 to its
destination in Γ2. However, the intermediate drawings of linear morphs may be pretty bad,
in fact, it may even happen that the whole graph collapses to a single point. To resolve
this problem Cairns [Cai44] introduced the notion of morphing planar graphs, requiring
that every intermediate drawing is also planar. He showed that two planar drawings of a
triangulated plane graph with an equally drawn outer face can be morphed into each other
in a planar way using a sequence of linear morphs. However, this sequence of linear morphs
has exponential size.

Thomassen [Tho83] extends this to drawings of general (not necessarily triangulated) pla-
nar graphs with an equally drawn outer face and convex faces by augmenting the drawings
to compatible triangulations, that is, one must be able to add all new vertices and edges to
both given drawings without violating the planarity or straight-line requirement. Compat-
ible triangulations were further investigated by Aronov et al. [ASS93] who show that two
drawings admit compatible triangulations with only O(n2) new vertices. They moreover
show that Θ(n2) new vertices are sometimes necessary. This result has the following general
implication. If there exist planar morphs between drawings of triangulated graphs using
O(f(n)) linear morphing steps, then there are morphs between drawings of arbitrary plane
graphs using O(f(n2)) steps.

To be able to morph with a polynomial number (O(n6)) of linear steps Lubiw and Pet-
rick [LP08] relaxed the straight-line requirement and showed how to morph between two
planar drawings when edges are allowed to be bent during the morph. However, this result
can also be achieved without this relaxation. Alamdari et al. [AAC+13] show that for every
pair of planar straight-line drawings of a triangulated graph with an equally drawn outer
face there exists a planar morph consisting of a sequence of O(n2) linear morphs. This is
the first result showing that a polynomial number of morphing steps is sufficient. Using
the results on compatible triangulations mentioned above [ASS93] this yields a morph with
O(n4) linear steps for general plane graphs.

Floater and Gotsman [FG99] introduced a completely different approach to planar mor-
phing of triangulations. They make use of the fact that in a planar drawing the position of
each vertex is a convex combination of the neighboring vertices and that conversely fixing
the coefficients of the convex combinations and fixing the outer face yields a planar drawing.
This was shown by Floater [Flo97] extending the results by Tutte [Tut60, Tut63]. Floater
and Gotsman [FG99] create a morph between two planar drawings by transforming the co-
efficients of the corresponding convex combinations into one another, yielding a sequence of
coefficients and thus a sequence of planar drawings. Surazhsky and Gotsman [SG01, SG03]
improve this approach further to obtain aesthetically more appealing morphs.

The approach based on convex combinations has the disadvantage that the trajectories
are not explicitly computed and that it is not clear how many linear morphing steps are
necessary to obtain a planar and smooth morph. Despite its theoretical shortcomings, in
practice this algorithm leads to nice morphs, as shown by Erten et al. [EKP04b, EKP04a],
who combine this approach with rigid motion (translation, rotation, scaling and shearing)

372 Simultaneous Embedding of Planar Graphs

and the triangulation algorithm by Aronov et al. [ASS93]. Moreover, they are able to morph
edges with bends to straight-line edges and vice versa.

Biedl et al. [BLS06] consider a related problem of morphing so-called parallel straight-line
drawings, that is, straight-line drawings such that for every edge e, the slope of e is the same
in both drawings. Moreover, the edge slopes have to be preserved throughout the whole
morph. They show that for orthogonal drawings (without bends) such a morph always
exists. On the other hand, testing for the existence of such a morph becomes NP-hard if
the edges are allowed to have three or more slopes. Lubiw et al. [LPS06] investigate morphs
between general orthogonal drawings of planar graphs where edges may have bends. They
show that for every pair of drawings there is a morph preserving planarity and orthogonality
consisting of polynomial many steps, where each step is either a movement of vertices or a
“twist” around a vertex that introduces new bends at the edges incident to this vertex.

Of course, problems similar to planar morphing can be considered for non-planar graphs.
Examples are the results by Friedrich and Eades [FE02] and Friedrich and Houle [FH02].

11.10 Open Problems

There are many interesting problems, some of which have been open for a decade and have
resisted efforts to address them. Here we list several of the current open problems.

1. Given two arbitrary planar graphs G1 = (V1, E1) and G2 = (V2, E2) with the
same number of vertices, |V1| = |V2|, does there always exist a mapping from the
vertex set of the first graph onto the vertex set of the second graph V1 → V2 such
that the two graphs have a SGE? That is, do pairs of planar graphs always have
an SGE without mapping?

2. Given two graphs of max-degree 2, G1 = (V1, E1) and G2 = (V2, E2) with the
same number of vertices, an SGE with mapping does always exist. Unlike most
other results where the pair of graphs has an SGE the area of the necessary
grid is not bounded. Is it possible to guarantee polynomial integer grid for the
simultaneous embedding?

3. What is the complexity of SGE for two graphs with fixed planar embeddings?

4. Is it possible to decide SGE for restricted cases, for example if the common graph
is highly connected?

5. What is the complexity of the decision problem SEFE for two graphs?

6. Are there interesting parameters for which SEFE or SGE are FPT? For example,
tree-distance of G? What about maximum degree ∆?

7. What is the complexity of SEFE for more than two graphs with sunflower inter-
section?

8. What is the complexity of SEFE for four graphs, each with a fixed planar em-
bedding?

9. What is the complexity of the optimization version of SEFE where one asks for
drawings such that as many common edges as possible are drawn the same?

10. Let G1 and G2 be two planar graphs with given combinatorial embeddings in-
ducing the same embedding on their intersection G, that is, a SEFE is given
with the input. What is the complexity of minimizing the number of crossings
in a corresponding drawing?

11. Let G1 and G2 be two planar graphs with given combinatorial embeddings in-
ducing the same embedding on their intersection G, that is, a SEFE is given

11.10. OPEN PROBLEMS 373

with the input. Do G1 and G2 admit drawings with few bends on a small grid
respecting the given SEFE?

12. There are many open problems in the CSE setting. A particularly interesting
one concerns pairs of trees. It is known that two n-vertex trees without mapping
(1-colored) have a simultaneous geometric embedding (any set of n points in
convex position suffices). It is also known that at the other extreme when the
mapping is given (n-colored) such geometric embedding may not exist. However,
the problem is open for any number of colors c ∈ {2, . . . , n− 1}.

13. Similarly to the previous problem, the status of the tree-path CSE problem is
open for any number of colors c ∈ {3, . . . , n− 1}.

374 Simultaneous Embedding of Planar Graphs

References

[AAC+13] Soroush Alamdari, Patrizio Angelini, Timothy M. Chan, Giuseppe Di Bat-
tista, Fabrizio Frati, Anna Lubiw, Maurizio Patrignani, Vincenzo Roselli,
Sahil Singla, and Bryan T. Wilkinson. Morphing planar graph draw-
ings with a polynomial number of steps. In Proceedings of the Twenty-
Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
’13. ACM, 2013.

[ABF+12] Patrizio Angelini, Giuseppe Di Battista, Fabrizio Frati, Maurizio Patrig-
nani, and Ignaz Rutter. Testing the simultaneous embeddability of two
graphs whose intersection is a biconnected or a connected graph. Journal
of Discrete Algorithms, 14(0):150–172, 2012.

[ABKS12] Evmorfia Argyriou, Michael Bekos, Michael Kaufmann, and Antonios
Symvonis. Geometric RAC simultaneous drawings of graphs. In Joachim
Gudmundsson, Julián Mestre, and Taso Viglas, editors, Computing and
Combinatorics, volume 7434 of Lecture Notes in Computer Science, pages
287–298. Springer Berlin Heidelberg, 2012.

[ADF+10] Patrizio Angelini, Giuseppe Di Battista, Fabrizio Frati, Vı́t Jeĺınek, Jan
Kratochv́ıl, Maurizio Patrignani, and Ignaz Rutter. Testing planarity of
partially embedded graphs. In Proceedings of the Twenty-First Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA ’10, pages 202–
221. Society for Industrial and Applied Mathematics, 2010.

[ADF11] Patrizio Angelini, Giuseppe Di Battista, and Fabrizio Frati. Simultane-
ous embedding of embedded planar graphs. In Takao Asano, Shin-ichi
Nakano, Yoshio Okamoto, and Osamu Watanabe, editors, Algorithms and
Computation, volume 7074 of Lecture Notes in Computer Science, pages
271–280. Springer Berlin / Heidelberg, 2011.

[AGKN12] Patrizio Angelini, Markus Geyer, Michael Kaufmann, and Daniel
Neuwirth. On a tree and a path with no geometric simultaneous embed-
ding. Journal of Graph Algorithms and Applications, 16(1):37–83, 2012.

[AP13] D. Archambault and H. Purchase. Mental map preservation helps user
orientation in dynamic graphs. In Graph Drawing, Lecture Notes in Com-
puter Science. Springer Berlin / Heidelberg, 2013. To appear.

[ASS93] Boris Aronov, Raimund Seidel, and Diane Souvaine. On compatible tri-
angulations of simple polygons. Computational Geometry, 3(1):27—35,
1993.

[BCD+07] Peter Brass, Eowyn Cenek, Christian A. Duncan, Alon Efrat, Cesim
Erten, Dan Ismailescu, Stephen G. Kobourov, Anna Lubiw, and Joseph
S. B. Mitchell. On simultaneous planar graph embeddings. Computational
Geometry: Theory and Applications, 36(2):117–130, 2007.

[BEEB+11] Ulrik Brandes, Cesim Erten, Alejandro Estrella-Balderrama, J. Joseph
Fowler, Fabrizio Frati, Markus Geyer, Carsten Gutwenger, Seok-Hee
Hong, Michael Kaufmann, Stephen G. Kobourov, Giuseppe Liotta, Petra
Mutzel, and Antonios Symvonis. Colored simultaneous geometric embed-
dings and universal pointsets. Algorithmica, 60(3):569–592, 2011.

[BFG+97] Stina S. Bridgeman, Jody Fanto, Ashim Garg, Roberto Tamassia, and
Luca Vismara. Interactivegiotto: An algorithm for interactive orthogonal
graph drawing. In Giuseppe Di Battista, editor, Proceedings of the 5th

REFERENCES 375

International Symposium on Graph Drawing (GD’97), volume 1353 of
Lecture Notes in Computer Science, pages 303–308. Springer, 1997.

[BK79] Frank Bernhart and Paul C Kainen. The book thickness of a graph.
Journal of Combinatorial Theory, Series B, 27(3):320–331, 1979.

[BLS06] Therese Biedl, Anna Lubiw, and Michael Spriggs. Morphing planar graphs
while preserving edge directions. In Patrick Healy and Nikola Nikolov, ed-
itors, Graph Drawing, volume 3843 of Lecture Notes in Computer Science,
pages 13–24. Springer Berlin / Heidelberg, 2006.

[BR13a] Thomas Bläsius and Ignaz Rutter. Disconnectivity and relative positions
in simultaneous embeddings. In Graph Drawing, Lecture Notes in Com-
puter Science. Springer Berlin / Heidelberg, 2013. To appear.

[BR13b] Thomas Bläsius and Ignaz Rutter. Simultaneous PQ-ordering with appli-
cations to constrained embedding problems. In Proceedings of the Twenty-
Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
’13. ACM, 2013.

[BS93] Graham R. Brightwell and Edward R. Scheinerman. Representations of
planar graphs. SIAM Journal on Discrete Mathematics, 6(2):214–229,
1993.

[BT98] Stina Bridgeman and Roberto Tamassia. Difference metrics for interactive
orthogonal graph drawing algorithms. In Sue H. Whitesides, editor, Pro-
ceedings of the 6th International Symposium on Graph Drawing (GD’98),
volume 1547 of Lecture Notes in Computer Science, pages 51–71. Springer,
1998.

[BW97] Ulrik Brandes and Dorothea Wagner. A bayesian paradigm for dynamic
graph layout. In Giuseppe Di Battista, editor, Proceedings of the 5th
International Symposium on Graph Drawing (GD’97), volume 1353 of
Lecture Notes in Computer Science, pages 236–247. Springer, 1997.

[Cai44] S. S. Cairns. Deformations of plane rectilinear complexes. The American
Mathematical Monthly, 51(5):247–252, 1944.

[CEBFK09] Justin Cappos, Alejandro Estrella-Balderrama, J. Joseph Fowler, and
Stephen G. Kobourov. Simultaneous graph embedding with bends and cir-
cular arcs. Computational Geometry: Theory and Applications, 42(2):173–
182, 2009.

[Cho34] Chaim Chojnacki (Haim Hanani). Über wesentlich unplättbare kurven im
dreidimensionalen raume. Fundamenta Mathematicae, 23:135–142, 1934.

[CJS08] Markus Chimani, Michael Jünger, and Michael Schulz. Crossing minimiza-
tion meets simultaneous drawing. In IEEE Pacific Visualisation Sympo-
sium, pages 33–40, 2008.

[CKN+03] Christian Collberg, Stephen Kobourov, Jasvir Nagra, Jacob Pitts, and
Kevin Wampler. A system for graph-based visualizations of the evolution
of software. In Proccedings of the Symposium on Visualization, pages 77–
86, 212–213. ACM, 2003.

[CLR87] Fan R. K. Chung, Frank Thomson Leighton, and Arnold L. Rosenberg.
Embedding graphs in books: a layout problem with applications to VLSI
design. SIAM Journal on Algebraic and Discrete Methods, 8(1):33–58,
1987.

376 Simultaneous Embedding of Planar Graphs

[CN89] Norishige Chiba and Takao Nishizeki. The hamiltonian cycle problem is
linear-time solvable for 4-connected planar graphs. Journal of Algorithms,
10(2):187–211, 1989.

[CvKL+11] Sergio Cabello, Marc J. van Kreveld, Giuseppe Liotta, Henk Meijer, Bet-
tina Speckmann, and Kevin Verbeek. Geometric simultaneous embeddings
of a graph and a matching. Journal of Graph Algorithms and Applications,
15(1):79–96, 2011.

[DDLW06] Emilio Di Giacomo, Walter Didimo, Giuseppe Liotta, and Stephen K.
Wismath. Book embeddability of series-parallel digraphs. Algorithmica,
45(4):531–547, 2006.

[DDvK+09] Emilio Di Giacomo, Walter Didimo, Marc van Kreveld, Giuseppe Liotta,
and Bettina Speckmann. Matched drawings of planar graphs. Journal of
Graph Algorithms and Applications, 13(3):423–445, 2009.

[DEH00] M. B. Dillencourt, D. Eppstein, and D. S. Hirschberg. Geometric thickness
of complete graphs. Journal of Graph Algorithms and Applications, 4(3):5–
17, 2000.

[DEK04] Christian A. Duncan, David Eppstein, and Stephen G. Kobourov. The
geometric thickness of low degree graphs. In Proceedings of the 20th An-
nual Symposium on Computational Geometry, SCG ’04, pages 340–346.
ACM, 2004.

[DETT99] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing:
Algorithms for the Visualization of Graphs. Prentice Hall, 1999.

[dFPP90] H. de Fraysseix, J. Pach, and R. Pollack. How to draw a planar graph on
a grid. Combinatorica, 10(1):41–51, 1990.

[DG02] Stephan Diel and Carsten Görg. Graphs, they are changing – dynamic
graph drawing for a sequence of graphs. In Michael T. Goodrich and
Stephen G. Kobourov, editors, Proceedings of the 10th International Sym-
posium on Graph Drawing (GD’02), volume 2528 of Lecture Notes in Com-
puter Science, pages 23–31. Springer, 2002.

[DL05] Emilio Di Giacomo and Giuseppe Liotta. A note on simultaneous embed-
ding of planar graphs. In EuroCG, pages 207–210, 2005.

[DL07] Emilio Di Giacomo and Giuseppe Liotta. Simultaneous embedding of
outerplanar graphs, paths, and cycles. International Journal of Compu-
tational Geometry and Applications, 17(2):139–160, 2007.

[EBFK10] Alejandro Estrella-Balderrama, J. Joseph Fowler, and Stephen G.
Kobourov. GraphSET, a tool for simultaneous graph drawing. Software:
Practice and Experience, 40(10):849–863, 2010.

[EBGJ+08] Alejandro Estrella-Balderrama, Elisabeth Gassner, Michael Jünger, Meri-
jam Percan, Marcus Schaefer, and Michael Schulz. Simultaneous geomet-
ric graph embeddings. In Graph Drawing, volume 4875 of Lecture Notes
in Computer Science, pages 280–290. Springer Berlin / Heidelberg, 2008.

[EK05a] Cesim Erten and Stephen Kobourov. Simultaneous embedding of planar
graphs with few bends. In Jnos Pach, editor, Graph Drawing, volume 3383
of Lecture Notes in Computer Science, pages 195–205. Springer Berlin /
Heidelberg, 2005.

REFERENCES 377

[EK05b] Cesim Erten and Stephen G. Kobourov. Simultaneous embedding of a
planar graph and its dual on the grid. Theory of Computing Systems,
38(3):313–327, 2005.

[EKLN05] Cesim Erten, Stephen G. Kobourov, Vu Le, and Armand Navabi. Si-
multaneous graph drawing: Layout algorithms and visualization schemes.
Journal of Graph Algorithms and Applications, 9(1):165–182, 2005.

[EKP04a] C. Erten, S. G. Kobourov, and C. Pitta. Morphing planar graphs. In
Proceedings of the Twentieth Annual Symposium on Computational Ge-
ometry, SCG ’04, pages 451–452. ACM, 2004.

[EKP04b] Cesim Erten, Stephen Kobourov, and Chandan Pitta. Intersection-free
morphing of planar graphs. In Giuseppe Liotta, editor, Graph Draw-
ing, volume 2912 of Lecture Notes in Computer Science, pages 320–331.
Springer Berlin / Heidelberg, 2004.

[Fár48] I. Fáry. On straight lines representation of planar graphs. Acta Scien-
tiarum Mathematicarum, 11:229–233, 1948.

[FE02] Carsten Friedrich and Peter Eades. Graph drawing in motion. Journal of
Graph Algorithms and Applications, 6(3):353–370, 2002.

[FG99] Michael S. Floater and Craig Gotsman. How to morph tilings injec-
tively. Journal of Computational and Applied Mathematics, 101(12):117–
129, 1999.

[FGJ+09] J. Joseph Fowler, Carsten Gutwenger, Michael Jünger, Petra Mutzel, and
Michael Schulz. An SPQR-tree approach to decide special cases of si-
multaneous embedding with fixed edges. In Graph Drawing, volume 5417
of Lecture Notes in Computer Science, pages 157–168. Springer Berlin /
Heidelberg, 2009.

[FH02] Carsten Friedrich and Michael Houle. Graph drawing in motion ii. In
Petra Mutzel, Michael Jnger, and Sebastian Leipert, editors, Graph Draw-
ing, volume 2265 of Lecture Notes in Computer Science, pages 122–125.
Springer Berlin / Heidelberg, 2002.

[FJKS11] J. Joseph Fowler, Michael Jünger, Stephen G. Kobourov, and Michael
Schulz. Characterizations of restricted pairs of planar graphs allowing si-
multaneous embedding with fixed edges. Computational Geometry: The-
ory and Applications, 44(8):385–398, 2011.

[FK08] J. Fowler and Stephen Kobourov. Characterization of unlabeled level
planar graphs. In Seok-Hee Hong, Takao Nishizeki, and Wu Quan, editors,
Graph Drawing, volume 4875 of Lecture Notes in Computer Science, pages
37–49. Springer Berlin / Heidelberg, 2008.

[FKK09] Fabrizio Frati, Michael Kaufmann, and Stephen G. Kobourov. Con-
strained simultaneous and near-simultaneous embeddings. Journal of
Graph Algorithms and Applications, 13(3):447–465, 2009.

[Flo97] Michael S. Floater. Parametrization and smooth approximation of surface
triangulations. Computer Aided Geometric Design, 14:231–250, 1997.

[Fra07] Fabrizio Frati. Embedding graphs simultaneously with fixed edges. In
Graph Drawing, volume 4372 of Lecture Notes in Computer Science, pages
108–113. Springer Berlin / Heidelberg, 2007.

378 Simultaneous Embedding of Planar Graphs

[FT08] Yaniv Frishman and Ayellet Tal. Onlyne dynamic graph drawing. IEEE
Transactions on Visualizations and Computer Graphics, 14(4):727–740,
2008.

[Gav74] Fǎnicǎ Gavril. The intersection graphs of subtrees in trees are exactly the
chordal graphs. Journal of Combinatorial Theory, Series B, 16(1):47–56,
1974.

[GBPD04] Carsten Görg, Peter Birke, Mathias Pohl, and Stephan Diel. Dynamic
graph drawing of sequences of orthogonal and hierarchical graphs. In János
Pach, editor, Proceedings of the 12th International Symposium on Graph
Drawing (GD’04), volume 3383 of Lecture Notes in Computer Science,
pages 228–238. Springer, 2004.

[GHL+09] Luca Grilli, Seok-Hee Hong, Giuseppe Liotta, Henk Meijer, and Stephen
Wismath. Matched drawability of graph pairs and of graph triples. In
WALCOM: Algorithms and Computation, volume 5431 of Lecture Notes
in Computer Science, pages 322–333. Springer Berlin / Heidelberg, 2009.

[GJP+06] Elisabeth Gassner, Michael Jünger, Merijam Percan, Marcus Schaefer,
and Michael Schulz. Simultaneous graph embeddings with fixed edges. In
Fedor Fomin, editor, Graph-Theoretic Concepts in Computer Science, vol-
ume 4271 of Lecture Notes in Computer Science, pages 325–335. Springer
Berlin / Heidelberg, 2006.

[GKV09] Markus Geyer, Michael Kaufmann, and Imrich Vrto. Two trees which
are self-intersecting when drawn simultaneously. Discrete Mathematics,
309(7):1909–1916, 2009.

[GRU83] Martin Charles Golumbic, Doron Rotem, and Jorge Urrutia. Compara-
bility graphs and intersection graphs. Discrete Mathematics, 43(1):37–46,
1983.

[HJL10] Bernhard Haeupler, Krishnam Jampani, and Anna Lubiw. Testing si-
multaneous planarity when the common graph is 2-connected. In Otfried
Cheong, Kyung-Yong Chwa, and Kunsoo Park, editors, Algorithms and
Computation, volume 6507 of Lecture Notes in Computer Science, pages
410–421. Springer Berlin / Heidelberg, 2010.

[HN09] Seok-Hee Hong and Hiroshi Nagamochi. Two-page book embedding and
clustered graph planarity. Technical Report 2009-004, Department of Ap-
plied Mathematics & Physics, Kyoto University, 2009.

[HT74] J. Hopcroft and R. E. Tarjan. Efficient planarity testing. Journal of the
ACM, 21(4):549–568, 1974.

[HT08] Bernhard Haeupler and Robert E. Tarjan. Planarity algorithms via PQ-
trees (extended abstract). Electronic Notes in Discrete Mathematics,
31:143–149, 2008. The International Conference on Topological and Geo-
metric Graph Theory.

[JKR11] Vı́t Jeĺınek, Jan Kratochv́ıl, and Ignaz Rutter. A Kuratowski-type theo-
rem for planarity of partially embedded graphs. In Proceedings of the 27th
Annual ACM Symposium on Computational Geometry (SoCG’11), pages
107–116. ACM, 2011.

[JL09] Krishnam Jampani and Anna Lubiw. The simultaneous representation
problem for chordal, comparability and permutation graphs. In Frank
Dehne, Marina Gavrilova, Jrg-Rdiger Sack, and Csaba Tth, editors, Al-

REFERENCES 379

gorithms and Data Structures, volume 5664 of Lecture Notes in Computer
Science, pages 387–398. Springer Berlin / Heidelberg, 2009.

[JL10] Krishnam Jampani and Anna Lubiw. Simultaneous interval graphs. In Ot-
fried Cheong, Kyung-Yong Chwa, and Kunsoo Park, editors, Algorithms
and Computation, volume 6506 of Lecture Notes in Computer Science,
pages 206–217. Springer Berlin / Heidelberg, 2010.

[JS09] Michael Jünger and Michael Schulz. Intersection graphs in simultaneous
embedding with fixed edges. Journal of Graph Algorithms and Applica-
tions, 13(2):205–218, 2009.

[Kam06] Frank Kammer. Simultaneous embedding with two bends per edge in
polynomial area. In Lars Arge and Rusins Freivalds, editors, Algorithm
Theory SWAT 2006, volume 4059 of Lecture Notes in Computer Science,
pages 255–267. Springer Berlin / Heidelberg, 2006.

[KKV11] Pavel Klav́ık, Jan Kratochv́ıl, and Tomáš Vyskočil. Extending partial
representations of interval graphs. In Proceedings of the 8th Annual Con-
ference on Theory and Applications of Models of Computation, TAMC’11,
pages 276–285. Springer-Verlag, 2011.

[KP05] Stephen G. Kobourov and Chandan Pitta. An interactive multi-user sys-
tem for simultaneous graph drawing. In Graph Drawing, volume 3383
of Lecture Notes in Computer Science, pages 492–501. Springer Berlin /
Heidelberg, 2005.

[KW02] Michael Kaufmann and Roland Wiese. Embedding vertices at points:
Few bends suffice for planar graphs. Journal of Graph Algorithms and
Applications, 6(1):115–129, 2002.

[LP08] Anna Lubiw and Mark Petrick. Morphing planar graph drawings with
bent edges. Electronic Notes in Discrete Mathematics, 31(0):45–48, 2008.

[LPS06] Anna Lubiw, Mark Petrick, and Michael Spriggs. Morphing orthogo-
nal planar graph drawings. In Proceedings of the Seventeenth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA ’06, pages 222–
230. ACM, 2006.

[MELS95] Kazuo Misue, Peter Eades, Wei Lai, and Kozo Sugiyama. Layout adjust-
ment and the mental map. Journal of Visual Languages and Computing,
6:183–210, 1995.

[Moh97] Bojan Mohar. Circle packings of maps in polynomial time. European
Journal of Combinatorics, 18(7):785–805, 1997.

[MOS98] Petra Mutzel, Thomas Odenthal, and Mark Scharbrodt. The thickness of
graphs: A survey. Graphs and Combinatorics, 14:59–73, 1998.

[MR98] B. Mohar and P. Rosenstiehl. Tessellation and visibility representations
of maps on the torus. Discrete & Computational Geometry, 19:249–263,
1998.

[NW02] Stephen C. North and Gordon Woodhall. Online hierarchical graph
drawing. In Petra Mutzel, Michael Jünger, and Sebastian Leipert, edi-
tors, Proceedings of the 9th International Symposium on Graph Drawing
(GD’01), volume 2265 of Lecture Notes in Computer Science, pages 232–
246. Springer, 2002.

[PHG07] Helen C. Purchase, Eve Hoggan, and Carsten Görg. How important is the
“mental map”? – an empirical investigation of a dynamic graph layout

380 Simultaneous Embedding of Planar Graphs

algorithm. In Michael Kaufmann and Dorothea Wagner, editors, Proceed-
ings of the 14th International Symposium on Graph Drawing (GD’06), vol-
ume 4372 of Lecture Notes in Computer Science, pages 184–195. Springer,
2007.

[PS08] Helen C. Purchase and Amanjit Samra. Extremes are better: Investigating
mental map preservation in dynamic graphs. In G. Stapleton, J. Howse,
and J. Lee, editors, Proceeding of the 5th International Symposium on Di-
agrammatic Representation and Inference (DIAGRAMS’08), volume 5223
of Lecture Notes in Artificial Intelligence, pages 60–73. Springer, 2008.

[PW98] János Pach and Rephael Wenger. Embedding planar graphs at fixed ver-
tex locations. In Sue Whitesides, editor, Graph Drawing, volume 1547
of Lecture Notes in Computer Science, pages 263–274. Springer Berlin /
Heidelberg, 1998.

[Sch13] Marcus Schaefer. Toward a theory of planarity: Hanani-tutte and pla-
narity variants. In Graph Drawing, Lecture Notes in Computer Science.
Springer Berlin / Heidelberg, 2013. To appear.

[SG01] Vitaly Surazhsky and Craig Gotsman. Controllable morphing of compati-
ble planar triangulations. ACM Transactions on Graphics, 20(4):203–231,
2001.

[SG03] Vitaly Surazhsky and Craig Gotsman. Intrinsic morphing of compatible
triangulations. International Journal of Shape Modeling, 9(2):191–201,
2003.

[SMM13] A. Sallaberry, C. Muelder, and K.-L. Ma. Clustering, visualizing, and
navigating for large dynamic graphs. In Graph Drawing, Lecture Notes in
Computer Science. Springer Berlin / Heidelberg, 2013. To appear.

[Ste51] S. K. Stein. Convex maps. Proceedings of the American Mathematical
Society, 2(3):464–466, 1951.

[STT81] Kozo Sugiyama, Shojiro Tagawa, and Mitsuhiko Toda. Methods for visual
understanding of hierarchical system structures. IEEE Transactions on
Systems, Man and Cybernetics, 11(2):109–125, 1981.

[Tho83] Carsten Thomassen. Deformations of plane graphs. Journal of Combina-
torial Theory, Series B, 34(3):244–257, 1983.

[TT89] R. Tamassia and I. G. Tollis. Tessellation representations of planar graphs.
In Proceedings of the 27th Annual Allerton Conference on Communica-
tion, Control, and Computing, pages 48–57, 1989.

[Tut60] W. T. Tutte. Convex representations of graphs. Proceedings of the London
Mathematical Society, 10:304–320, 1960.

[Tut63] W. T. Tutte. How to draw a graph. Proceedings of the London Mathe-
matical Society, 13:743–768, 1963.

[Tut70] W. T. Tutte. Toward a theory of crossing numbers. Journal of Combina-
torial Theory, 8(1):45–53, 1970.

[Wag36] K. Wagner. Bemerkungen zum Vierfarbenproblem. Jahresbericht der
Deutschen Mathematiker-Vereinigung, 46:26–32, 1936.

[Yan89] Mihalis Yannakakis. Embedding planar graphs in four pages. Journal of
Computer and System Sciences, 38(1):36–67, 1989.

REFERENCES 381

[ZH06] Huaming Zhang and Xin He. On simultaneous straight-line grid em-
bedding of a planar graph and its dual. Information Processing Letters,
99(1):1–6, 2006.

12
Force-Directed Drawing Algorithms

Stephen G. Kobourov
University of Arizona

12.1 Introduction . 383
12.2 Spring Systems and Electrical Forces 385
12.3 The Barycentric Method . 386
12.4 Graph Theoretic Distances Approach 388
12.5 Further Spring Refinements. 389
12.6 Large Graphs . 391
12.7 Stress Majorization . 396
12.8 Non-Euclidean Approaches . 397
12.9 Lombardi Spring Embedders . 400
12.10 Dynamic Graph Drawing . 401
12.11 Conclusion . 403
References . 404

12.1 Introduction

Some of the most flexible algorithms for calculating layouts of simple undirected graphs
belong to a class known as force-directed algorithms. Also known as spring embedders,
such algorithms calculate the layout of a graph using only information contained within
the structure of the graph itself, rather than relying on domain-specific knowledge. Graphs
drawn with these algorithms tend to be aesthetically pleasing, exhibit symmetries, and tend
to produce crossing-free layouts for planar graphs. In this chapter we will assume that the
input graphs are simple, connected, undirected graphs and their layouts are straight-line
drawings. Excellent surveys of this topic can be found in Di Battista et al. [DETT99]
Chapter 10 and Brandes [Bra01].

Going back to 1963, the graph drawing algorithm of Tutte [Tut63] is one of the first force-
directed graph drawing methods based on barycentric representations . More traditionally,
the spring layout method of Eades [Ead84] and the algorithm of Fruchterman and Rein-
gold [FR91] both rely on spring forces, similar to those in Hooke’s law. In these methods,
there are repulsive forces between all nodes, but also attractive forces between nodes that
are adjacent.

Alternatively, forces between the nodes can be computed based on their graph theoretic
distances, determined by the lengths of shortest paths between them. The algorithm of
Kamada and Kawai [KK89] uses spring forces proportional to the graph theoretic distances.
In general, force-directed methods define an objective function which maps each graph
layout into a number in R+ representing the energy of the layout. This function is defined
in such a way that low energies correspond to layouts in which adjacent nodes are near some
pre-specified distance from each other, and in which non-adjacent nodes are well-spaced. A

383

384 CHAPTER 12. FORCE-DIRECTED DRAWING ALGORITHMS

Figure 12.1 Examples of drawings obtained with force-directed algorithms. First row:
small graphs: dodecahedron (20 vertices), C60 bucky ball (60 vertices), 3D cube mesh (216
vertices). Second row: Cubes in 4D, 5D and 6D [GK02].

layout for a graph is then calculated by finding a (often local) minimum of this objective
function; see Figure 12.1.

The utility of the basic force-directed approach is limited to small graphs and results are
poor for graphs with more than a few hundred vertices. There are multiple reasons why
traditional force-directed algorithms do not perform well for large graphs. One of the main
obstacles to the scalability of these approaches is the fact that the physical model typically
has many local minima. Even with the help of sophisticated mechanisms for avoiding local
minima the basic force-directed algorithms are not able to consistently produce good layouts
for large graphs. Barycentric methods also do not perform well for large graphs mainly due
to resolution problems: for large graphs the minimum vertex separation tends to be very
small, leading to unreadable drawings.

The late 1990s saw the emergence of several techniques extending the functionality of
force-directed methods to graphs with tens of thousands and even hundreds of thousands of
vertices. One common thread in these approaches is the multi-level layout technique, where
the graph is represented by a series of progressively simpler structures and laid out in reverse
order: from the simplest to the most complex. These structures can be coarser graphs (as in
the approach of Hadany and Harel [HH01], Harel and Koren [HK02], and Walshaw [Wal03],
or vertex filtrations as in the approach of Gajer, Goodrich, and Kobourov [GGK04].

The classical force-directed algorithms are restricted to calculating a graph layout in
Euclidean geometry, typically R2, R3, and, more recently, Rn for larger values of n. There
are, however, cases where Euclidean geometry may not be the best option: Certain graphs
may be known to have a structure which would be best realized in a different geometry,

12.2. SPRING SYSTEMS AND ELECTRICAL FORCES 385

such as on the surface of a sphere or on a torus. In particular, 3D mesh data can be
parameterized on the sphere for texture mapping or graphs of genus one can be embedded on
a torus without crossings. Furthermore, it has also been noted that certain non- Euclidean
geometries, specifically hyperbolic geometry, have properties that are particularly well suited
to the layout and visualization of large classes of graphs [LRP95, Mun97]. With this in mind,
Kobourov and Wampler describe extensions of the force-directed algorithms to Riemannian
spaces [KW05].

12.2 Spring Systems and Electrical Forces

The 1984 algorithm of Eades [Ead84] targets graphs with up to 30 vertices and uses a
mechanical model to produce “aesthetically pleasing” 2D layouts for plotters and CRT
screens. The algorithm is succinctly summarized as follows:

To embed a graph we replace the vertices by steel rings and replace each edge with
a spring to form a mechanical system. The vertices are placed in some initial
layout and let go so that the spring forces on the rings move the system to a
minimal energy state. Two practical adjustments are made to this idea: firstly,
logarithmic strength springs are used; that is, the force exerted by a spring is:

c1 ∗ log(d/c2),

where d is the length of the spring, and c1 and c2 are constants. Experience
shows that Hookes Law (linear) springs are too strong when the vertices are far
apart; the logarithmic force solves this problem. Note that the springs exert no
force when d = c2. Secondly, we make nonadjacent vertices repel each other. An
inverse square law force,

c3/d
2,

where c3 is constant and d is the distance between the vertices, is suitable. The
mechanical system is simulated by the following algorithm.

algorithm SPRING(G:graph);
place vertices of G in random locations;
repeat M times

calculate the force on each vertex;
move the vertex c4 ∗ (force on vertex)

draw graph on CRT or plotter.

The values c1 = 2, c2 = 1, c3 = 1, c4 = 0.1, are appropriate for most graphs.
Almost all graphs achieve a minimal energy state after the simulation step is
run 100 times, that is, M = 100.

This excellent description encapsulates the essence of spring algorithms and their natural
simplicity, elegance, and conceptual intuitiveness. The goals behind “aesthetically pleasing”
layouts were initially captured by the two criteria: “all the edge lengths ought to be the
same, and the layout should display as much symmetry as possible.”

The 1991 algorithm of Fruchterman and Reingold added “even vertex distribution” to the
earlier two criteria and treats vertices in the graph as “atomic particles or celestial bodies,

386 CHAPTER 12. FORCE-DIRECTED DRAWING ALGORITHMS

exerting attractive and repulsive forces from one another.” The attractive and repulsive
forces are redefined to

fa(d) = d2/k, fr(d) = −k
2/d,

in terms of the distance d between two vertices and the optimal distance between vertices
k defined as

k = C

√

area

number of vertices
.

This algorithm is similar to that of Eades in that both algorithms compute attractive
forces between adjacent vertices and repulsive forces between all pairs of vertices. The
algorithm of Fruchterman and Reingold adds the notion of “temperature” which could
be used as follows: “the temperature could start at an initial value (say one tenth the
width of the frame) and decay to 0 in an inverse linear fashion.” The temperature controls
the displacement of vertices so that as the layout becomes better, the adjustments become
smaller. The use of temperature here is a special case of a general technique called simulated
annealing , whose use in force-directed algorithms is discussed later in this chapter. The
pseudo-code for the algorithm by Fruchterman and Reingold, shown in Figure 12.2 provides
further insight into the workings of a spring-embedder.

Each iteration the basic algorithm computes O(|E|) attractive forces and O(|V |2) repul-
sive forces. To reduce the quadratic complexity of the repulsive forces, Fruchterman and
Reingold suggest using a grid variant of their basic algorithm, where the repulsive forces be-
tween distant vertices are ignored. For sparse graphs, and with uniform distribution of the
vertices, this method allows a O(|V |) time approximation to the repulsive forces calculation.
This approach can be thought of as a special case of the multi-pole technique introduced in
n-body simulations [Gre88] whose use in force-directed algorithms will be further discussed
later in this chapter.

As in the paper by Eades [Ead84] the graphs considered by Fruchterman and Reingold
are small graphs with less than 40 vertices. The number of iterations of the main loop is
also similar at 50.

12.3 The Barycentric Method

Historically, Tutte’s 1963 barycentric method [Tut63] is the first “force-directed” algorithm
for obtaining a straight-line, crossings free drawing for a given 3-connected planar graph.
Unlike almost all other force-directed methods, Tutte’s guarantees that the resulting draw-
ing is crossings-free; moreover, all faces of the drawing are convex.
The idea behind Tutte’s algorithm, shown in Figure 12.3, is that if a face of the planar

graph is fixed in the plane, then suitable positions for the remaining vertices can be found by
solving a system of linear equations, where each vertex position is represented as a convex
combination of the positions of its neighbors. This algorithm be considered a force-directed
method as summarized in Di Battista et al. [DETT99].
In this model the force due to an edge (u, v) is proportional to the distance between

vertices u and v and the springs have ideal length of zero; there are no explicit repulsive
forces. Thus the force at a vertex v is described by

F (v) =
∑

(u,v)∈E

(pu − pv),

where pu and pv are the positions of vertices u and v. As this function has a trivial minimum
with all vertices placed in the same location, the vertex set is partitioned into fixed and free

12.3. THE BARYCENTRIC METHOD 387

area:= W ∗ L; {W and L are the width and length of the frame}
G := (V,E); {the vertices are assigned random initial positions}
k :=

√

area/|V |;
function fa(x) := begin return x2/k end;
function fr(x) := begin return k2/x end;
for i := 1 to iterations do begin

{calculate repulsive forces}
for v in V do begin

{each vertex has two vectors: .pos and .disp
v.disp := 0;
for u in V do

if (u 6= v) then begin

{δ is the difference vector between the positions of the two vertices}
δ := v.pos− u.pos;
v.disp := v.disp+ (δ/|δ|) ∗ fr(|δ|)

end

end

{calculate attractive forces}
for e in E do begin

{each edges is an ordered pair of vertices .vand.u}
δ := e.v.pos− e.u.pos;
e.v.disp := e.v.disp− (δ/|δ|) ∗ fa(|δ|);
e.u.disp := e.u.disp+ (δ/|δ|) ∗ fa(|δ|)

end

{limit max displacement to temperature t and prevent from displacement
outside frame}

for v in V do begin

v.pos := v.pos+ (v.disp/|v.disp|) ∗min(v.disp, t);
v.pos.x := min(W/2,max(−W/2, v.pos.x));
v.pos.y := min(L/2,max(−L/2, v.pos.y))

end

{reduce the temperature as the layout approaches a better configuration}
t := cool(t)

end

Figure 12.2 Pseudo-code for the algorithm by Fruchterman and Reingold [FR91].

vertices. Setting the partial derivatives of the force function to zero results in independent
systems of linear equations for the x-coordinate and for the y-coordinate.

The equations in the for-loop are linear and the number of equations is equal to the
number of the unknowns, which in turn is equal to the number of free vertices. Solving these
equations results in placing each free vertex at the barycenter of its neighbors. The system
of equations can be solved using the Newton-Raphson method. Moreover, the resulting
solution is unique.

One significant drawback of this approach is the resulting drawing often has poor vertex
resolution. In fact, for every n > 1, there exists a graph, such that the barycenter method
computes a drawing with exponential area [EG95].

388 CHAPTER 12. FORCE-DIRECTED DRAWING ALGORITHMS

Barycenter-Draw

Input: G = (V,E); a partition V = V0 ∪ V1 of V into a set V0 of at least three
fixed vertices and a set V1 of free vertices; a strictly convex polygon P with |V0|
vertices
Output: a position pv for each vertex of V , such that the fixed vertices form a
convex polygon P .

1. Place each fixed vertex u ∈ V0 at a vertex of P , and each free vertex at the
origin.

2. repeat

foreach free vertex v ∈ V1 do

xv =
1

deg(v)

∑

(u,v)∈E

xu

yv =
1

deg(v)

∑

(u,v)∈E

yu

until xv and yv converge for all free vertices v.

Figure 12.3 Tutte’s barycentric method [Tut63]. Pseudo-code from [DETT99].

12.4 Graph Theoretic Distances Approach

The 1989 algorithm of Kamada and Kawai [KK89] introduced a different way of thinking
about “good” graph layouts. Whereas the algorithms of Eades and Fruchterman-Reingold
aim to keep adjacent vertices close to each other while ensuring that vertices are not too
close to each other, Kamada and Kawai take graph theoretic approach:

We regard the desirable geometric (Euclidean) distance between two vertices in
the drawing as the graph theoretic distance between them in the corresponding
graph.

In this model, the “perfect” drawing of a graph would be one in which the pair-wise geo-
metric distances between the drawn vertices match the graph theoretic pairwise distances,
as computed by an All-Pairs-Shortest-Path computation. As this goal cannot always be
achieved for arbitrary graphs in 2D or 3D Euclidean spaces, the approach relies on setting
up a spring system in such a way that minimizing the energy of the system corresponds to
minimizing the difference between the geometric and graph distances. In this model there
are no separate attractive and repulsive forces between pairs of vertices, but instead if a
pair of vertices is (geometrically) closer/farther than their corresponding graph distance the
vertices repel/attract each other. Let di,j denote the shortest path distance between vertex
i and vertex j in the graph. Then li,j = L × di,j is the ideal length of a spring between
vertices i and j, where L is the desirable length of a single edge in the display. Kamada

12.5. FURTHER SPRING REFINEMENTS 389

and Kawai suggest that L = L0/maxi<j di,j , where L0 is the length of a side of the display
area and maxi<j di,j is the diameter of the graph, i.e., the distance between the farthest
pair of vertices. The strength of the spring between vertices i and j is defined as

ki,j = K/d2i,j ,

where K is a constant. Treating the drawing problem as localizing |V | = n particles
p1, p2, . . . , pn in 2D Euclidean space, leads to the following overall energy function:

E =

n−1
∑

i=1

n
∑

j=i+1

1

2
ki,j(|pi − pj | − li,j)

2.

The coordinates of a particle pi in the 2D Euclidean plane are given by xi and yi which
allows us to rewrite the energy function as follows:

E =

n−1
∑

i=1

n
∑

j=i+1

1

2
ki,j

(

(xi − xj)
2 + (yi − yj)

2 + l2i,j − 2li,j

√

(xi − xj)2 + (yi − yj)2
)

.

The goal of the algorithm is to find values for the variables that minimize the energy
function E(x1, x2, . . . , xn, y1, y2, . . . , yn). In particular, at a local minimum all the partial
derivatives are equal to zero, and which corresponds to solving 2n simultaneous non-linear
equations. Therefore, Kamada and Kawai compute a stable position one particle pm at
a time. Viewing E as a function of only xm and ym a minimum of E can be computed
using the Newton-Raphson method. At each step of the algorithm the particle pm with the
largest value of ∆m is chosen, where

∆m =

√

(

∂E

∂xm

)2

+

(

∂E

∂ym

)2

.

Pseudo-code for the algorithm by Kamada and Kawai is shown in Figure 12.4.
The algorithm of Kamada and Kawai is computationally expensive, requiring an All-Pair-

Shortest-Path computation which can be done in O(|V |3)time using the Floyd-Warshall al-
gorithm or in O(|V |2 log |V |+ |E||V |) using Johnson’s algorithm; see the All-Pairs-Shortest-
Path chapter in an algorithms textbook such as [CLRS90]. Furthermore, the algorithm
requires O(|V |2) storage for the pairwise vertex distances. Despite the higher time and
space complexity, the algorithm contributes a simple and intuitive definition of a “good”
graph layout: A graph layout is good if the geometric distances between vertices closely
correspond to the underlying graph distances.

12.5 Further Spring Refinements

Even before the 1984 algorithm of Eades, force-directed techniques were used in the context
of VLSI layouts in the 1960s and 1970s [FCW67, QB79]. Yet, renewed interest in force-
directed graph layout algorithms brought forth many new ideas in the 1990s. Frick, Ludwig,
and Mehldau [FLM95] add new heuristics to the Fruchterman-Reingold approach. In par-
ticular, oscillation and rotations are detected and dealt with using local instead of global
temperature. The following year Bruß and Frick [BF96] extended the approach to layouts
directly in 3D Euclidean space. The algorithm of Cohen [Coh97] introduced the notion of
an incremental layout, a precursor of the multi-scale methods described in Section 12.6.

390 CHAPTER 12. FORCE-DIRECTED DRAWING ALGORITHMS

compute di,j for 1 ≤ i 6= j ≤ n;
compute li,j for 1 ≤ i 6= j ≤ n;
compute ki,j for 1 ≤ i 6= j ≤ n;
initialize p1, p2, . . . , pn;
while (maxi∆i > ǫ)

let pm be the particle satisfying ∆m = maxi∆i;
while (∆m > ǫ)

compute δx and δy by solving the following system of equations:

∂2E

∂x2
m

(x(t)
m , y(t)m)δx+

∂2E

∂xm∂ym
(x(t)

m , y(t)m)δy = −
∂E

∂xm

(x(t)
m , y(t)m);

∂2E

∂ym∂xm

(x(t)
m , y(t)m)δx+

∂2E

∂y2m
(x(t)

m , y(t)m)δy = −
∂E

∂ym
(x(t)

m , y(t)m)

xm := xm + δx;
ym := ym + δy;

Figure 12.4 Pseudo-code for the algorithm by Kamada and Kawai [KK89].

The 1997 algorithm of Davidson and Harel [DH96] adds additional constraints to the
traditional force-directed approach in explicitly aiming to minimize the number of edge-
crossings and keeping vertices from getting too close to non-adjacent edges. The algo-
rithm uses the simulated annealing technique developed for large combinatorial optimiza-
tion [KGV83]. Simulated annealing is motivated by the physical process of cooling molten
materials. When molten steel is cooled too quickly it cracks and forms bubbles making it
brittle. For better results, the steel must be cooled slowly and evenly and this process is
known as annealing in metallurgy. With regard to force-directed algorithms, this process is
simulated to find local minima of the energy function. Cruz and Twarog [CT96] extended
the method by Davidson and Harel to three-dimensional drawings.

Genetic algorithms for force-directed placement have also been considered. Genetic al-
gorithms are a commonly used search technique for finding approximate solutions to opti-
mization and search problems. The technique is inspired by evolutionary biology in general
and by inheritance, mutation, natural selection, and recombination (or crossover), in par-
ticular; see the survey by Vose [Vos99]. In the context of force-directed techniques for
graph drawing, the genetic algorithms approach was introduced in 1991 by Kosak, Marks
and Shieber [KMS91]. Other notable approaches in the direction include that of Branke,
Bucher, and Schmeck [BBS97].

In the context of graph clustering, the LinLog model introduces an alternative energy
model [Noa07]. Traditional energy models enforce small and uniform edge lengths, which
often prevent the separation of nodes in different clusters. As a side effect, they tend
to group nodes with large degree in the center of the layout, where their distance to the
remaining nodes is relatively small. The node-repulsion LinLog and edge- repulsion LinLog
models group nodes according to two well-known clustering criteria: the density of the
cut [LR88] and the normalized cut [SM00].

12.6. LARGE GRAPHS 391

12.6 Large Graphs

The first force-directed algorithms to produce good layouts for graphs with more than 1000
vertices is the 1999 algorithm of Hadany and Harel [HH01]. They introduced the multi-
scale technique as a way to deal with large graphs and in the following year four related
but independent force-directed algorithms for large graphs were presented at the Annual
Symposium on Graph Drawing. We begin with Hadany and Harel’s description on the
multi-scale method :

A natural strategy for drawing a graph nicely is to first consider an abstraction,
disregarding some of the graph’s fine details. This abstraction is then drawn,
yielding a “rough” layout in which only the general structure is revealed. Then
the details are added and the layout is corrected. To employ such a strategy
it is crucial that the abstraction retains essential features of the graph. Thus,
one has to define the notion of coarse-scale representations of a graph, in which
the combinatorial structure is significantly simplified but features important for
visualization are well preserved. The drawing process will then “travel” between
these representations, and introduce multi-scale corrections. Assuming we have
already defined the multiple levels of coarsening, the general structure of our
strategy is as follows:

1. Perform fine-scale relocations of vertices that yield a locally organized con-
figuration.

2. Perform coarse-scale relocations (through local relocations in the coarse rep-
resentations), correcting global disorders not found in stage 1.

3. Perform fine-scale relocations that correct local disorders introduced by stage 2.

Hadany and Harel suggest computing the sequence of graphs by using edge contractions
so as to preserve certain properties of the graph. In particular, the goal is to preserve three
topological properties: cluster size, vertex degrees, and homotopy. For the coarse-scale
relocations, the energy function for each graph in the sequence is that of Kamada and Kawai
(the pairwise graph distances are compared to the geometric distances in the current layout).
For the fine-scale relocations, the authors suggest using force-directed calculations as those
of Eades [Ead84], Fruchterman-Reingold [FR91], or Kamada-Kawai [KK89]. While the
asymptotic complexity of this algorithm is similar to that of the Kamada-Kawai algorithm,
the multi-scale approach leads to good layouts for much larger graphs in reasonable time.
The algorithm of Harel and Koren [HK02] took force-directed algorithms to graphs with

15,000 vertices. This algorithm is similar to the algorithm of Hadany and Harel, yet uses
a simpler coarsening process based on a k-centers approximation, and a faster fine-scale
beautification. Given a graph G = (V,E), the k-centers problem asks to find a subset of
the vertex set V ′ ⊆ V of size k, so as to minimize the maximum distance from a vertex to
V ′: minu ∈ V maxu∈V,v∈V ′ dist(u, v). While k-centers is an NP-hard problem, Harel and
Koren use a straightforward and efficient 2-approximation algorithm that relies on Breadth-
First Search [Hoc96]. The fine-scale vertex relocations are done using the Kamada-Kawai
approach. The Harel and Koren algorithm is summarized in Figure 12.5.

392 CHAPTER 12. FORCE-DIRECTED DRAWING ALGORITHMS

Layout(G(V,E))
% Goal: Find L, a nice layout of G
% Constants:
% Rad[= 7] – determines radius of local neighborhoods
% Iterations[= 4] – determines number of iterations in local beautification
% Ratio[= 3] – ratio between number of vertices in two consecutive levels
% MinSize[= 10] – size of the coarsest graph

Compute the all-pairs shortest path length: dV V

Set up a random layout L
k ←MinSize
while k ≤ |V | do

centers←K-Centers(G(V,E), k)
radius = maxv∈centers minu∈centers{dvu} ∗Rad
LocalLayout(dcenters×centers, L(centers), radius, Iterations)
for every v ∈ V do

L(v) ∈ L(center(v)) + rand
k ← kRatio

return L

K-Centers(G(V,E), k)
% Goal: Find a set S ⊆ V of size k, such that maxv∈V mins∈S{dsv} is
minimized.

S ← {v} for some arbitrary v ∈ V
for i = 2 to k do

1. Find the vertex u farthest away from S
(i.e., such that mins∈S{dus} ≥ mins∈S{dws}, ∀w ∈ V)

2. S ← S ∪ {u}
return S

LocalLayout(dV×V , L, k, Iterations)
% Goal: Find a locally nice layout L by beautifying k-neighborhoods
% dV×V : all-pairs shortest path length
% L: initialized layout
% k: radius of neighborhoods

for i = 1 to Iterations ∗ |V | do
1. Choose the vertex v with the maximal ∆k

v

2. Compute δkv as in Kamada-Kawai
3. L(v)← L(v) + (δkv (x), δ

k
v (y))

end

Figure 12.5 Pseudo-code for the algorithm by Harel and Koren [HK02].

12.6. LARGE GRAPHS 393

Main Algorithm

create a filtration V : V0 ⊃ V1 ⊃ . . . ⊃ Vk ⊃ ∅
for i = k to 0 do

for each v ∈ Vi − Vi+1 do

find vertex neighborhood Ni(v), Ni−1(v), . . . , N0(v)
find initial position pos[v] of v

repeat rounds times
for each v ∈ Vi do

compute local temperature heat[v]

disp[v]← heat[v] ·
−→
FNi

(v)
for each v ∈ Vi do

pos[v]← pos[v] + disp[v]
add all edges e ∈ E

Figure 12.6 Pseudo-code for the algorithm by Gajer et al. [GGK04].

The 2000 algorithm of Gajer et al. [GGK04], shown in Figure 12.6, is also a multi-
scale force-directed algorithm but introduces several ideas to the realm of multi-scale force-
directed algorithms for large graphs. Most importantly, this approach avoids the quadratic
space and time complexity of previous force-directed approaches with the help of a simpler
coarsening strategy. Instead of computing a series of coarser graphs from the given large
graph G = (V,E), Gajer et al. produce a vertex filtration V : V0 ⊃ V1 ⊃ . . . ⊃ Vk ⊃ ∅,
where V0 = V (G) is the original vertex set of the given graph G. By restricting the number
of vertices considered in relocating any particular vertex in the filtration and ensuring that
the filtration has O(log |V |) levels an overall running time of O(|V | log2 |V |) is achieved.
Filtrations based on graph centers (as in Harel and Koren [HK02]) and maximal independent
sets are considered. V = V0 ⊃ V1 ⊃ . . . ⊃ Vk ⊃ ∅, is a maximal independent set filtration
of G if Vi is a maximal subset of Vi−1 for which the graph distance between any pair of its
elements is greater than or equal to 2i.

In the GRIP system [GK02], Gajer et al. add to the filtration and neighborhood cal-
culations of [GGK04]: they introduce the idea of realizing the graph in high-dimensional
Euclidean space and obtaining 2D or 3D projections at the end. The algorithm also relies
on intelligent initial placement of vertices based on graph theoretic distances, rather than
on random initial placement. Finally, the notion of cooling is re-introduced in the context
of multi-scale force-directed algorithms. The GRIP system produces high-quality layouts, as
illustrated in Figure 12.7.

Another multilevel algorithm is that of Walshaw [Wal03]. Instead of relying on the
Kamada-Kawai type force interactions, this algorithm extends the grid variant of Fruchterman-
Reingold to a multilevel algorithm. The coarsening step is based on repeatedly collaps-
ing maximally independent sets of edges, and the fine-scale refinements are based on
Fruchterman-Reingold force calculations. This O(|V |2) algorithm is summarized in Fig-
ure 12.8.

394 CHAPTER 12. FORCE-DIRECTED DRAWING ALGORITHMS

The fourth 2000 multilevel force-directed algorithm is due to Quigley and Eades [QE00].
This algorithm relies on the Barnes-Hut n-body simulation method [BH86] and reduces
repulsive force calculations to O(|V | log |V |) time instead of the usual O(|V |2). Similarly,
the algorithm of Hu [Hu05] combines the multilevel approach with the n-bosy simulation
method, and is implemented in the sfdp drawing engine of GraphViz [EGK+01].
One possible drawback to this approach is that the running time depends on the distribu-

tion of the vertices. Hachul and Jünger [HJ04] address this problem in their 2004 multilevel
algorithm.

Figure 12.7 Drawings from GRIP. First row: knotted meshes of 1600, 2500, and 10000
vertices. Second row: Sierpinski graphs of order 7 (1,095 vertices), order 6 (2,050 vertices),
3D Sierpinski of order 7 (8,194 vertices) [GK02].

12.6. LARGE GRAPHS 395

function fg(x,w):=begin return −Cwk2/x end

function fl(x, d, w):=begin return {(x− k)/d} − fg(x,w) end
t := t0;
Posn := NewPosn;
while (converged 6= 1) begin

converged :=1;
for v ∈ V begin

OldPosn[v] = NewPosn[v]
end

for v ∈ V begin

{initialize D, the vector of displacements of v}
D := 0;
{calculate global (repulsive) forces}
for u ∈ V, u 6= v begin

∆ := Posn[u]− Posn[v];
D := D + (∆/|Delta|) ∗ fg(|∆|, |u|);

end

{calculate local (spring) forces }
for u ∈ Γ(v) begin

∆ := Posn[u]− Posn[v];
D := D + (∆/|Delta|) ∗ fl(|∆|, |Γ(v)|, |u|);

end

{reposition v}
NewPosn[v] = NewPosn[v] + (D/|D|) ∗min(t, |D|);
∆ := NewPosn[v]−OldPosn[v];
if (|∆| > k × tol)converged := 0;

end

{reduce the temperature to reduce the maximum movement}
t := cool(t);

end

Figure 12.8 Pseudo-code for the algorithm by Walshaw [Wal03].

396 CHAPTER 12. FORCE-DIRECTED DRAWING ALGORITHMS

12.7 Stress Majorization

Methods that exploit fast algebraic operations offer another practical way to deal with
large graphs. Stress minimization has been proposed and implemented in the more general
setting of multidimensional scaling (MDS) [Kru64]. The function describing the stress is
similar to the layout energy function of Kamada-Kawai from Section 12.4:

E =
n−1
∑

i=1

n
∑

j=i+1

1

2
ki,j(|pi − pj | − li,j)

2,

but here ki,j=1 and li,j = di,j is simply the graph theoretic distance. In their paper on
graph drawing by stress minimization Gansner et al. [GKN04] point out that this particular
formulation of the energy of the layout, or stress function has been already used to draw
graphs as early as in 1980 [KS80]. What makes this particular stress function relevant to
drawing large graphs is that it can be optimized better than with the local Newton-Raphson
method or with gradient descent. Specifically, this stress function can be globally minimized
via majorization. That is, unlike the energy function of Kamada-Kawai, the classical MDS
stress function can be optimized via majorization which is guaranteed to converge.

The strain model, or classical scaling, is related to the stress model. In this setting
a solution can be obtained via an eigen-decomposition of the adjacency matrix. Solving
the full stress or strain model still requires computing all pairs shortest paths. Significant
savings can be gained if we instead compute a good approximation. In PivotMDS Brandes
and Pich [BP06] show that replacing the all-pairs-shortest path computation with a distance
calculations from a few vertices in the graph is often sufficient, especially if combined with
a solution to a sparse stress model.

When not all nodes are free to move, constrained stress majorization can be used to
support additional constraints by, and treating the majorizing functions as a quadratic
program [DKM09]. Planar graphs are of particular interest in graph drawing, and often
force-directed graph drawing algorithms are used to draw them. While in theory any planar
graph has a straight-line crossings-free drawing in the plane, force-directed algorithms do
not guarantee such drawings.

Modifications to the basic force-directed functionality, with the aim of improving the lay-
out quality for planar graphs, have also been considered. Harel and Sardas [HS98] improve
an earlier simulated annealing drawing algorithm by Davidson and Harel [DH96]. The main
idea is to obtain an initial plane embedding and then apply simulated annealing while not
introducing any crossings. Overall their method significantly improved the aesthetic quality
of the initial planar layouts, but at the expense of a significant increase in running time of
O(n3), making it practical only for small graphs.

PrEd [Ber00] and ImPrEd [PSA11] are force-directed algorithms that improve already
created drawings of a graph. PrEd [Ber00] extends the method of Fruchterman and Rein-
gold [FR91] and can be used as a post-processing crossings-preserving optimization. In
particular, PrEd takes some straight-line drawing as input and guarantees that no new
edge crossings will be created (while preserving existing crossings, if any are present in the
input drawing). Then the algorithm can be used to optimize a planar layout, while preserv-
ing its planarity and its embedding, or to improve a graph that has a meaningful initial set
of edge crossings. To achieve this result, PrEd adds a phase where the maximal movement
of each node is computed, and adds a repulsive force between (node, edge) pairs. The main
aims of ImPrEd [PSA11] are to significantly reduce the running time of PrEd, achieve high
aesthetics even for large and sparse graphs, and make the algorithm more stable and reliable

12.8. NON-EUCLIDEAN APPROACHES 397

with respect to the input parameters. This is achieved via improved spacing of the graph
elements and an accelerated convergence of the drawing to its final configuration.

An alternative approach for modifying force-directed functionality is to use a prepro-
cessing step rather than a random layout to initialize the algorithm. Experimental results
indicate that combining a linear-time planar embedding step with a standard force-directed
algorithm such as a Fruchterman-Reingold can lead to improved qualitative and quantitative
results [FK12].

12.8 Non-Euclidean Approaches

Much of the work on non-Euclidean graph drawing has been done in hyperbolic space which
offers certain advantages over Euclidean space; see Munzner [Mun97, MB96]. For example,
in hyperbolic space it is possible to compute a layout for a complete tree with both uniform
edge lengths and uniform distribution of nodes. Furthermore, some of the embeddings of
hyperbolic space into Euclidean space naturally provide a fish-eye view of the space, which
is useful for “focus+context” visualization, as shown by Lamping et al. [LRP95]. From
a visualization point of view, spherical space offers a way to present a graph in a center-
free and periphery-free fashion. That is, in traditional drawings in R

2 there is an implicit
assumption that nodes in the center are important, while nodes on the periphery are less
important. This can be avoided in S

2 space, where any part of the graph can become
the center of the layout. The early approaches for calculating the layouts of graphs in
hyperbolic space, however, are either restricted by their nature to the layout of trees and
tree-like graphs, or to layouts on a lattice.

The hyperbolic tree layout algorithms function on the principle of hyperbolic sphere
packing, and operate by making each node of a tree, starting with the root, the center of a
sphere in hyperbolic space. The children of this node are then given positions on the surface
of this sphere and the process recurses on these children. By carefully computing the radii
of these spheres it is possible to create aesthetically pleasing layouts for the given tree.

Although some applications calculate the layout of a general graph using this method, the
layout is calculated using a spanning tree of the graph and the extra edges are then added
in without altering the layout [Mun98]. This method works well for tree-like and quasi-
hierarchical graphs, or for graphs where domain-specific knowledge provides a way to create
a meaningful spanning tree. However, for general graphs (e.g., bipartite or densely connected
graphs) and without relying on domain specific knowledge, the tree-based approach may
result in poor layouts.

Methods for generalizing Euclidean geometric algorithms to hyperbolic space, although
not directly related to graph drawing, have also been studied. Recently, van Wijk and
Nuij [vWN04] proposed a Poincaré’s half-plane projection to define a model for 2D viewing
and navigation. Eppstein [Epp03] shows that many algorithms that operate in Euclidean
space can be extended to hyperbolic space by exploiting the properties of a Euclidean model
of the space, such as the Beltrami-Klein or Poincaré.

Hyperbolic and spherical space have also been used to display self-organizing maps in
the context of data visualization. Ontrup and Ritter [OR01] and Ritter [Rit99] extend the
traditional use of a regular (Euclidean) grid, on which the self-organizing map is created,
with a tessellation in spherical or hyperbolic space. An iterative process is then used to
adjust which elements in the data-set are represented by the intersections. Although the
hyperbolic space method seems to be a promising way to display high-dimensional data-sets,
the restriction to a lattice is often undesirable for graph visualization.

398 CHAPTER 12. FORCE-DIRECTED DRAWING ALGORITHMS

Figure 12.9 Layouts of a graph obtained from research papers’ titles in hyperbolic space
H

2 and in spherical space S
2 [KW05].

Ostry [Ost96] considers constraining force-directed algorithms to the surface of three-
dimensional objects. This work is based on a differential equation formulation of the motion
of the nodes in the graph, and is flexible in that it allows a layout on almost any object,
even multiple objects. Since the force calculations are made in Euclidean space, however,
this method is inapplicable to certain geometries (e.g., hyperbolic geometry).

Another example of graph embedding within a non-Euclidean geometry is described in the
context of generating spherical parameterizations of 3D meshes. Gotsman et al. [GGS03]
describe a method for producing such an embedding using a generalization to spherical
space of planar methods for expressing convex combinations of points. The implementation
of the procedure is similar to the method described in this paper, but it may not lend itself
to geometries other than spherical.

Kobourov and Wampler [KW05] describe a conceptually simple approach to generalizing
force-directed methods for graph layout from Euclidean geometry to Riemannian geome-
tries. Unlike previous work on non-Euclidean force-directed methods, this approach is
not limited to special classes of graphs but can be applied to arbitrary graphs; see Fig-
ure 12.9. The method relies on extending the Euclidean notions of distance, angle, and
force-interactions to smooth non-Euclidean geometries via projections to and from appro-
priately chosen tangent spaces. Formal description of the calculations needed to extend
such algorithms to hyperbolic and spherical geometries are also detailed.

In 1894 Riemann described a generalization of the geometry of surfaces, which had been
studied earlier by Gauss, Bolyai, and Lobachevsky. Two well-known special cases of Rie-
mannian geometries are the two standard non-Euclidean types, spherical geometry and
hyperbolic geometry. This generalization led to the modern concept of a Riemannian man-
ifold. Riemannian geometries have less convenient structure than Euclidean geometry, but
they do retain many of the characteristics which are useful for force-directed graph layouts.
A Riemannian manifold M has the property that for every point x ∈M , the tangent space
TxM is an inner product space. This means that for every point on the manifold, it is
possible to define local notions of length and angle.

12.8. NON-EUCLIDEAN APPROACHES 399

Using the local notions of length we can define the length of a continuous curve γ : [a, b]→
M by

length(γ) =

∫ b

a

||γ′(t)||dt.

This leads to a natural generalization of the concept of a straight line to that of a geodesic,
where the geodesic between two points u, v ∈ M is defined as a continuously differentiable
curve of minimal length between them. These geodesics in Euclidean geometry are straight
lines, and in spherical geometry they are arcs of great circles.

We can similarly define the distance between two points, d(x, y) as the length of a geodesic
between them. In Euclidean space the relationship between a pair of nodes is defined along
lines: the distance between the two nodes is the length of the line segment between them
and forces between the two nodes act along the line through them. These notions of distance
and forces can be extended to a Riemannian geometry by having these same relationships
be defined in terms of the geodesics of the geometry, rather than in terms of Euclidean lines.

As Riemannian manifolds have a well-structured tangent space at every point, these tan-
gent spaces can be used to generalize spring embedders to arbitrary Riemannian geometries.
In particular, the tangent space is useful in dealing with the interaction between one point
and several other points in non-Euclidean geometries. Consider three points x, y, and z in
a Riemannian manifold M where there is an attractive force from x to y and z. As can
be easily seen in the Euclidean case (but also true in general) the net force on x is not
necessarily in the direction of y or z, and thus the natural motion of x is along neither the
geodesic toward y, nor that toward z. Determining the direction in which x should move
requires the notion of angle.

Since the tangent space at x, being an inner product space, has enough structure to define
lengths and angles, we do the computations for calculating the forces on x in TxM . In order
to do this, we define two functions for every point x ∈M as follows:

τx : M → TxM

τ−1
x : TxM →M

These two functions map points in M to and from the tangent space of M at x, respec-
tively. We require that τx and τ−1

x satisfy the following constraints:

1. τ−1
x (τx(y)) = y for all y ∈M

2. ||τx(y)|| = d(x, y)

3. τx preserves angles about the origin

Using these functions it is now easy to define the way in which the nodes of a given
graph G = (V,E) interact with each other through forces. In the general framework for this
algorithm each node is considered individually, and its new position is calculated based on
the relative locations of the other nodes in the graph (repulsive forces) and on its adjacent
edges (attractive forces). Then we obtain pseudo-code for a traditional Euclidean spring
embedder and its corresponding non-Euclidean counterpart, as shown in Figure 12.10.

400 CHAPTER 12. FORCE-DIRECTED DRAWING ALGORITHMS

generic algorithm(G)
while not done do

foreach n ∈ G do

position[n] := force directed placement(n, G)
end

non Euclidean algorithm(G)
while not done do

foreach n ∈ G do

x := position[n]
G′ := τx(G)
x′ := force directed placement(n, G′)
position[n] := τ−1

x (x′)
end

end

Figure 12.10 Pseudo-code for a traditional Euclidean spring embedder and its corre-
sponding non-Euclidean counterpart.

12.9 Lombardi Spring Embedders

Inspired by American graphic artist Mark Lombardi, Duncan et al. [DEG+10a, DEG+10b]
introduce the concept of a Lombardi drawing , which is a drawing that uses circular arcs
for edges and achieves the maximum (i.e., perfect) amount of angular resolution possible at
each vertex.

There are several force-directed graph drawing methods that use circular-arc edges or
curvilinear poly-edges. Brandes and Wagner [BW00] describe a force-directed method for
drawing train connections, where the vertex positions are fixed but transitive edges are
drawn as Bézier curves. Finkel and Tamassia [FT05], on the other hand, describe a force-
directed method for drawing graphs using curvilinear edges where vertex positions are free
to move. Their method is based on adding dummy vertices that serve as control points for
Bézier curve.

Chernobelskyi et al. [CCG+11] describe two force-directed algorithms for Lombardi-style
(or near-Lombardi) drawings of graphs, where edges are drawn using circular arcs with the
goal of maximizing the angular resolution at each vertex. The first approach calculates
lateral and rotational forces based on the two tangents defining a circular arc between two
vertices. In contrast, the second approach uses dummy vertices on each edge with repulsive
forces to “push out” the circular arcs representing edges, so as to provide an aesthetic
“balance”. Another distinction between the two approaches is that the first one lays out
the vertex positions along with the circular edges, while the second one works on graphs
that are already laid out, only modifying the edges. It can be argued that Lombardi or
near-Lombardi graph drawings have a certain aesthetic appeal as has been shown in recent
empirical experiments [PHNK12]; see Fig. 12.11. However, another recent experimental
paper on curve-based drawings [XRP+12] seems to suggest that straight-line drawings have
better readability.

12.10. DYNAMIC GRAPH DRAWING 401

Figure 12.11 Examples of force-directed Lombardi drawings: note that every edge is a
circular arc and every vertex has perfect angular resolution [CCG+11].

12.10 Dynamic Graph Drawing

While static graphs arise in many applications, dynamic processes give rise to graphs that
evolve through time. Such dynamic processes can be found in software engineering, telecom-
munications traffic, computational biology, and social networks, among others.

Thus, dynamic graph drawing deals with the problem of effectively presenting relation-
ships as they change over time. A related problem is that of visualizing multiple relationships
on the same dataset. Traditionally, dynamic relational data is visualized with the help of
graphs, in which vertices and edges fade in and out as needed, or as a time-series of graphs;
see Figure 12.12.

Figure 12.12 A dynamic graph can be interpreted as a larger graph made of connecting
graphs in adjacent timeslices [EHK+04].

402 CHAPTER 12. FORCE-DIRECTED DRAWING ALGORITHMS

The input to this problem is a series of graphs defined on the same underlying set
of vertices. As a consequence, nearly all existing approaches to visualization of evolv-
ing and dynamic graphs are based on the force-directed method. Early work can be
dated back to North’s DynaDAG [Nor96], where the graph is not given all at once, but
incrementally. Brandes and Wagner adapt the force-directed model to dynamic graphs
using a Bayesian framework [Brandes and Wagner 1998]. Diehl and Görg [DG02] con-
sider graphs in a sequence to create smoother transitions. Special classes of graphs such
as trees, series-parallel graphs and st-graphs have also been studied in dynamic mod-
els [CDTT95, CBT+92, Moe90]. Most of these early approaches, however, are limited
to special classes of graphs and usually do not scale to graphs over a few hundred vertices.

TGRIP was one of the first practical tools that could handle the larger graphs that appear
in the real-world. It was developed as part of a system that keeps track of the evolution of
software by extracting information about the program stored within a CVS version control
system [CKN+03]. Such tools allow programmers to understand the evolution of a legacy
program: Why is the program structured the way it is? Which programmers were responsi-
ble for which parts of the program during which time periods? Which parts of the program
appear unstable over long periods of time? TGRIP was used to visualize inheritance graphs,
program call-graphs, and control-flow graphs, as they evolve over time; see Fig. 12.13.

For layout of evolving and dynamic graphs, there are two important criteria to con-
sider:

1. readability of the individual layouts, which depends on aesthetic criteria such as
display of symmetries, uniform edge lengths, and minimal number of crossings;
and

2. mental map preservation in the series of layouts, which can be achieved by en-
suring that vertices and edges that appear in consecutive graphs in the series,
remain in the same location.

These two criteria are often contradictory. If we obtain individual layouts for each graph,
without regard to other graphs in the series, we may optimize readability at the expense of
mental map preservation. Conversely, if we fix the common vertices and edges in all graphs
once and for all, we are optimizing the mental map preservation yet the individual layouts
may be far from readable. Thus, we can measure the effectiveness of various approaches for
visualization of evolving and dynamic graphs by measuring the readability of the individual
layouts, and the overall mental map preservation.

Figure 12.13 Snapshots of the call-graph of a program as it evolves through time,
extracted from CVS logs. Vertices start out red. As time passes and a vertex does not
change it turns purple and finally blue. When another change is affected, the vertex again
becomes red. Note the number of changes between the two large clusters and the break in
the build on the last image [CKN+03].

12.11. CONCLUSION 403

Dynamic graphs can be visualized with aggregated views, where all the graphs are dis-
played at once, merged views, where all the graphs are stacked above each other, and with
animations, where only one graph is shown at a time, and morphing is used when chang-
ing between graphs (fading in/out vertices and edges that appear/disappear). When using
the animation/morphing approach, it is possible to change the balance between readabil-
ity of individual graphs and the overall mental map preservation, as in the system for
Graph Animations with Evolving Layouts, GraphAEL [EHK+03, FKN+04]. Applications
of this framework include visualizing software evolution [CKN+03], social networks analy-
sis [MB09], and the behavior of dynamically modifiable code [DID+05].

12.11 Conclusion

Force-directed algorithms for drawing graphs have a long history and new variants are still
introduced every year. Their intuitive simplicity appeals to researchers from many different
fields, and this accounts for dozens of available implementations. As new relational data
sets continue to be generated in many applications, force-directed algorithms will likely
continue to be the method of choice. The latest scalable algorithms and algorithms that
can handle large dynamic and streaming graphs are arguably of greatest utility today.

404 CHAPTER 12. FORCE-DIRECTED DRAWING ALGORITHMS

References

[BBS97] Jürgen Branke, Frank Bucher, and Hartmut Schmeck. A genetic algorithm
for drawing undirected graphs. In Proceedings of the 3rd Nordic Workshop
on Genetic Algorithms and Their Applications, pages 193–206, 1997.

[Ber00] Francois Bertault. A Force-Directed Algorithm that Preserves Edge Cross-
ing Properties. Information Processing Letters, 74(1-2):7–13, 2000.

[BF96] I. Bruß and A. Frick. Fast interactive 3-D graph visualization. In F. J.
Brandenburg, editor, Proceedings of the 3rd Symposium on Graph Drawing
(GD), volume 1027 of Lecture Notes Computer Science, pages 99–110.
Springer-Verlag, 1996.

[BH86] Josh Barnes and Piet Hut. A hierarchical O(N log N) force calculation
algorithm. Nature, 324:446–449, December 1986.

[BP06] U. Brandes and C. Pich. Eigensolver methods for progressive multidi-
mensional scaling of large data. In Proceedings 14th Symposium on Graph
Drawing (GD), pages 42–53, 2006.

[Bra01] Ulrik Brandes. Drawing on physical analogies. In Michael Kaufmann and
Dorothea Wagner, editors, Drawing Graphs, volume 2025 of Lecture Notes
in Computer Science, pages 71–86. Springer-Verlag, 2001.

[BW00] Ulrik Brandes and Dorothea Wagner. Using Graph Layout to Visualize
Train Interconnection Data. J. Graph Algorithms Appl., 4(3):135–155,
2000.

[CBT+92] R. F. Cohen, G. Di Battista, R. Tamassia, I. G. Tollis, and P. Bertolazzi.
A framework for dynamic graph drawing. In Proceedings of the 8th Annual
Symposium on Computational Geometry (SCG ’92), pages 261–270, 1992.

[CCG+11] R. Chernobelskiy, K. Cunningham, M. T. Goodrich, S. G. Kobourov, and
L. Trott. Force-directed lombardi-style graph drawing. In Proceedings
19th Symposium on Graph Drawing (GD), pages 78–90, 2011.

[CDTT95] R. F. Cohen, G. Di Battista, R. Tamassia, and I. G. Tollis. Dynamic
graph drawings: Trees, series-parallel digraphs, and planar ST -digraphs.
SIAM J. Comput., 24(5):970–1001, 1995.

[CKN+03] C. Collberg, S. G. Kobourov, J. Nagra, J. Pitts, and K. Wampler. A
system for graph-based visualization of the evolution of software. In ACM
Symposium on Software Visualization (SoftVis), pages 77–86, 2003.

[CLRS90] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
to Algorithms. MIT Press, Cambridge, MA, 1990.

[Coh97] Jonathan D. Cohen. Drawing graphs to convey proximity: An incremental
arrangement method. ACM Transactions on Computer-Human Interac-
tion, 4(3):197–229, September 1997.

[CT96] I. F. Cruz and J. P. Twarog. 3D graph drawing with simulated annealing.
In F. J. Brandenburg, editor, Proceedings of the 3rd Symposium on Graph
Drawing (GD), volume 1027 of Lecture Notes Computer Science, pages
162–165. Springer-Verlag, 1996.

[DEG+10a] Christian A. Duncan, David Eppstein, Michael T. Goodrich, Stephen G.
Kobourov, and Martin Nöllenburg. Drawing trees with perfect angular
resolution and polynomial area. In Graph Drawing, pages 183–194, 2010.

REFERENCES 405

[DEG+10b] Christian A. Duncan, David Eppstein, Michael T. Goodrich, Stephen G.
Kobourov, and Martin Nöllenburg. Lombardi drawings of graphs. In
Graph Drawing, pages 195–207, 2010.

[DETT99] Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G. Tol-
lis. Graph Drawing: Algorithms for the Visualization of Graphs. Prentice
Hall, Englewood Cliffs, NJ, 1999.

[DG02] Stephan Diehl and Carsten Görg. Graphs, they are changing. In Pro-
ceedings of the 10th Symposium on Graph Drawing (GD), pages 23–30,
2002.

[DH96] Ron Davidson and David Harel. Drawing graphs nicely using simulated
annealing. ACM Transactions on Graphics, 15(4):301–331, 1996.

[DID+05] Brad Dux, Anand Iyer, Saumya Debray, David Forrester, and Stephen G.
Kobourov. Visualizing the behaviour of dynamically modifiable code. In
13th IEEE Workshop on Porgram Comprehension, pages 337–340, 2005.

[DKM09] Tim Dwyer, Yehuda Koren, and Kim Marriott. Constrained graph layout
by stress majorization and gradient projection. Discrete Mathematics,
309(7):1895–1908, 2009.

[Ead84] Peter Eades. A heuristic for graph drawing. Congressus Numerantium,
42:149–160, 1984.

[EG95] Peter Eades and Patrick Garvan. Drawing stressed planar graphs in three
dimensions. In Proceedings of the 3rd Symposium on Graph Drawing,
pages 212–223, 1995.

[EGK+01] John Ellson, Emden R. Gansner, Eleftherios Koutsofios, Stephen C.
North, and Gordon Woodhull. Graphviz—open source graph drawing
tools. In Graph Drawing, pages 483–484, 2001.

[EHK+03] C. Erten, P. J. Harding, S. G. Kobourov, K. Wampler, and G. Yee.
GraphAEL: Graph animations with evolving layouts. In 11th Symposium
on Graph Drawing, pages 98–110, 2003.

[EHK+04] C. Erten, P. J. Harding, S. Kobourov, K. Wampler, and G. Yee. Ex-
ploring the computing literature using temporal graph visualization. In
Visualization and Data Analysis, pages 45–56, 2004.

[Epp03] D. Eppstein. Hyperbolic geometry, Möbius transformations, and geomet-
ric optimization. In MSRI Introductory Workshop on Discrete and Com-
putational Geometry, 2003.

[FCW67] C. Fisk, D. Caskey, and L. West. Accel: Automated circuit card etching
layout. Proceedings of the IEEE, 55(11):1971–1982, 1967.

[FK12] Joe Fowler and Stephen G. Kobourov. Planar preprocessing for spring
embedders. In Graph Drawing, 2012.

[FKN+04] D. Forrester, S. G. Kobourov, A. Navabi, K. Wampler, and G. Yee.
graphael: A system for generalized force-directed layouts. In 12th Sympo-
sium on Graph Drawing (GD), 2004.

[FLM95] A. Frick, A. Ludwig, and H. Mehldau. A fast adaptive layout algorithm for
undirected graphs. In R. Tamassia and I. G. Tollis, editors, Proceedings
of the 2nd Symposium on Graph Drawing (GD), volume 894 of Lecture
Notes in Computer Science, pages 388–403. Springer-Verlag, 1995.

[FR91] T. Fruchterman and E. Reingold. Graph drawing by force-directed place-
ment. Softw. – Pract. Exp., 21(11):1129–1164, 1991.

406 CHAPTER 12. FORCE-DIRECTED DRAWING ALGORITHMS

[FT05] Benjamin Finkel and Roberto Tamassia. Curvilinear Graph Drawing Us-
ing the Force-Directed Method. In Proc. 12th Int. Symp. on Graph Draw-
ing (GD 2004), pages 448–453, 2005.

[GGK04] P. Gajer, M. T. Goodrich, and S. G. Kobourov. A fast multi-dimensional
algorithm for drawing large graphs. Computational Geometry: Theory
and Applications, 29(1):3–18, 2004.

[GGS03] C. Gotsman, X. Gu, and A. Sheffer. Fundamentals of spherical parame-
terization for 3D meshes. In ACM Transactions on Graphics, 22, pages
358–363, 2003.

[GK02] Pawel Gajer and Stephen G. Kobourov. GRIP: Graph dRawing with
Intelligent Placement. Journal of Graph Algorithms and Applications,
6(3):203–224, 2002.

[GKN04] E. Gansner, Y. Koren, and S. North. Graph drawing by stress mini-
mization. In Proceedings 12th Symposium on Graph Drawing (GD), pages
239–250, 2004.

[Gre88] Leslie Greengard. The Rapid Evolution of Potential Fields in Particle
Systems. MIT. Press, Cambridge, MA, 1988.

[HH01] R. Hadany and D. Harel. A multi-scale algorithm for drawing graphs
nicely. Discrete Applied Mathematics, 113(1):3–21, 2001.

[HJ04] S. Hachul and M. Jünger. Drawing large graphs woth a potential-field-
based multilevel algorithm. In Proceedings of the 12th Symposium on
Graph Drawing (GD), volume 3383 of Lecture Notes in Computer Science,
pages 285–295. Springer-Verlag, 2004.

[HK02] David Harel and Yehuda Koren. A fast multi-scale method for drawing
large graphs. Journal of Graph Algorithms and Applications, 6(3):179–
2002, 2002.

[Hoc96] D. S. Hochbaum. Approximation Algorithms for NP-Hard Problems. PWS
Publishing, 1996.

[HS98] David Harel and Meir Sardas. An algorithm for straight-line drawing of
planar graphs. Algorithmica, 20(2):119–135, 1998.

[Hu05] Yifan Hu. Efficient and high quality force-directed graph drawing. The
Mathematica Journal, 10:37–71, 2005.

[KGV83] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated
annealing. Science, 220(4598):671–680, 1983.

[KK89] T. Kamada and S. Kawai. An algorithm for drawing general undirected
graphs. Inform. Process. Lett., 31:7–15, 1989.

[KMS91] Corey Kosak, Joe Marks, and Stuart Shieber. A parallel genetic algo-
rithm for network-diagram layout. In Proceedings of the 4th International
Conference on Genetic Algorithms, pages 458–465, 1991.

[Kru64] J. B. Kruskal. Multidimensional scaling by optimizing goodness of fit to
a nonmetric hypothesis. Psychometrika, 29:1–27, 1964.

[KS80] J. Kruskal and J. Seery. Designing network diagrams. In Proceedings 1st
General Conference on Social Graphics, pages 22–50, 1980.

[KW05] S. G. Kobourov and K. Wampler. Non-Euclidean spring embedders. IEEE
Transactions on Visualization and Computer Graphics, 11(6):757–767,
2005.

REFERENCES 407

[LR88] T. Leighton and S. Rao. An approximate max-flow min-cut theorem for
uniform multicommodity flow problems with applications to approxima-
tion algorithms. In Proceedings of the 29th Annual Symposium on Foun-
dations of Computer Science (FOCS), pages 422–431, 1988.

[LRP95] John Lamping, Ramana Rao, and Peter Pirolli. A focus+context tech-
nique based on hyperbolic geometry for visualizing large hierarchies. In
Proceedings of Computer Human Interaction, pages 401–408. ACM, 1995.

[MB96] T. Munzner and P. Burchard. Visualizing the structure of the World Wide
Web in 3D hyperbolic space. In David R. Nadeau and John L. More-
land, editors, 1995 Symposium on the Virtual Reality Modeling Language,
VRML ’95, pages 33–38, 1996.

[MB09] M. Jacomy M. Bastian, S. Heymann. Gephi: an open source software for
exploring and manipulating networks. International AAAI Conference on
Weblogs and Social Media, 2009.

[Moe90] Sven Moen. Drawing dynamic trees. IEEE Software, 7(4):21–28, July
1990.

[Mun97] Tamara Munzner. H3: Laying out large directed graphs in 3D hyper-
bolic space. In L. Lavagno and W. Reisig, editors, Proceedings of IEEE
Symposium on Information Visualization, pages 2–10, 1997.

[Mun98] T. Munzner. Drawing large graphs with H3Viewer and Site Manager.
In Proceedings of the 6th Symposium on Graph Drawing, pages 384–393,
1998.

[Noa07] Andreas Noack. Energy models for graph clustering. J. Graph Algorithms
Appl., 11(2):453–480, 2007.

[Nor96] S. C. North. Incremental layout in DynaDAG. In Proceedings of the 4th
Symposium on Graph Drawing (GD), pages 409–418, 1996.

[OR01] J. Ontrup and H. Ritter. Hyperbolic self-organizing maps for semantic
navigation. In Advances in Neural Information Processing Systems 14,
pages 1417–1424, 2001.

[Ost96] Diethelm Ironi Ostry. Some three-dimensional graph drawing algorithms.
Master’s thesis, University of Newcastle, Australia, 1996.

[PHNK12] Helen Purchase, John Hamer, Martin Nöllenburg, and Stephen G.
Kobourov. On the usability of Lombardi graph drawings. In Graph Draw-
ing, 2012.

[PSA11] Daniel Archambault Paolo Simonetto and David Auber. ImPrEd: An im-
proved force-directed algorithm that prevents nodes from crossing edges.
Computer Graphics Forum (EuroVis), 30(3):1071–1080, 2011.

[QB79] N. Quinn and M. Breur. A force directed component placement procedure
for printed circuit boards. IEEE Transactions on Circuits and Systems,
CAS-26(6):377–388, 1979.

[QE00] Aaron Quigley and Peter Eades. FADE: graph drawing, clustering, and
visual abstraction. In Proceedings of the 8th Symposium on Graph Drawing
(GD), volume 1984 of Lecture Notes in Computer Science, pages 197–210.
Springer-Verlag, 2000.

[Rit99] H. Ritter. Self-organizing maps on non-euclidean spaces. In Erkki Oja
and Samuel Kaski, editors, Kohonen Maps, pages 97–110. Elsevier, Ams-
terdam, 1999.

408 CHAPTER 12. FORCE-DIRECTED DRAWING ALGORITHMS

[SM00] J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE
Transaction on Pattern Analysis and Machine Intelligence, 22(8):888–905,
2000.

[Tut63] William T. Tutte. How to draw a graph. Proc. London Math. Society,
13(52):743–768, 1963.

[Vos99] Michael D. Vose. The Simple Genetic Algorithm: Foundations and Theory.
MIT Press, 1999.

[vWN04] J. J. van Wijk and W. A. A. Nuij. A model for smooth viewing and naviga-
tion of large 2D information spaces. IEEE Transactions on Visualization
and Computer Graphics, 10(4):447– 458, 2004.

[Wal03] C. Walshaw. A multilevel algorithm for force-directed graph drawing.
Journal of Graph Algorithms and Applications, 7(3):253–285, 2003.

[XRP+12] K. Xu, C. Rooney, P. Passmore, D. H. Ham, and P. Nguyen. A user study
on curved edges in graph visualization. In IEEE InfoVis, 2012.

13
Hierarchical Drawing Algorithms

Patrick Healy
University of Limerick

Nikola S. Nikolov
University of Limerick

13.1 Introduction . 409
Current Approaches and Their Limitations • Overview of
Sugiyama’s Framework

13.2 Cycle Removal . 413
Heuristics Based on Vertex Orderings • Berger-Shor
Algorithm • Greedy Cycle Removal • Heuristics Based on
Cycle Breaking • Minimum FAS in a Weighted Digraph •

Other Approaches

13.3 Layer Assignment . 417
Additional Criteria and Variations of the Problem •

Layer Assignment Algorithms • The Layering Algorithms
Compared • Layer-Assignment with Long Vertices

13.4 Edge Concentration . 430
Intersection Cover • Newbery’s Algorithm

13.5 Vertex Ordering . 432
One-Sided Crossing Minimization • Multi-Layer Crossing
Minimization • Planarization – An Alternative

13.6 x-Coordinate Assignment . 441
13.7 Extensions and Alternatives to Sugiyama’s Framework 443
References . 446

13.1 Introduction

In many cases a directed graph represents a hierarchy and we want to draw it in this way.
We will define a hierarchy later, but for now it is sufficient to think of a hierarchy as a cycle-
free digraph where it is useful for nodes of the graph to be stratified into discrete, parallel
layers. Examples of hierarchies or near-hierarchies are, among others, PERT charts for
project management, object-oriented class diagrams, and function call graphs from software
engineering. As usual, nodes represent entities and edges represent relationships between
the entities. Closely related to hierarchically layered drawings and discussed later are radial
drawings where nodes are placed on concentric circles [DDLM04, Bac07] and cyclic level
drawings, where nodes are placed on “spokes” emanating from a centre-point [BBBF12].

What is common to all of the examples described above is the need to represent all
the relationships graphically so that the positioning of nodes are as consistent with the
transitivity of the relationship as can be achieved. That is, the edges should “flow” in a
uniform direction. Whether this direction should be top-to-bottom, or left-to-right, depends
on the application domain, with different disciplines having different preferences.

Di Battista et al. [DGL+00] conduct an experimental study of directed graph drawing
algorithms. They look at two broad categories of algorithms, those that provide layered

409

410 CHAPTER 13. HIERARCHICAL DRAWING ALGORITHMS

drawings and those that are grid-based. From the point of view of edge crossings, an
important aspect in the readability of graph drawings [PCJ96], the hierarchical or layered
approach performs better, they conclude.

For digraphs that are almost a hierarchy it still can be possible to take advantage of
the methods we describe in this chapter. Since the methods work best for hierarchical
digraphs, however, one may find the results disappointing when applied to a digraph that
is fundamentally non-hierarchical. A method for computing the hierarchical index – that
is, the amount of hierarchy in a directed graph – has been proposed [CHK02].

In addition to the applications we mentioned earlier, it is common and appropriate to
represent computer file systems and social networks as a graph. Due to the possibility of
symbolic links a graph representation of a computer file system may have directed cycles, and
so may be more complicated than a tree. Likewise, a graph representation of relationships
among a social network graph may have cycles.

In the following sections we describe the current approaches to drawing directed graphs
hierarchically and consider in more depth the dominant player, the Sugiyama framework
for drawing digraphs. It is perhaps a measure of its effectiveness and its success that the
method has been used to draw undirected graphs, by imposing orientations on the edges.
However, as we have mentioned earlier, results may be disappointing if care is not taken in
how orientations of edges are fixed.

13.1.1 Current Approaches and Their Limitations

Force-directed methods, discussed elsewhere in this handbook, can be modified to take
account of edge directions, and thus can be used to draw digraphs. Sugiyama and
Misue [SM95b] propose modifications of Eades’ spring embedder model [Ead84] to take
account of the possible directedness of edges.

Far and away the most popular method of drawing directed graphs is the Sugiyama
method , or Sugiyama framework [STT81], which separates the nodes into layers. The
idea of layered drawings can be traced back earlier to work by Warfield [War77] and
Carpano [Car80]. Systems such as da Vinci [FW95], dot [GKN02] (part of the GraphViz

suite of tools [GN00]), GraphLet [Him00], the AGD graph drawing library [NPT90] and oth-
ers implement this framework for drawing directed graphs. In testament to its popularity
many modifications and enhancements have been proposed in the literature. However, the
framework has its limitations. Figure 13.1 shows two drawings of C4, firstly drawn using
force-directed methods and secondly drawn using the Sugiyama framework. In spite of the
directed edge entering node a, by imposing a leveling Figure 13.1b suggests that node d is
inferior to the others.

In the following section we describe the Sugiyama framework in general terms. In subse-
quent sections we consider the framework in more detail, elaborating on issues specific to
each step of the framework. It should be noted at the outset that this is only a framework
and for many steps of the process alternative algorithms exist, each with their own merits.
Equally important is the fact that the steps may interact with each other and a solution to
one step can have a bearing on later steps.

13.1.2 Overview of Sugiyama’s Framework

The Sugiyama framework is motivated by a number of aesthetically desirable properties
that make for a more readable graph. Indeed the steps of the Sugiyama framework can be
seen to address, in turn, each of the following aesthetics.

13.1. INTRODUCTION 411

a

b

c

d

(a)

a

b

c

d

(b)

Figure 13.1 Two alternative drawings of C4.

• Edges should point in a uniform direction

• Short edges are more readable

• Uniformly distributed nodes avoid clutter

• Edge crossings obstruct comprehension

• Straight edges are more readable

Figure 13.2 demonstrates how these aesthetics are achieved on a typical directed graph1

G. So that all edges are directed uniformly, any directed cycles are broken by reversing a
subset of edges (see Figure 13.2b). The resulting graph is then leveled (Figure 13.2c) where,
through the introduction of dummy vertices, “long” edges are replaced by a series of shorter
segments, after which vertices on each level are permuted in order to reduce edge crossings
(Figure 13.2d). Finally, edges spanning more than one level (long edges) are straightened
by adjusting the x-coordinates of their end vertices and by aligning the inserted dummy
nodes on long edges.

As we have remarked before the Sugiyama framework draws directed graphs as layers of
vertices. We have loosely described a hierarchy in terms of layers of nodes and this is part
of its formal definition, also. Definition 13.1 formalizes a level graph, and the definition of
a hierarchy follows from this.

DEFINITION 13.1 A level graph G = (V,E, λ) is a directed acyclic graph with a map-
ping λ : V → {1, 2, . . . , k}, k ≥ 1, that partitions the vertex set V as V = V1 ∪V2 ∪ · · · ∪Vk,
Vj = λ−1(j), Vi ∩ Vj = ∅ for i 6= j, such that λ(v) = λ(u) + 1 for each edge (u, v) ∈ E.

DEFINITION 13.2 A hierarchy is a level graph G(V,E, λ) where for every v ∈ Vj , j > 1,
there exists at least one edge (w, v) such that w ∈ Vj−1.

1The figure is due to Bachmaier et al. [BBBF12]; the authors’ permission to reproduce the figure is
gratefully acknowledged.

412 CHAPTER 13. HIERARCHICAL DRAWING ALGORITHMS

9

10

2

1

4
3

11

5

6

15

8

7
14

13

12

(a) Input digraph, G.

9

10

2

1

4
3

11

5

6

15

8

7
14

13

12

(b) Cycles removed.

9 10

21

4 3

11

5 6

15

8 7

141312

(c) After leveling.

9 10

21

43

11

5 6

15

87

141312

(d) Edge crossings minimized.

9 10

21

43

11

5 6

15

87

141312

(e) Edges straightened.

Figure 13.2 A digraph drawn according to the Sugiyama framework.

13.2. CYCLE REMOVAL 413

Note that Definition 13.2 restricts all sources of the graph to appear on the first level
but this may be relaxed if desired. Further, the definition implies that all edges are of unit
length, a property that is necessary for the crossing minimization step. While an input
digraph may not be a hierarchy initially, the steps described in the following subsections
will transform it into an equivalent hierarchy.

13.2 Cycle Removal

The first step of the Sugiyama method is a preprocessing step that aims the reversal of the
direction of some edges in order to make the input digraph acyclic. A digraph is acyclic if
it does not contain any directed cycles. Note that the digraph may have undirected cycles
and be acyclic. It is usually assumed that the input digraph has no two-cycles. A two-cycle
is a cycle consisting of a pair of edges (u, v) and (v, u). If any are present then one edge
of each pair can be removed before applying the Sugiyama method and reintroduced back
into the final drawing.

The cycle-removal preprocessing step is necessary because the input to the the layer-
assignment step must be an acyclic digraph, also called a DAG (directed acyclic graph).
Once vertices are assigned to layers, the original direction of the reversed edges can be
restored. These are edges which point against the flow in the final drawing. It is also
possible to remove edges instead of reversing them, and introduce them back after the
layer-assignment step. However, if edges are removed then the layer-assignment step will
work with a subgraph of the input digraph and may have undesirable results.

A set of edges whose removal makes the digraph acyclic is commonly known as a feedback
arc set (FAS). Following the terminology used by Di Battista et al. [DETT99] we call a set
of edges whose reversal makes the digraph acyclic a feedback set (FS). Each FS is also a
FAS. However, not each FAS is a FS. For example, if a digraph has only one cycle, then the
set of all edges in the cycle is a FAS but not a FS.

It is always possible and easy to find a FS for a digraph. Any linear ordering of the
vertices partitions the edge set into two subsets, a subset of edges whose source is before
their target in the ordering, and a subset of edges edges whose source is after their target
in the ordering. Each of the two subsets is a FS. However, it might be much harder to find
a FS with some specific properties.

A typical requirement for a FS is to contain as few edges as possible because they are the
edges against the flow in the final drawing. The problem of finding a minimum-cardinality
FS is known as the minimum FS problem. As we mentioned above not every FAS is a
FS. However, it is easy to see that every minimal cardinality FAS is also a FS. Thus, the
minimum FS problem is as hard as the widely studied minimum FAS problem which is
known to be NP-hard [Kar72, GJ79].

Any heuristic for solving the minimum FAS problem can be applied for solving the min-
imum FS problem as well. Consider a digraph G = (V,E) and let F ⊆ E be a FAS. F is a
minimal FAS if for each e ∈ F there is a cycle in (E \F)∪{e}. If F is not minimal then one
by one we can remove edges from it until it becomes minimal. However, such a procedure
will add additional running time.

The remainder of this section summarizes the known heuristics for solving either the
minimum FS problem or the minimum FAS problem. Some of the FAS heuristics have been
originally proposed as heuristic for solving its complimentary problem, i.e., the maximum
acyclic subgraph problem.

414 CHAPTER 13. HIERARCHICAL DRAWING ALGORITHMS

13.2.1 Heuristics Based on Vertex Orderings

As we mentioned above any linear ordering of the vertices provides two FSs. Imagine the
vertices placed on a horizontal line in accordance with the provided linear ordering. The
first FS consists of the edges with direction from left to right, and the second FS consists
of the edges with direction from right to left. It can be shown that there are digraphs and
linear orderings of the vertices for which both FSs have the same size [BS90]. Thus, the
simple approach is a 2-approximation heuristic for solving both the minimum FS and FAS
problems.

It is clear that the outcome of this simple approach depends on the linear ordering of the
vertices. Some researchers have suggested to use a linear ordering provided by a depth-first
traversal [RDM+87, GKNV93]. This is based on the intuition that such an ordering may
be “natural” for the digraph i.e., it may look “natural” to the viewer that the edges against
the flow are drawn this way. A depth-first-traversal ordering can be computed in linear
time. Here it is assumed that always the set of edges with direction to the left, i.e., against
the ordering, are chosen as FSs. These are the back edges in the depth-first-traversal tree.
Their number can be at most |E| − |V | − 1 which could be high for dense digraphs.

Eades et al. proposed two alternative linear orderings [ELS89]. The first one is based
on the intuition that vertices with large outdegree should appear at the top of the final
drawing. First in the ordering comes vertex v with the maximum d+

G(v), next comes vertex
v′ with the maximum d+

G−v(v
′), etc. This linear ordering can be computed in linear time

and reportedly gives smaller FSs than the ordering provided by the depth-first search.

The second linear ordering proposed by Eades at al. is the result of a divide-and-conquer
approach. Assuming an input digraph G = (V,E) the vertices of which have to be assigned
the labels i, i+ 1, . . . , i+ |V |− 1, the recursive procedure for assigning these labels works as
follows. If |V | = 1 then the single vertex gets the label i. Otherwise V is partitioned into
two subsets V1 and V2 and the procedure is applied recursively to G[V1] and G[V2] with sets
of labels i, i+ 1, . . . , i+ |V1|− 1 and i+ |V1|, i+ |V1|+ 1, . . . , i+ |V |− 1, respectively. V1 and
V2 are such that for each pair of vertices (v1, v2) ∈ V1 × V2 d

+
G(v1) ≥ d+

G(v2). If |V | is even
then V1 and V2 have the same cardinality. Otherwise, V1 contains a singe vertex, and V2

contains the rest of the vertices. It takes O(min((|V |+ |A|)log|V |, |V |2)) time to compute
this linear ordering. However, the the authors have observed that it regularly obtains results
20% better than the results obtained by their other ordering. They also prove performance
guarantees for dense digraphs.

13.2.2 Berger-Shor Algorithm

The first polynomial-time algorithm for solving the minimum FAS problem with an approx-
imation ratio less than 2 in the worst case is the algorithm proposed by Berger and Shor in
1990 [BS90].

Consider a digraph G = (V,E) and let Ea ⊂ E denote a set of edges such that G[Ea] is
acyclic. Let also δ(v) denote all edges adjacent to vertex v, and δ−(v) and δ+(v) denote the
sets of incoming and outgoing edges of v, respectively. The algorithm starts with an empty
set Ea and one by one scans all vertices of G, in an arbitrary order. For each vertex v ∈ V
if d+(v) ≥ d−(v) then Ea ← Ea ∪ δ+(v). Otherwise, Ea ← Ea ∪ δ−(v). After processing
vertex v it is deleted from G (together with its adjacent edges).

The time complexity of this algorithm is O(|V | + |E|). Berger and Shor prove that
G′ = (V,Ea) is a DAG and thus F = E\Ea is a FAS. They also propose a modification to the
algorithm for making sure the FAS is minimal. It consists of running a strongly connected
components algorithm before processing each vertex, adding the edges between strongly

13.2. CYCLE REMOVAL 415

Figure 13.3 Greedy Cycle Removal

Require: digraph G = (V,E)

Sl ← φ
Sr ← φ
while G is not empty do

while G contains a sink do
Choose a sink v
Remove v from G
Prepend v to Sr

end while
while G contains a source do

Choose a source u
Remove u from G
Append u to Sl

end while
if G is not empty then

Choose a vertex w such that d+(w)− d−(w) is maximum
Remove w from G
Append w it to Sl

end if
end while

connected components to Ea, and removing them from E. However, this modification adds
O(|V ||E|) to the running time.

It is easy to see that at the end F will contain at most a half of all the edges, i.e., |F | ≤ |E|2 .
Better approximation ratio can be achieved by processing the vertices in a special order.
Berger and Shor show that if at each step the vertex to be processed is the vertex that
minimizes the number of edges in the FAS over all possible orderings of the unprocessed yet
vertices then at the end |F | ≤ |E|(1

2 −Ω(1√
∆(G)

)) where ∆(G) is the maximum degree of a

vertex in G. It is possible to process the vertices in such an order efficiently by increasing
the running time to O(|V ||E|) [BS90].

13.2.3 Greedy Cycle Removal

It can be observed that edges incident to either a sink or a source of the digraph cannot be
a part of a cycle. By making this observation Eades et al. were able to improve the result
of Berger and Shor [ELS93]. They proposed a linear-time algorithm with a performance
guarantee at least as good as the performance guarantee of the Berger-Shor algorithm for
|E| ∈ O(|V |) and even better if ∆(G) /∈ O(1) [ELS93]. The algorithm of Eades et al., known
as Greedy Cycle Removal, always finds a FS for the input digraph.

Similar to the approach of Berger and Shor, Algorithm 13.3 processes the vertices one
by one and removes the processed vertices from the digraph. However, it builds the FAS
in a different way. It computes a linear ordering of the vertices and takes the edges with
direction against the ordering as an FS. Eades et al. show that the cardinality of the FS

found by Algorithm 13.3 is at most |E|2 −
|V |
6 . For digraphs with ∆(G) ≤ 3 the cardinality

is at most 2
3 |E|.

416 CHAPTER 13. HIERARCHICAL DRAWING ALGORITHMS

Sander has proposed a modification to Algorithm 13.3 similar to the modification which
involves the computation of strongly connected components in the Berger-Shor algo-
rithm [San96b]. It decreases the running time to O(|V ||E|) but reportedly leads to better
results in practice. Generalizing the ideas of Sander, Eades and Lin showed how Algo-
rithm 13.3 can be modified to guarantee that no more that one quarter of the edges will be
reversed for cubic digraphs [EL95].

13.2.4 Heuristics Based on Cycle Breaking

Most of the heuristics discussed above focus on computing linear orderings of the vertices
which provide FSs. Alternative point of view the minimum FAS problem (and also the
minimum FS problem) is to build the FAS edge by edge choosing edges which belong to
cycles.

A very simple algorithm based on this approach is the following one. Start with two
empty sets S and T and scan all edges one by one. For each edge e, if S ∪ {e} is acyclic
then add e to S. Otherwise add e to T . It is easy to show that at the end of this process
both S and T are acyclic and the smaller of the two sets provides a FAS with at most a
half of all the edges. Note that T is a minimal FAS, while S might not be.

Related to this approach is the heuristic implemented by Gansner et al. in their system
dot [GKNV93]. It takes one non-trivial strongly connected component of the digraph at
a time, in an arbitrary order. Within each component it performs a depth-first traversal
and adds to the FS an edge which participates in a maximum number of cycles. This is
repeated until there are no more non-trivial strongly connected components. Gansner et
al. report that this heuristic performs well in practice. They also observed that it reverses
edges whose direction against the flow is “natural” for the input digraph [GKNV93].

13.2.5 Minimum FAS in a Weighted Digraph

In some applications edges are assigned nonnegative weight. Then it might be required
to reverse not the minimum number of edges but a set of edges with the minimum total
weight. Demetrescu and Finocchi proposed an algorithm for the weighted minimum FAS
problem that runs in O(|V ||E|) time. Their approach compromises between two possible
approaches, i.e., greedily adding light edges to the FAS, and adding edges that belong to a
large number of cycles. The latter is the approach of Gansner et al., which we discussed in
Section 13.2.4.

The algorithm of Demetrescu and Finocchi is presented as Algorithm 13.4. Within the
while-loop heavy edges which belong to a large number of cycles become progressively more
likely to be added to the FAS F . Note also that at the end edges which do not form a cycle
with E \F are excluded from F , thus making sure F is minimal. Demetrescu and Finocchi
also prove that their algorithm approximates a minimum FAS of the input digraph G within
a ratio bounded by the length of a longest simple cycle of G [DF03].

13.2.6 Other Approaches

There are other approaches to the minimum FAS problem which we would like to refer the
reader to. These include the heuristic of Flood [Flo90], and the best-known approximation
algorithm which achieves a performance ratio O(log |V | log log |V |), and requires to solve a
linear program [ENRS95, Sey95]. An interesting result is that all minimal solutions can be
enumerated with polynomial delay [SS97].

13.3. LAYER ASSIGNMENT 417

Figure 13.4 Algorithm of Demetrescu and Finocchi

Require: digraph G = (V,E), w : E → R

F ← φ
while V,E \ F) is not acyclic do

Let C be a simple cycle in (V,E \ F)
Let (x, y) be a minimum weight edge in C
Let ε = w(x, y)
for all (u, v) ∈ C do
w(u, v)← w(u, v)− ε
if w(u, v) = 0 then
F ← F ∪ {(u, v)}

end if
end for

end while
for all (u, v) ∈ F do

if (V,E \ F ∪ {(u, v)}) is acyclic then
F ← F \ {(u, v)}

end if
end for

For an exact ILP approach to the minimum FAS problem we refer the reader to the work
of Grötschel et al. and Rienelt et al. [GJR85, Rei85]. Their study of the facial structure of
the acyclic subgraph polytope can be used for finding the minimum FS by a branch-and-cut
algorithm.

13.3 Layer Assignment

Consider a DAG G = (V,E) with a set of vertices V and a set of edges E. Let L =
{L0, L1, . . . , Lh} be a partition of the vertex set of G into h ≥ 1 subsets such that if
(u, v) ∈ E with u ∈ Lj and v ∈ Li then i < j. L is called a layering of G and the sets L0,
L1, . . ., Lh are called layers. A DAG with a layering is called a layered DAG. The problem
of partitioning the vertex set of a graph into layers is known as the layering problem or the
layer assignment problem.

Sometimes the term levels is used instead of layers. It emphasizes the usual visual rep-
resentation of layers as mapped to either parallel horizontal lines or concentric circles. In
this section we consider the layer assignment problem without relating it to a specific vi-
sual representation. The example drawings we give have only illustrative character. They
employ the parallel horizontal levels convention, i.e., all vertices in layer Li are placed on
the horizontal level with an y-coordinate equal to i.

Let l(u,L) be the number of the layer that contains vertex u ∈ V , i.e., l(u,L) = i if and
only if u ∈ Li. Sometimes l(u,L) is called rank of vertex u. The span of edge e = (u, v) in
layering L is defined as s(e,L) = l(u,L)− l(v,L). Clearly, s(e,L) ≥ 1 for each e ∈ E; edges
with a span 1 are tight edges; edges with a span greater than 1 are long edges. A layering
of G is proper if all edges are tight. The layering found by a layering algorithm might not
be proper because only a small fraction of DAGs can be layered properly and also because
a proper layering may not satisfy other layering requirements.

418 CHAPTER 13. HIERARCHICAL DRAWING ALGORITHMS

L
1

L
3

L
2

L
0

(a) A layered DAG with 4 layers and 5
dummy vertices.

L
0

L
1

L
2

L
3

L
4

(b) A layered DAG with 5 layers and 4
dummy vertices.

Figure 13.5 Two alternative layered drawings of the same DAG with introduced dummy
vertices which subdivide long edges. Dummy vertices are represented by transparent
squares.

Within the Sugiyama method the vertex ordering algorithms applied after the layer as-
signment phase assume that their input is a DAG with a proper layering. Thus, if the
layering found at the layering phase is not proper then it must be transformed into a
proper one. Normally, this is done by introducing so-called dummy vertices which subdi-
vide long edges (see the illustration in Figure 13.5). Formally, let e = (u, v) be an edge with
l(u,L) = j and l(v,L) = i and s(e,L) = j− i > 1. Then we add dummy vertices di+1

e , di+2
e ,

. . . , dj−1
e to layers Li+1, Li+2, . . . , Lj−1 respectively and we replace edge e by the path

(u, dj−1
e , . . . , di+1

e , v). We refer to vertices which are not dummy as original vertices. We
also denote the set of all dummy vertices introduced to a layered DAG G with a layering L
by D(G,L). Clearly,

|D(G,L)| =
∑
e∈E

s(e,L)− |E|.

13.3.1 Additional Criteria and Variations of the Problem

If there are no additional requirements it is not hard to find a layering of a DAG. Classical
graph algorithms such as breadth-first search, depth-first search and algorithms for finding
a minimum spanning tree can be easily modified to partition the vertex set of a DAG into
layers. However, normally it is desirable to take into account a number of additional criteria
when computing a layering [ES90].

It is desirable that |D(G,L)| is as small as possible because a large number of dummy
vertices significantly slows down the vertex ordering phase of the Sugiyama method. Thus,
one of the goals of a layering assignment algorithm should be to find a layering with as
few as possible dummy vertices. There are also aesthetic reasons for keeping the num-
ber of dummy vertices small. A layered DAG with a small number of dummy vertices
would also have a small number of undesirable long edges and edge bends. The problem
of finding a layering with the minimum number of dummy vertices is in P. It can be mod-
eled as an integer linear programming problem and safely relaxed to a linear programming
problem for which there are available polynomial-time algorithms. Alternatively, it can be
converted to a min-cost flow or circulation problem, for which there are polynomial-time
algorithms [GKNV93]. Gansner et al. have introduced an integer linear programming (ILP)

13.3. LAYER ASSIGNMENT 419

model of the problem and a specific network simplex algorithm for solving it which although
not proven polynomial-time finds a layering with the minimum number of dummy vertices
reportedly fast [GKNV93].

Other parameters of a layering that reflect on the quality of the drawing are the width
and the height of a layering and the edge density between adjacent layers. The height of a
layering is the number of layers, and the width is the maximum number of vertices in a layer.
Usually these two parameters are used to approximate the dimensions of the final drawing.
When measuring the width of a layering the contribution of the dummy vertices may or may
not be taken into account. A more precise definition of the layering width takes into account
both variable vertex widths and the contribution of the dummy vertices [BLME02, HN02a].
The area of a layering, used to approximate the area of the final drawing, is defined as the
product of the layering width and the layering height.

A layering with the minimum height can be found in linear time by the longest-path
algorithm [ES90]. It is also easy to find a layering with the minimum number of dummy
vertices subject to an upper bound on the number of layers. The ILP model of Gansner
et al. can be easily modified to take such an upper bound into account without making it
more difficult to solve.

It is trivial to find a layering with the minimum number of original vertices per layer
and no upper bound on the height. Any layering with a single vertex per layer is an
optimal solution. However, it is NP-hard to find a layering with a given upper bound on
the width if the width of the dummy vertices is considered greater than zero [BLME02]. A
few heuristics have emerged since for layering with the minimum width and consideration
of dummy vertices [BELM01, TNB04].

It is also NP-hard to find a layering with given upper bounds both on the height and
on the width even without taking into account the contribution of the dummy vertices
to the width and if all original vertices have the same unit width [ES90]. This variation
of the layer assignment problem is equivalent to the precedence-constrained multiprocessor
scheduling (PCMS) problem. The Coffman-Graham algorithm, which is an early and highly
influential polynomial-time algorithm for solving PCMS approximately, has been also largely
employed as a layering algorithm [CG72]. Healy and Nikolov have designed a branch-and-
cut algorithm which finds layerings with the minimum number of dummy vertices and
with height and width within pre-specified upper bounds [HN02a]. It is not a polynomial-
time algorithm but it is an efficient way to find an optimal solution if the problem is not
infeasible. The branch-and-cut algorithm of Healy and Nikolov takes into account variable
vertex widths as well as the contribution of the dummy vertices to the width of the layering.

The edge density between layers Li and Lj with i < j is defined as the number of edges
(u, v) with u ∈ Lj ∪Lj+1∪ . . .∪Lh and v ∈ L0∪L1∪ . . .∪Li. The edge density of a layered
DAG is the maximum edge density between adjacent layers. Naturally, drawings with low
maximum and average edge density are clearer and easier to comprehend provided they
are also compact and having not too many long edges. There has not been proposed any
algorithm which find layerings specifically with consideration of edge density. A few studies
have compared the edge density in layerings found by some of the algorithms mentioned
above [HN02b, NT06, TNB04].

In the next section we take a closer look at the algorithms used for layer assignment.

13.3.2 Layer Assignment Algorithms

The easiest way to partition the vertex set of a DAG into layers is to take any spanning
tree of the underlying undirected graph. It can be the depth first search tree or the breadth
first search tree, for example. For each spanning tree a layering can be generated by picking

420 CHAPTER 13. HIERARCHICAL DRAWING ALGORITHMS

a vertex and assigning it to an arbitrary layer, Li. Then assign all its neighbours in the
tree to either layer Li−1 or Li+1 depending on the direction of the connecting tree-edge.
Then repeat the same with all neighbours of the already assigned vertices and so on until
all vertices are assigned to a layer. It cannot be guaranteed that the set of layers will start
with L1 but this can be easily fixed by shifting the whole set of layers.

In general, this method does not guarantee any properties of the layering. The layer
assignment algorithms, which find layerings subject to some of the criteria discussed in the
previous section, broadly fall into two groups. The first group of algorithms are adopted from
the area of static precedence-constrained multiprocessor scheduling. They produce layerings
with either the minimum height or a specified maximum number of vertices per layer.
The second group of algorithms employ network simplex and branch-and-cut techniques,
respectively, for minimizing the number of dummy vertices.

List Scheduling Algorithms

The precedence-constrained multiprocessor scheduling problem is the problem of
scheduling n causally related tasks (which represent a parallel program) on m processors
with the goal of minimizing the completion time of the parallel program. This problem is
NP-hard when m <∞ [Ulm75]. It is also known as static scheduling because all the tasks
with their causal relationship are given in advance and the schedule must be constructed
prior executing any of them [KA99]. A simplified version of this problem, when all the tasks
have the same computational cost and the communication time between tasks is neglected,
is equivalent to the problem of finding a layering of a DAG with at most m vertices per layer
and the minimum number of layers. Thus, the earliest static scheduling algorithms which
deal with simplified models have also found an application as DAG layering algorithms.

Most of the static scheduling algorithms are variations of a generic list scheduling tech-
nique which consists of two main steps:

1. Build a scheduling list that contains all the tasks.

2. While the scheduling list is not empty remove the first task from it and schedule
it for execution on a processor which allows earliest start time.

There are two list scheduling algorithms that have been widely employed as layering algo-
rithms: the longest-path algorithm and the Coffman-Graham algorithm.

The Longest-Path Algorithm

The longest-path algorithm solves the static scheduling problem for m =∞. Let π be
the number of vertices in the longest directed path in a DAG. The longest path algorithm
builds the scheduling list by assigning priority π to the vertices without outgoing edges. If all
immediate successors of a vertex have been assigned a priority then that vertex is assigned
the lowest of the priorities of its immediate successors minus one. This is repeated until all
vertices are assigned a priority. The vertices with the same priority k form layer Lπ−k+1.
It has been shown that the longest-path algorithm has linear time complexity. [Meh84].

Algorithm 13.6 is a version of the longest-path algorithm where vertices are assigned to
layers as soon as they are assigned priority. It employs two vertex sets U and Z which are
empty in the beginning. The value of the variable current layer is the label of the layer
currently being built. As soon as a vertex gets assigned to a layer it is also added to the
set U . Thus, U is the set of all vertices already assigned to a layer. Z is the set of all
vertices assigned to a layer below the current layer. A new vertex v to be assigned to the
current layer is picked among the vertices which have not been already assigned to a layer,

13.3. LAYER ASSIGNMENT 421

Figure 13.6 The Longest-Path Algorithm(G)

Requires: DAG G = (V,E)

U ← φ
Z ← φ
currentLayer ← 1
while U 6= V do

Select vertex v ∈ V \ U with N+
G (v) ⊆ Z

if v has been selected then
Assign v to the layer with a number currentLayer
U ← U ∪ {v}

end if
if no vertex has been selected then
currentLayer ← currentLayer + 1
Z ← Z ∪ U

end if
end while

i.e., v ∈ V \U , and which have all their immediate successors already assigned to the layers
below the current one, i.e., N+

G (v) ⊆ Z.

The advantages of the longest path algorithm are its simplicity and its linear time com-
plexity. The layerings it finds have the minimum height. However, it performs very poorly
in terms of drawing area, number of dummy vertices and edge density [HN02b]. The
longest-path layerings tend to be very wide at the bottom layers.

The Coffman-Graham Algorithm

The second list scheduling algorithm used for DAG layering is the Coffman-Graham
algorithm [CG72] which is based on an earlier algorithm by Hu [Hu61]. It approximately
solves the NP-hard static scheduling problem for m <∞. The technique used for building
the scheduling list is more complex than the one used by the longest path algorithm. The
worst-case time complexity of the Coffman-Graham algorithm is O(|V |2). It guarantees a
layering with at most m original vertices per layer and in the worst case the height of the
layering may become close to twice the optimal height [CG72].

The Coffman-Graham algorithm requires that the input graph G = (V,E) has no tran-
sitive edges. An edge e = (u, v) ∈ E is transitive if there is a directed path with a start
vertex u and an end vertex v in G with length greater than 1, i.e., e is not the only directed
path from u to v. Let Gr = (V,Er) and Gc = (V,Ec) be also DAGs. Gc is a transitive
closure of G if for each pair of vertices u, v ∈ V there is a directed path from u to v in G if
and only if (u, v) ∈ Ec. Gr is a transitive reduction of G if Gr is a DAG with a minimum
number of edges among all the DAGs which have the same transitive closure as G. If a
DAG contains transitive edges then the Coffman-Graham algorithm can be applied to its
transitive reduction. A DAG’s transitive reduction can be computed in O (M (|V |)) time,
where M(n) is the time for computing the product of two n× n matrices [AGU72].

Let G = (V,E) be a DAG without transitive edges. The Coffman-Graham algorithm is
the two-step Algorithm 13.7. The first step consists of computing unique labels λ : V → N
of all the vertices of G which then are used at the second step as priority for placing the
vertices in layers. The computation of the labels at the first step involves the comparison

422 CHAPTER 13. HIERARCHICAL DRAWING ALGORITHMS

Figure 13.7 The Coffman-Graham Layering Algorithm

Require: A DAG G = (V,E) without transitive edges and an integer W > 0

for all v ∈ V do
λ(u)←∞

end for
for i← 1 to |V | do

Choose v ∈ V with λ(v) =∞ such that N−G (v) is minimized;
λ(u)← i;

end for
k ← 1, L1 ← ∅, U ← ∅
while U 6= V do

Choose v ∈ V \ U such that N+
G (v) ⊆ U and λ(v) is maximized;

if |Lk| ≤W and N+
G (v) ⊆ L1 ∪ L2 ∪ . . . ∪ Lk−1 then

Lk ← Lk ∪ {v}
else
k ← k + 1; Lk ← {v}

end if
U ← U ∪ {v}

end while

between vertex sets defined as follows. If U1 and U2 are two sets of vertices then U1 < U2

if either

• U1 = ∅ and U2 6= ∅; or

• U1 6= ∅, U2 6= ∅, and max{λ(v) : v ∈ U1} < max{λ(v) : v ∈ U2}; or

• U1 6= ∅, U2 6= ∅, max{λ(v) : v ∈ U1} = max{λ(v) : v ∈ U2}, and U1 \ {v : λ(v) =
max{λ(u) : u ∈ U1}} < U2 \ {v : λ(v) = max{λ(u) : u ∈ U2}}

In the second step each vertex is assigned to a layer starting from the bottom layer and
going upward keeping the maximum number of vertices in a layer less than or equal to an
upper bound W .

It has been observed that Coffman-Graham layerings have a large amount of dummy
vertices and when they are taken into account the area of the layerings can be even worse
than the area of the longest path layerings [HN02b].

Nikolov and Tarassov have proposed a vertex-promotion improvement heuristic which can
be applied after either the longest-path algorithm or the Coffman-Graham algorithm for re-
ducing the number of dummy vertices [NT06]. It is a cubic algorithm which is compensated
by its simplicity. We describe the vertex-promotion heuristic in the following section.

Layering with the Minimum Width

It is NP-hard to find a layering with the minimum width if the dummy vertices are
assigned non-negative width. This problem can be solved exactly by the Healy and Nikolov’s
branch-and-cut layering algorithm described in Section 13.3.2. In this section we describe
the fast heuristic approach proposed by Tarassov et al. [TNB04]. Their min-width layering
algorithm is the first successful attempt to design a heuristic for layering with the minimum
width and consideration of dummy vertices. An earlier attempt is the heuristic developed
by Branke et al. [BELM01].

13.3. LAYER ASSIGNMENT 423

Figure 13.8 Min-width(G,W, c)

Requires: DAG G = (V,E), integers W and c

U ← φ; Z ← φ
currentLayer ← 1; widthCurrent← 0; widthUp← 0
while U 6= V do

Select vertex v ∈ V \ U with N+
G (v) ⊆ Z and ConditionSelect

if v has been selected then
Assign v to the layer with a number currentLayer
U ← U ∪ {v}
widthCurrent← widthCurrent− d+(v) + 1
widthUp← widthup+ d−(v)

end if
if no vertex has been selected OR ConditionGoUp then
currentLayer ← currentLayer + 1
Z ← Z ∪ U
widthCurrent← widthUp
widthUp← 0

end if
end while

The min-width algorithm, presented as Algorithm 13.8, is roughly based on the longest-
path algorithm which is shown in detail in Algorithm 13.6. Besides the DAG G the min-
width algorithm has two input parameters W and c which are explained below.

Similar to the longest-path algorithm, the min-width algorithm builds the layering layer
by layer starting from layer 1. The two variables widthCurrent and widthUp are used to
store the width of the current layer and the width of the layers above it, respectively. The
width of the current layer, widthCurrent, is calculated as the number of original vertices
already placed in that layer plus the number of potential dummy vertices along edges with
a source in V \ U and a target in Z (one dummy vertex per edge). The variable widthUp

provides an estimation of the width of any layer above the current one. It is the number
of potential dummy vertices along edges with a source in V \U and a target in the current
layer (one dummy vertex per edge).

Vertex v is selected to be placed in a layer subject to an additional condition
ConditionSelect which is true if v is the vertex with the maximum out-degree among the
candidates to be placed in the current layer. Such a choice of v results in maximum reduc-
tion of widthCurrent. If either no vertex has been selected or ConditionGoUp is true then
the current layer is completed and the algorithm moves to the next layer. ConditionGoUp

is true if either:

• widthCurrent ≥W and d+(v) < 1, or

• widthUp ≥ c×W .

It is required that d+(v) < 1 when widthCurrent ≥ W because the initial value of
widthCurrent is determined by the dummy vertices in the current layer and it gets smaller
(or at least it does not change) when a vertex with a positive out-degree gets placed in the
current layer. In that case, the dummy vertices along edges with a source v are removed from
the current layer and get replaced by v. If d+(v) ≥ 1, the condition widthCurrent ≥ W
on its own is not a reason for moving to the upper layer because there is still a chance to

424 CHAPTER 13. HIERARCHICAL DRAWING ALGORITHMS

add vertices to the current layer which will reduce widthCurrent. If d+(v) < 1 then the
assignment of v to the current layer increases widthCurrent because it does not replace
any dummy vertices. This is an indication that widthCurrent can not be reduced further.

The min-width layering algorithm has the same time complexity as the longest-path
algorithm which has been shown to run in linear time [Ulm75]. Through an extensive
computational study Tarassov et al. have determined that the narrowest layerings are
found for 1 ≤ UBW ≤ 4 and 1 ≤ c ≤ 2. Thus, they propose to run the algorithm for
UBW ∈ {1, 2, 3, 4} and c ∈ {1, 2}, choose the narrowest of the eight layerings and apply to
it vertex-promotion heuristic described in the following section.

Improvement by Promotion of Vertices

The list-scheduling based layering algorithms described above have been shown to
find layerings with a relatively large number of dummy vertices. Nikolov and Tarassov
have proposed a simple vertex-promotion heuristic that can be applied to any layering for
reducing its dummy vertex count [NT06].

The vertex-promotion heuristic modifies a given layering L = {L0, L1, . . . , Lh} of a DAG
G by promoting vertices from the layer where they are placed to the layer above. It is
applied only to the original DAG vertices, not to the dummy vertices. To promote vertex
v with l(v,L) = k is to move v from Lk to Lk+1 which results in a new partition L∗ =
{L0, . . . , Lk \{v}, Lk+1∪{v}, . . . , Lh}. If v ∈ Lh has to be promoted then a new empty layer
Lh+1 is added to the layering and v is promoted to it. If v has an immediate predecessor
placed in layer Lk+1 then L∗ is not a layering of G. To ensure that the result of the
promotion of vertex v to layer Lk+1 is a layering all immediate predecessors of v in layer
Lk+1 (if there is any) have to be promoted to layer Lk+2; the same applies to their immediate
predecessors and so on.

The recursive function which performs the described vertex promotion is shown in Algo-
rithm 13.9. It takes vertex v as an input parameter and returns dummydiff which is the
difference between the number of dummy vertices before and after the promotion v. In the
for loop, each immediate predecessor u of v which lies in the layer above v gets promoted.
The return value of its promotion is added to dummydiff. Then we promote v, subtract
from dummydiff the number of immediate predecessors of v, and add to it the number of
immediate successors of v. That is, we promote v one layer up, recursively promoting in
advance all its immediate predecessors which need to be promoted. The time complexity
of PromoteVertex is O(|E|) because in the worst case all DAG edges might be traversed
while promoting vertices recursively.

Then the vertex-promotion heuristic consists of two nested loops shown in Algo-
rithm 13.10, an external repeat-until loop and an internal for loop. In the internal loop all
vertices in a layered DAG are scanned in no particular order and each vertex with a positive
in-degree gets promoted by PromoteVertex (see Algorithm 13.9) if its layering-preserving
promotion reduces the total number of dummy vertices. The external loop goes on until
the internal loop makes no promotion.

When performed after the min-width layering algorithm, described above, the vertex-
promotion heuristic performs only promotions which do not increase the maximum number
of vertices (original plus dummy) in a layer.

There is empirical evidence that 80 iterations of the repeat-until loop are enough for
achieving a significant reduction of the number of dummy vertices for graphs with up to
100 vertices. If the number of iterations of the repeat-until loop is O(|V |) then the vertex-
promotion heuristic is cubic in the worst case.

13.3. LAYER ASSIGNMENT 425

Figure 13.9 PromoteVertex(v)

Require: A layered DAG G = (V,E) with the layering information stored in a global
vertex array of integers called layering ; a vertex v ∈ V .

dummydiff← 0
for all u ∈ N−G (v) do

if layering[u] = layering[v] + 1 then
dummydiff← dummydiff+ PromoteVertex(u)

end if
end for
layering[v]← layering[v] + 1
dummydiff← dummydiff−N−G (v) +N+

G (v)
return dummydiff

Figure 13.10 Vertex-Promotion Heuristic

Require: G = (V,E) is a layered DAG; a valid layering of G is stored in a global vertex
array called layering.

layeringBackUp← layering
repeat
promotions← 0
for all v ∈ V do

if d−(v) > 0 then
if PromoteVertex(v) < 0 then
promotions← promotions+ 1
layeringBackUp← layering

else
layering ← layeringBackUp

end if
end if

end for
until promotions = 0

Network-Simplex Layering Algorithm

The integer linear programming (ILP) approaches to the layering algorithm have been
introduced for layering with the minimum number of dummy vertices. The first such ap-
proach is the layering technique designed by Gansner, Koutsofios, North and Vo for their sys-
tem dot,2 which is probably the most popular system for layered graph drawing [GKNV93].

2http://www.graphviz.org/

426 CHAPTER 13. HIERARCHICAL DRAWING ALGORITHMS

Figure 13.11 Network Simplex Layer Assignment

Require: G = (V,E) is a DAG.

feasible tree

while (e =leave edge()) 6= nil do
f =enter edge(e)
exchange(e, f)

end while
normalize()
balance()

They model the layering problem by the following integer linear program:

min
∑

(u,v)∈E

l(u,L)− l(v,L)

subject to: l(u,L)− l(v,L) ≥ 1, ∀(u, v) ∈ E
l(u,L) ≥ 0, ∀u ∈ V
all l(u,L) are integer

The linear programming relaxation of this integer program always has an integer solution
because its constraint matrix is totally unimodular [NW88]. Thus, the integer program can
be solved by the simplex method or any of the polynomial-time algorithms for solving linear
programs. If we add an additional set of constraints of the type l(u,L) ≤ H, where H is an
upper bound on the number of layers, the constraint matrix remains totally unimodular.
Thus, the problem of finding a layering with the minimum number of dummy vertices
subject to an upper bound on the number of layers is also in P.

Gansner et al. go further by introducing a network simplex algorithm for solving their ILP
formulation [GKNV93]. It has not been proved to run in polynomial-time but reportedly
requires a few iterations and runs fast. Its main part is presented in Algorithm 13.11.

The network simplex algorithm is based on the idea that each spanning tree of the under-
lying undirected graph of a DAG induces a family of equivalent (in terms of dummy vertex
count) layerings. The algorithm starts with an initial spanning tree which is modified by
replacing edges in order to get a spanning tree that induces a layering with the minimum
number of dummy vertices. The procedure normalize() at the end of the algorithm is the
one that makes sure the set of layers in the induced layering start from L1.

The network simplex starts with an initial spanning tree built by the procedure
feasible tree. Gansner et al. suggest to compute a longest-path layering and then take a
spanning tree of short subject to the layering edges. Then each iteration of the while-loop
removes an edge from the spanning tree which breaks the tree into two connected compo-
nents. Then a new edge is added to the tree that connects the two components into a new
spanning tree. The two edges to leave and enter the tree respectively are chosen so that the
new tree induces a layering with a lower dummy vertex count.

The edge to leave the tree at each iteration of the while-loop is chosen by the function
leave edge() which picks an edge with a negative cut value, or nil if all edges have non-
negative cut value. The cut value is defined as follows. If an edge e is removed from the
spanning tree, it breaks into two connected components, a tail and a head. The tail is the
component that contains the source of e and head is the component that contains its target.
The cut value of e is the number of all directed edges from the tail to the head, including e,

13.3. LAYER ASSIGNMENT 427

(a) Two layers and no dummy vertices. (b) Three layers and four
dummy vertices.

Figure 13.12 Two alternative layerings of the same DAG: a layering with the minimum
number of dummy vertices may become too wide.

minus the number of all directed edges from the head to the tail. Typically a negative cut
value of an edge means that the dummy vertex count can be reduced by lengthening that
edge as much as possible, until one of the head-to-tail edges becomes tight. That tight edge
is the one chosen by the function enter edge(). It is the edge with the minimum span in
the layering induced by the spanning tree before removing e.

After the end of the while-loop the spanning tree induces a layering with the minimum
number of dummy vertices. The procedure balance(), applied at the end, moves vertices
with equal in- and out-degree to a feasible layer with the fewest vertices. This is done in
order to have more even distribution of vertices between layers. Gansner et al. also show
how the network-simplex algorithm can work for graphs with weighted edges and with edges
which are required to have span greater than 1 [GKNV93].

In general, layerings with the minimum number of dummy vertices lead to compact
drawings. However some patterns in a DAG can result in too wide layerings with the
minimum number of dummy vertices as shown in Figure 13.12.

Healy-Nikolov’s Branch-and-Cut Algorithm

Another ILP approach is the branch-and-cut layering algorithm introduced by Healy
and Nikolov [HN02a]. It finds layerings with the minimum number of dummy vertices
subject to upper bounds on both the height and the width of the layering if there is any
feasible solution. Variable vertex width and the contribution of the dummy vertices to the
width of the layering can be taken into account. Since it solves exactly an NP-hard problem,
this algorithm has exponential running time. It is especially designed for producing high
quality layerings which satisfy exactly the pre-specified upper bounds on the width and the
height.

Consider a DAG G = (V,E) and let x be the incidence vector of a subset of V ×{1, . . . ,H}.
Healy and Nikolov model the layering problem by the following ILP formulation.

min
∑

(u,v)∈E

 ρ(u)∑
k=ϕ(u)

kxuk −
ρ(v)∑

k=ϕ(v)

kxvk

 (13.1)

428 CHAPTER 13. HIERARCHICAL DRAWING ALGORITHMS

Subject to

ρ(v)∑
k=ϕ(v)

xvk = 1 ∀v ∈ V (13.2)

k∑
i=ϕ(u)

xui +

ρ(v)∑
i=k

xvi ≤ 1 ∀k ∈ LS(u) ∩ LS(v), ∀(u, v) ∈ E (13.3)

∑
v∈V ∗

k

wvxvk +Dk ≤W ∀k = 1, . . . ,H (13.4)

∑
v∈V ∗

k

xvk ≥ 1 ∀k = 1, . . . , π(G) (13.5)

all xvk are binaries

W and H are upper bounds on the width and height of the layering respectively; π(G)
is the number of vertices in the longest directed path in G; ϕ(v) and ρ(v) are respectively
the lowest and the highest layer where vertex v can be placed in; LS(v) = {ϕ(v), . . . , ρ(v)}
and V ∗k = {v ∈ V : ϕ(v) ≤ k ≤ ρ(v)}. The objective minimizes the sum of edge spans, i.e.,
the number of dummy vertices. Equalities (13.2) force each vertex to be placed in exactly
one layer; inequalities (13.3) force each edge to point downward; and inequalities (13.5)
introduce the additional requirement of having at least one vertex in the first π(G) layers.
This reduces the number of identical layerings (but shifted vertically) if the height of the
solution is less than the upper bound H.

Inequalities (13.4) restrict the width of each layer (including the dummy vertices) to be
less than or equal to W : the first term on the left hand side represents the contribution of
the real vertices to the width of layer Vk while Dk represents the contribution of the dummy
vertices. We set

Dk =
∑

e=(u,v)∈E

wde

ρ(u)∑
l>k

xul −
ρ(v)∑
l≥k

xvl

where wde is the width of the dummy vertices along edge e. The difference of the two sums
in the parentheses is 1 if edge e = (u, v) spans layer Vk and 0 otherwise.

Healy and Nikolov propose solving their ILP formulation in a branch-and-bound frame-
work with the employment of a cutting-plane algorithm at each vertex of the branch-and-
bound tree. The cutting-plane algorithm generates valid inequalities for the constraint
polytope of their formulation, some of which are facet-defining. Healy and Nikolov report
that the running-time of this branch-and-cut algorithm is close to the time necessary for
the ILP solver of CPLEX3 to solve the formulation and they show some examples where
the branch-and-cut algorithm is significantly faster than CPLEX.

13.3.3 The Layering Algorithms Compared

If any layering is acceptable then probably the easiest way to construct one is either to use
the longest-path algorithm (Section 13.3.2) or to find any spanning tree of the underlying
undirected graph and take the layering induced by it as described in the beginning of
Section 13.3.2. If there is an upper bound on the the number of original vertices per
layer then the Coffman-Graham algorithm, described in Section 13.3.2, is the best solution.

3http://www.ilog.com/products/cplex/

13.3. LAYER ASSIGNMENT 429

Although the longest-path algorithm finds layerings with the minimum number of layers
and the Coffman-Graham algorithm finds layerings with a pre-specified maximum number
of vertices in a layer, their layerings typically lead to drawings which occupy large drawing
area and have too many long edges.

For a compact layering, the network simplex algorithm of Gansner et al., described in
Section 13.3.2, is probably the best fast solution. It finds layerings with the minimum
number of dummy vertices which are also very compact in general. However, there are
particular patterns in graph that may make the network simplex layering either too wide or
too long. The branch-and-cut algorithm of Healy and Nikolov, outlined in Section 13.3.2,
is much slower but in addition to the network simplex algorithm it guarantees that the
layering’s width and height will be within pre-specified bounds. It also considers variable
vertex width and the contribution of the dummy vertices to the width of the layering.

The first fast heuristic for layer assignment with the minimum number of vertices per layer
when both the original and the dummy vertices are considered is the min-width algorithm
described in Section 13.3.2. It is not optimal but when followed by the vertex promotion
heuristic, described in Section 13.3.2, it finds layerings which on average are narrower than
the layerings found by any other known layering algorithm. The same vertex-promotion
heuristic significantly improves the layerings found by the longest-path and the Coffman-
Graham algorithms and makes them comparable to the layerings found by the network
simplex algorithm. The longest-path algorithm followed by the vertex-promotion heuristic is
probably the easiest to implement layering algorithm which results in good-quality layerings.
Its only disadvantage is the relatively slow running time, which is cubic in the worst case.

13.3.4 Layer-Assignment with Long Vertices

The layer-assignment algorithms described above assume that all the vertices have similar
height and can be aesthetically arranged on parallel horizontal levels without too much
blank space between the levels. However, in some applications a few vertices in the input
digraph may have large labels which can make them occupy significantly larger space in the
vertical direction than the rest of the vertices. Such long vertices can be allowed to occupy
more than one horizontal level in order to achieve aesthetically pleasant drawing.

Misue et al. propose to assign vertices to layers with one of the describe algorithms assum-
ing all vertices have the same size. Then in a postprocessing step vertices can be enlarged
to their original size and the eventual intersection between vertices are removed [MELS95].
However, this approach may lead to drawings which are not aesthetically acceptable.

Recently two studies have proposed layering algorithms that consider the actual size
of the vertices while assigning them to layers. North and Woodhull have introduced an
algorithm that assigns each vertex to two layers which correspond to the lower and the
upper bounds of its height, respectively [NW01]. In a subsequent step vertices and edges
which cross one or more layers are split into chains of vertices to obtain simpler layering.
The second algorithm has been introduced by Friedrich and Schreiber [FS04]. It breaks the
long vertices into chains of vertices while assigning them to layers.

While the special treatment of long vertices makes the final drawing compact, it also
complicates the subsequent steps of the Sugiyama method. The vertex-ordering and the
coordinate-assignment steps need to take the long vertices into account. It also becomes
more difficult to rout edges so that they do not go through the long vertices. This may
result in a large number of edge bends, which is compensated by their short length in the
compact drawing.

430 CHAPTER 13. HIERARCHICAL DRAWING ALGORITHMS

13.4 Edge Concentration

Edge concentration is an optional step in the Sugiyama algorithm. It reduces the edge
density between adjacent layers and the number of edge crossings. It can also reduce the
dummy vertex count. The eventual drawbacks are that edge concentration modifies the
graph and may increase the number of layers.

Consider a layered DAG G = (V,E) with a layering L = {L1, . . . , Lh}. An intersection
in G is a complete bipartite (biclique) subgraph I with a set of source vertices SI and a set
of target vertices TI , such that SI ⊆ Lj , and TI ⊆ Li for some i < j. We use the notation
I = (SI , TI). If |SI | = |TI | = 1 then the intersection is trivial. The vertex size of I is
|S|+ |T |, and the edge size of I is |S| ∗ |T |.

To perform edge concentration on a given nontrivial intersection I is to

• remove all edges between SI and TI from G

• add a new edge-concentration vertex ec to G, i.e., V ← V ∪ {ec}
• add edges {e = (ec, u) : u ∈ TI} and {e = (u, ec) : u ∈ SI} to E.

That is, all edges of the intersection C are removed from the graph, a new edge-concentration
vertex is added and all vertices in SI and TI are connected to it by an edge to form a star-
like subgraph. An example is shown in Figure 13.13. If SI and TI occupy adjacent layers,
i.e., j− i = 1, then a new layer is introduced between Li and Lj and the edge-concentration
vertex ec is placed in it. Otherwise ec is placed in some layer Lk with i < k < j.

Figure 13.13 An example of a bipartite graph before and after the introduction of two
edge-concentration vertices labeled “ec” [New89].

13.4. EDGE CONCENTRATION 431

A set of intersections I = {I1, . . . , Ik : 1 ≤ k ≤ |E|} is an intersection cover of G if each
edge of G is contained in at least one intersection in the set. The edge concentration step
within the Sugiyama method consists of finding an intersection cover I of G and performing
edge concentration on each non-trivial intersection in I. If intersections between non-
adjacent layers are considered then the dummy vertices are ignored and edge concentration
is applied to intersections of original vertices and edges. After the edge concentration step
dummy vertices are introduced again to subdivide long edges.

In the next section we discuss the different approaches to choosing an intersection cover
for edge concentration.

13.4.1 Intersection Cover

The most important part of the edge concentration step is the choice of an intersection
cover. There are two alternative approaches to this problem proposed in the graph drawing
literature: choose either only intersections between adjacent layers, or only intersections
between non-adjacent layers.

The only edge concentration approach with intersections between non-adjacent layers is
the one employed by AT&T’s dot [GKN02]. Only non-trivial intersections with a single
target vertex are considered. This is a simple but fast solution for the edge concentration
step.

Newbery as well as Eppstein et al. suggest a different approach to building the intersec-
tion cover [New89, EGM04]. The non-trivial intersections are only intersections between
adjacent layers and the choice of intersections between two adjacent layers does not depend
on the intersections between other layers. Thus, the problem of choosing an intersection
cover of the whole graph is reduced to the problem of choosing a biclique (i.e., complete
bipartite graph) cover of a bipartite graph.

The best biclique cover from the point of view of edge concentration is the one that
will result in the fewest number of edges after applying edge concentration. This is what
Newbery calls the Edge Concentration problem and it is defined as a decision problem as
follows.

Edge Concentration
Instance: A bipartite graph G = (V,E) and a positive number K.
Question: Is there an biclique cover I = {I1, . . . , Ik : 1 ≤ k ≤ |E|} of G with∑k
i=1 vs(Ii) ≤ K?

Edge Concentration is NP-complete [Lin00]. Newbery proposes a polynomial-time
heuristic algorithm for solving its optimization version, i.e., to find a biclique cover
I = {I1, . . . , Ik : 1 ≤ k ≤ |E|} with the minimum

∑k
j=1 vs(Ij) [New89]. We describe

the heuristic in detail in the following section.

Related to Edge Concentration is the problem of finding a biclique cover of a bipartite
graph with no more than K > 0 bicliques. This problem is known as Complete Bipartite
Subgraph Cover, problem GT18 of Garey and Johnson’s NP-complete problems [GJ79].
In their paper on confluent layered drawings, Eppstein et al. propose two-layer edge con-
centration with a biclique cover which is an approximate solution to the optimization ver-
sion of Complete Bipartite Subgraph Cover [EGM04]. Fishburn and Hammer have shown
that Complete Bipartite Subgraph Cover is equivalent to a simply-restricted edge color-
ing problem which in turn can be transformed to a vertex coloring problem for bipartite
graphs [FH96]. Thus, Eppstein et al. propose the biclique cover for edge concentration
to be computed by one of the vertex coloring algorithms and specifically by either the

432 CHAPTER 13. HIERARCHICAL DRAWING ALGORITHMS

Recursive Largest First (RLF) algorithm of Leighton[Lei79] or the DSATUR algorithm of
Brélaz [Bré79]. Both vertex coloring algorithms have O(|E|3) worst-case time complexity
and their solutions can be transformed to a biclique cover in O(|E|2) time.

In the next section we describe in detail Newbery’s heuristic for solving Edge Concentra-
tion approximately.

13.4.2 Newbery’s Algorithm

Newbery’s algorithm (Algorithm 13.14) finds an approximate solution to the optimization
version of Edge Concentration [New89]. Consider a bipartite graph G = (V,E). Two lists
of bicliques, B1 and B2, are maintained throughout. B1 is the list of all possible bicliques
with two source vertices at all times. The bicliques in B1 are sorted in increasing order by
number of target vertices. Initially B2 contains only the empty biclique, i.e., a biclique with
an empty source and target sets. At the end B2 is a list of the non-trivial bicliques for edge
concentration.

The algorithm takes an input parameter M which is a lower bound on the edge size of a
biclique. Newbery defines the edge size of a biclique x as |Sx| ∗ (|Tx| − 1) which is slightly
different from the actual number of edges in the biclique. This is chosen in order to avoid
bicliques with a single target vertex.

The main part of the heuristic is the for loop that goes through all bicliques in B1 with
two nested for loops that go through all bicliques in B2. Consider a biclique x ∈ B1 with a
source set Sx and a target set Tx. If the edge size of x is less than the lower bound M then
x is discarder from B1. Otherwise x is compared to each biclique y in B2. If x and y have
the same target set then the source vertices of x are added to the source vertices of y. If
there is no biclique y in B2 with the same target set as x then x is compared once again to
all bicliques in B2 in the second nested for loop. Let Sy and Ty be the source and target
sets of y respectively. Two cases are considered:

• Case 1. If Tx ⊆ Ty then add (Sy ∪ Sx, Tx) to the front of B2 and remove Tx
from the target set of y.

• Case 2. If Ty ⊆ Tx then add (Sx, Tx \ Ty) to the front of B2 and add Sx to the
source set of y, i.e., Sy ← Sy ∪ Sx.

Note that if no other condition becomes true then at the end of the second nested for
loop x will be compared to the biclique with the empty target set in B2 which will result
in adding x to B2. At the end all bicliques in B2 with the same target set are merged and
bicliques with size less than M are discarded. The biclique with the empty target set will
also be discarded from B2.

The heuristic has O(n4) worst-case time complexity assumed m < n3. The worst case is
much worse than the typical case encountered in practice.

13.5 Vertex Ordering

For readability edge crossings are one of the crucial parameters of a graph drawing [Pur97].
While edge reversal and layer assignment can have an impact on this, it is through the or-
dering of vertices that minimizing edge crossings between adjacent layers is mainly achieved
(crossings are dependent on the relative order of vertices and not their positions). Thus,
this step is often known as the crossing minimization or crossing reduction step.

Crossing minimization is of interest to VLSI-layout researchers and so has a history
that predates much of the graph drawing literature. Garey and Johnson showed that the

13.5. VERTEX ORDERING 433

Figure 13.14 Newbery’s Biclique Cover Heuristic

Require: A bipartite graph G = (V,E) and an integer M > 0

B1 ← φ
B2 ← φ
for all pair of source vertices (u, v) do

add the largest biclique with a source set {u, v} to B1.
end for
Sort the bicliques in B1 in increasing order by number of target vertices
Add a biclique with empty source and target sets to B2

for all x ∈ B1 do
if the Sx ∗ (Tx − 1) < M then

Discard x
else

for all y ∈ B2 do
if Tx = Ty then
Sy ← Sy ∪ Sx
Continue the external for loop

end if
end for
for all y ∈ B2 do

if Tx ⊆ Ty then
Add (Sy ∪ Sx, Tx) to the front of B2

Ty ← Ty \ Tx
Continue the external for loop

end if
if Ty ⊆ Tx then

Add (Sx, Tx \ Ty) to the front of B2

Sy ← Sy ∪ Sx
Continue the external for loop

end if
end for

end if
end for

434 CHAPTER 13. HIERARCHICAL DRAWING ALGORITHMS

general crossing minimization problem, where permutations for both layers that minimize
the number of crossings are required, is NP -hard [GJ83]; even if one layer is fixed, the
problem still remains NP -hard [EW94]. To counter these apparently negative results,
several heuristic and exact methods have been proposed.

While we will mainly be concerned with algorithms that find a drawing with few crossings,
the decision version of the problem [GJ83, EW94] also is of interest. In particular, fixed-
parameter tractable algorithms have been developed to answer the question of whether an
ordering of the vertices on one “shore” of a bipartite graph admits a k-crossing (or less)
solution when the vertices of the other shore remain fixed [DFH+01a, DW02, DFK03]. In
the latter an O(1.4656k + kn2)-time decision algorithm is presented.

We may assume that the graph G = (V,E) is properly k-layered. That is, like the level
graph in Definition 13.1 V = V1 ∪ · · · ∪ Vk, Vi ∩ Vj = ∅, 1 ≤ i 6= j ≤ k, although we do
not insist that sources appear on the first layer. The set of edges, E = {(u, v)|u ∈ Vi, v ∈
Vi+1, 1 ≤ i ≤ k − 1}. We let ni = |Vi|,m = |E| and we call N(u) = {v ∈ V |(u, v) ∈ E} the
neighborhood of vertex u. An ordering or permutation, πi, of each Vi provides a solution
for the crossing minimization problem since it is the relative ordering along the line y = li
that causes edges incident on that layer to cross each other. What we seek, then, is the set
of permutations, Π = {πi|1 ≤ i ≤ k} that minimizes the edge crossings C(G, π1, π2).

In the following sections we will describe the one-layer and two-layer crossing minimization
problems and solutions. We then go on to discuss techniques for handling multi-layer graphs.
Finally, we discuss an alternative to crossing minimization, where the goal is to initially
extract (and draw) a large planar subgraph, and then draw the remaining edges.

13.5.1 One-Sided Crossing Minimization

Few systems attempt to globally minimize edge crossings. Instead, a heuristic approach
based on one-layer crossing minimization is adopted. This problem, then, is key to many of
the algorithms that have been proposed for the bi- and multi-partite crossing minimization
problems. The goal of the one-layered crossing minimization (OLCM) problem is to find,
for a given G and π1, the permutation π2 that minimizes C(G, π1, π2).

Counting Crossings

Many of the algorithms we describe below require knowledge of the exact number
of crossings between two layers. Algorithms that compute crossings fall in two categories:
those that simply count the crossings and those that can report those edge crossings, also.
Since it is possible to have Ω(|E|2) crossings, the latter class of algorithms have running
time Ω(|E|2) in the worst case. The naive algorithm that considers every pair of edges and
runs in O(|E|2) time is, in this sense, optimal.

A further issue is whether the algorithm can be used to compute a crossing number
matrix which is used by many heuristics. The crossing number matrix, with entries cuv,
counts the number of edge crossings between edges incident to u, v ∈ V2, when u is to the
left of v (π2(u) < π2(v)). Since it assumes that the vertices in V1 are fixed, the matrix
is only relevant for OLCM. Note that since u is to the left of v or v is to the left of u in
any solution then the sum

∑
u,v min(cuv, cvu) yields a simple lower bound on the optimal

number of crossings. Jünger and Mutzel report that this figure is surprisingly tight on a
variety of graphs [JM97]. For dense graphs, Nagamochi [Nag05] presents an upper bound
on OLCM of 1.2964 + 12/(δ − 4), where δ > 4 is the minimum degree of a vertex.

Computing the crossing number matrix can be done naively in O(|E|2)-time although
Sander [San94] proposes a sweep algorithm that can compute all entries in O(|V1|+ |V2|+

13.5. VERTEX ORDERING 435

|E| + C), where C is the number of crossings. Barth et al. [BJM02] investigate a num-
ber of different existing algorithms for computing the bilayer crossing number, as well as
proposing a new O(|E| log |Vs|)-time algorithm, where Vs is the smaller of the two sets V1

and V2. The algorithm is based on Waddle and Malhotra’s accumulation tree used in their
earlier algorithm [WM99]. Nagamochi and Yamada [NY04] have proposed two algorithms
based on dynamic programming and divide-and-conquer that run in time O(|V1||V2|) and
O(min{|V1||V2|, |E| log |Vs|}), respectively; both algorithms use O(|E|)-space. For dense
graphs these algorithms will outperform the O(|E| log |Vs|)-time algorithm by Barth et al.
While Sander’s algorithm turns out to be uncompetitive for large graphs, it does have the
advantage of being able to compute the crossing matrix, which is not possible with either
of the other faster-running algorithms.

Heuristic Approaches

Eades and Kelly [EK86] propose three heuristics: 1) greedy insertion, 2) greedy switch-
ing, and 3) split for the problem. All three methods require the precomputation of the
crossing number matrix.

The greedy insertion heuristic orders vertices left to right on the “free” layer according
to the one which minimizes the number of crossings that the edges incident to u make
with the edges incident to vertices to u’s right. That is, u is chosen to minimize

∑
v∈R,

where R is the set of unchosen vertices. The algorithm runs in time O(|V2|2). The greedy
switching heuristic compares adjacent vertices and switches them if the change in crossing
count, cuv− cvu > 0, where vertex u immediately precedes v. With a precomputed crossing
number matrix the algorithm’s running time is obviously O(|V2|2). Like greedy switching,
the split heuristic is reminiscent of sorting. Here, however, the analogy is with quicksort
where a vertex, p, is chosen as a “pivot” and the vertices are rearranged into two consecutive
sets, Vl and Vr so that cup < cpu for all vertices in Vl and cpu ≤ cup for all vertices in Vr;
the left and right subsets of vertices are then ordered recursively. As with quicksort its
worst-case running time is O(|V2|2), but its expected running time is O(|V2| log |V2|).

Eades and Wormald [EW94] propose the median heuristic that assigns to each vertex
v ∈ V2 the median position of the x-coordinates of its neighbours, N(v) ⊆ V1. This heuristic
has the important property that it will find an ordering with 0 crossings if such an ordering
exists; in general, it guarantees an ordering, π2, such that C(G, π1, π2) ≤ 3Copt(G, π1, π2).

Computing the median position for a vertex v has time complexity O(|N(v)|) and, thus,
all medians can be found in O(|E|)-time. Sorting the set V2 according to the computed
medians provides the ordering and requires O(|V2| log |V2|)-time.

An alternative to placing a vertex at the median of its neighbours’ x-coordinates is to
place it at the average of them. This gives rise to the barycenter or averaging heuristic
[STT81]. It has the same running time bounds as the median heuristic and it, too, will
find a crossing-free ordering if one exists, but there does not exist a general performance
guarantee as exists for the median heuristic.

Some other heuristics of note are Catarci’s [Cat95] assignment heuristic which is based
on an approximation of the linear assignment problem. Catarci claims that the heuristic is
more accurate than the median heuristic, especially when applied to dense graphs. Dresbach
[Dre94] has proposed a stochastic heuristic which, having calculated assessment numbers
for each vertex and position (the assessment number is a term borrowed from statistics),
begins placing vertices in the position with the smallest assessment position, updating the
remaining numbers after each placement.

Genetic algorithms have also been employed as heuristic solutions to the one-layer crossing
minimization problem. Mäkinen and Sieranta [MS94] encode a permutation of V2 as a

436 CHAPTER 13. HIERARCHICAL DRAWING ALGORITHMS

tuple. The mutation operator is defined as removing and re-inserting a random member
xi of the tuple to a new random position, with intervening members shifted accordingly.
The crossover operation on tuples generates two points i < j, fixes the elements in the
two tuples between i and j, and reorders the remainders of the two tuples so that they are
both valid permutations. Branke et al. [UBSE98] also use a genetic algorithm for crossing
minimization. Due to its more general setting, however, we will postpone its discussion
until Section 13.7.

Exact Methods

Jünger and Mutzel [JM97] present a branch-and-cut algorithm for OLCM that draws
on solving the linear ordering problem. Letting δkij be a 0-1 variable that represents the
ordering of vertices i and j on level k = 1, 2, they develop an expression for the number of
crossings of a pair of permutations, πi, which will be the objective function to minimize.
That is, let δkij = 1 if πk(i) < πk(j) and 0 otherwise; it is clear that δij = 1− δji. Then

C(π1, π2) =

n2−1∑
i=1

n2∑
j=i+1

∑
k∈N(i)

∑
l∈N(j)

δ1
klδ

2
ji + δ1

lkδ
2
ij (13.6)

For OLCM we assume a fixed π1 and seek the ordering of V2, π2, that minimizes the
crossings. That is, we wish to minimize

C(π2) =

n2−1∑
i=1

n2∑
j=i+1

∑
k∈N(i)

∑
l∈N(j)

δ1
klδ

2
ji + δ1

lkδ
2
ij (13.7)

As currently posed C(π2) is problematical since it involves quadratic terms. However,
using the crossing number for a pair of vertices i and j in V2 from before

cij =
∑

k∈N(i)

∑
k∈N(i)

δ1
lk

we can rewrite equation (13.7) as

C(π2) =

n2−1∑
i=1

n2∑
j=i+1

cji(1− δ2
ji) + cijδ

2
ij (13.8)

n2−1∑
i=1

n2∑
j=i+1

(cij − cji)δ2
ij +

n2−1∑
i=1

n2∑
j=i+1

cji (13.9)

The problem then reduces to finding the vector δ2 ∈ {0, 1}(
n2
2) that orders the vertices.

In order for the vertices to be given a consistent ordering, we need to impose a “3-cycle”
constraint that says that if vertex i precedes vertex j and vertex j precedes vertex k then
vertex i must precede vertex k.

Since cij and cji can be determined beforehand and since the second double sum of
equation (13.9) is a constant, the problem can be written as the following linear program,
where δ2

ij is replaced by the more usual xij

13.5. VERTEX ORDERING 437

minimize

n2∑
i=1

n2∑
j=i+1

aijxij (13.10)

0 ≤ xij + xjk − xik ≤ 1 1 ≤ i < j < k ≤ n2 (13.11)

0 ≤ xij ≤ 1 1 ≤ i < j ≤ n2 (13.12)

xij an integer (13.13)

This is a well-known formulation of the linear ordering problem and from it the number
of crossings can easily be computed. As the integrality constraint (equation (13.13)) causes
significant difficulty from a computational complexity consideration, a standard approach is
to solve a relaxation of the formulation. This approach, called branch-and-cut , is achieved
by dropping initially the integrality constraint and as many of the constraints as is necessary,
and introducing them subsequently on an as-needed basis. In this case since there are 2

(
n2

3

)
3-cycle constraints (equation (13.11)) and 2

(
n2

2

)
hypercube constraints (equation (13.12))

it has been found to be reasonable to begin simply with the hypercube constraints and
to introduce constraints for violated 3-cycles until a solution is found. If the solution is
non-integral a branch step takes place where a non-integral variable is selected and two
subproblems are solved, one using 0 as the value of the selected variable and the second
using 1 as its value.

Algorithm Performance

The most comprehensive experimental analysis of the performance of the various ap-
proaches to OLCM that we have discussed is Jünger and Mutzel’s [JM97]. Their focus is
in bipartite graphs and they consider the OLCM and TLCM versions of the problem using
most of the heuristics we have discussed above, and others. In this section we will focus on
their findings for OLCM.

Two classes of experiments are performed. First, the algorithms are applied to random
instances of graphs, of varying edge density, each with 20 vertices on each side. Secondly,
motivated by the sparseness that is often observable in graphs of interest, a set of sparse
graphs of varying sizes were considered. It is worth noting that as graphs get denser and
the exact crossing count increases all algorithms perform relatively better. Thus, the second
class of experiments may tell more about the algorithms’ behaviors.

For the first set of experiments it was observed that the greedy switch, greedy insertion
and split heuristics had significantly higher running times as the edge densities increased.
This is most certainly due to the requirement to compute the crossing number matrix. The
running time of the exact method was surprisingly competitive here, although its expo-
nential behavior became more obvious on the second class of graphs. The split algorithm
performed best in terms of solution quality and also fared very well in the second class of
sparse graphs.

Over both classes of graphs it would appear that barycenter is the best performer. Its
running time is always among the best and its solution quality on the sparse graphs is
always with 3% of optimality. In spite of their similarity, the median algorithm performs
poorer than barycenter on both classes of graphs. (The barycenter algorithm is also an
easier algorithm to implement.)

Finally, Mäkinen and Sieranta [MS94] claim that their genetic algorithm outperforms the
barycenter method in terms of accuracy, although running time is significantly higher.

438 CHAPTER 13. HIERARCHICAL DRAWING ALGORITHMS

13.5.2 Multi-Layer Crossing Minimization

In the multi-layer crossing minimization problem (MLCM) we are given a k-layered graph,
G = (V1, . . . , Vk, E), with the goal of finding permutations π1, . . . , πk such that the edge
crossings are minimized. Again, both exact and heuristic methods have been proposed.

Before we deal with the full k-layer problem, it is worth considering a number of ap-
proaches to the two-layer crossing minimization problem (TLCM). Recall that it was on
this problem that first complexity results were found [GJ83].

Two-Layer Crossing Minimization

For TLCM Valls et al. [VML96] propose a branch-and-bound algorithm that, they
claim, considers a small fraction of the total search space. They report that the average time
taken to compute Copt for a bipartite graph G(U, V,E), |U | = |V | = 13 and edge-density
0.3 was 40 minutes. As the following method appears to give better results we focus on this
method.

In the course of considering OLCM Jünger and Mutzel [JM97] observed that a simple
lower bound on the number of crossings proved to be tight. Based on this they developed
a branch-and-bound algorithm for TLCM. Given an hour of computation time on a Sun
Sparcstation 10 it was possible to solve to optimality problems varying in size from vertex
size V1 = V2 = 11 with 80% edge density, to vertex size V1 = V2 = 16 with 10% edge
density. Of heuristic methods for TLCM iterated barycenter was the clear champion, even
surpassing, surprisingly, an iterated scheme based around an exact OLCM algorithm.

Newton et al. [NSV02] consider two new heuristics that, they claim, outperforms the
iterated barycenter method. The first method is based on a connection between the bipartite
crossing number and the linear arrangement problem which seeks to order the vertices of
a graph so that the absolute distance between edges is minimized [SSSV01]. Any heuristic
solution to the linear arrangement problem can then be immediately used as a solution
to the bipartite crossing number problem. Two methods based on computing the Fiedler
eigenvector of the Laplacian of G are proposed. Another method proposed by the authors
[NSV02] that also yields very good results is to repeatedly randomly choose a pair of vertices
on the same side, swap their positions and keep this new solution (only) if an improvement
resulted.

Heuristic Approaches

The most usual heuristic approach is to repeatedly apply a layer-by-layer sweep of a
one-layer crossing minimization algorithm until no further improvement is possible [STT81].
That is, for a layer i, the vertices of layers i−1 and i+1 are held fixed if the layers exist and Vi
is permuted. This procedure is then applied for successively increasing and decreasing i until
there is no further improvement. Obviously other stopping criteria may be used instead and
more sophisticated control mechanisms can replace the simple up-down strategy described
here [GKNV93, San95].

An alternative to the layer-by-layer sweep approach was proposed by Matuszewski et
al. [MSM99]. The idea, which can also be applied to OLCM, orders all vertices in V =
V1 ∪ · · · ∪Vk according to their degree and finds the best position for it on its layer. It does
this by sifting the vertex through all possible positions (all others remaining fixed), using
the crossing number matrix to count the crossings that would result at each position.

A different heuristic alternative solves an exact crossing minimization problem on a subset
or window of the multi-layer graph that matches certain criteria [EGDB02]. Some improve-
ments over the champion iterated barycenter are presented, although running time remains
a problem with the procedure.

13.5. VERTEX ORDERING 439

Exact Methods

Following from their work on the linear ordering and OLCM problems Jünger et
al. derived an integer linear programming (ILP) formulation for MLCM [JLMO97]. As
in the one-layer case, quadratic terms analogous to those appearing in equation (13.7)
prevent formulation as a linear program. In this case, however, neither layer is fixed so
a different strategy is called for. The proposed solution is to introduce crossing variables,
cijkl, denoting whether the edges (i, j) and (k, l) cross when i < j, k < l, i < k and j 6= l.
Using this notation along with boolean variables xij to denote π1(i) < π1(j) and yij to
denote π2(i) < π2(j) TLCM can be formulated as

minimize
∑

(i,j),(k,l)∈E

cijkl (13.14)

− cijkl ≤ yjl − xik ≤ cijkl (i, j), (k, l) ∈ E, j < l (13.15)

1− cijkl ≤ ylj + xik ≤ 1 + cijkl (i, j), (k, l) ∈ E, l > j (13.16)

0 ≤ xij + xjk − xik ≤ 1 1 ≤ i < j < k ≤ n1 (13.17)

0 ≤ yij + yjk − yik ≤ 1 1 ≤ i < j < k ≤ n2 (13.18)

xij , yij , cijkl ∈ {0, 1} (13.19)

If cijkl = 0 then equation (13.15) forces the ordering of vertices i and k to be the same
as that of j and l; similarly, if edges (i, j) and (k, l) cross then yjl − xik = {−1, 1}, forcing
cijkl = 0. Since the variable yjl, l < j does not exist equation (13.16) uses the identity
yjl = 1− yjl analogously.

The k-layer problem can then be formulated as

minimize

p−1∑
r=1

∑
(i,j),(k,l)∈Er

crijkl (13.20)

− crijkl ≤ xr+1
jl − x

r
ik ≤ crijkl (i, j), (k, l) ∈ Er, j < l (13.21)

1− crijkl ≤ xr+1
lj + xrik ≤ 1 + crijkl (i, j), (k, l) ∈ Er, l > j (13.22)

0 ≤ xrij + xrjk − xrik ≤ 1 1 ≤ i < j < k ≤ nr (13.23)

xrij , c
r
ijkl ∈ {0, 1} (13.24)

where
Er = {(u, v) ∈ E|u ∈ Vr, v ∈ Vr+1}. (13.25)

Jünger et al. [JLMO97] analyze the polytope associated with this ILP formulation and
present some results that describe facets of the polytope. Healy and Kuusik analyze the
cycle space of an MLCM instance [HK04] and derive additional constraints for the ILP
formulation (13.20)–(13.24). In his PhD thesis Kuusik [Kuu00] uses these new inequalities.
Also described is how additional constraints such as different paths that may not cross, or
a group of vertices must appear consecutively can be included.

Algorithm Performance

Matuszewski et al. [MSM99] claim that their global sifting method leads to a 20%
improvement over iterated barycenter, although the time taken is considerable. An improved
version of the algorithm [GSBM01] improves the running time of the original by a factor of
10, the authors claim.

440 CHAPTER 13. HIERARCHICAL DRAWING ALGORITHMS

Jünger et al. [JLMO97] present some preliminary results of their ILP formulation of
MLCM on 3-layer problems. The largest problem has V1 = 26, V2 = 18, V3 = 17, E1 =
29, E2 = 29 and takes 330 seconds to find an optimal solution. Kuusik [Kuu00] presents
solutions to larger problems, one measuring over 90 vertices and 112 edges spread over
9 levels (Forrester’s “World Dynamics” [GKNV93]). What emerges is that the model is
sensitive to the number of linear ordering variables, which is driven by the average node
count per layer.

More recently, semidefinite programming (SDP) methods have begun to offer the prospect
of solving larger problems to optimality. Following on from the 2-level case formulated by
Buchheim et al. [BWZ10] general k-level solutions have been obtained. Chimani et al.
[CHJM11] report on experiments where the method outperformed an ILP implementation.
Test cases with up to 20 levels and up to 25 vertices per layer were randomly generated
and while an ILP implementation was capable of solving sparse instances (inter-layer edge
density, d, of up to 0.1) it was unable to solve a single case where d ≥ 0.2, instances which
their SDP solver was routinely able to solve.

13.5.3 Planarization – An Alternative

Mutzel [Mut01] observes that the understandability of a graph may be subtler than simply
counting the number of crossings in the graph. It may be that if a few edges account
for the crossings then the eye may more easily filter these crossings even if more than the
minimum. Thus, an alternative to minimizing edge crossings in a k-level graph presents
itself: determine the maximum level planar subgraph; draw this k-level subgraph without
crossings; and, finally, reinsert the “nonplanar” edges, in the expectation that not many
crossings will result. This problem has become of interest in the graph drawing community
and a number of complexity results are known [DFH+01a, DFH+01b].

Mutzel and Weiskircher [MW98] adopt this approach by finding the maximum planar
subgraph, which they call the two-layer planarization problem. They formulate the pla-
narization problem as an ILP and they identify a set of facets of the associated polytope in
the cases where one or both layers are fixed. In order to solve k-layer problems they solve
a succession of two-layer problems, although this is clearly a sub-optimal strategy.

Kuusik uses ILP methods also for the general k-level planarization problem [Kuu00]. We
state the problem as, given a k-level graph, G = (V,E), find a k-level planar subgraph
Gp = (V,Ep) so that |Ep| is maximum. An important aspect of finding the maximum
k-level planar subgraph is identifying k-level subgraphs that are minimally non-planar and
based on this characterization [HKL04] and the cycle space of the graph [HK04] facets of the
associated polytope are identified. Some of these facets are put to use in a branch-and-cut
algorithm.

An ILP formulation follows easily from that described for the minimum-crossing ILP
(13.20)–(13.24). By introducing a binary variable pij for each edge where pij = 1 if and
only if (i, j) ∈ Ep and observing that if (i, j) ∈ Ep and (k, l) ∈ Ep then cijkl = 0, the
following constraint expresses the relationship between the two

pij + pkl + cijkl ≤ 2 (13.26)

A complete ILP may then be expressed as

maximize
∑

(i,j)∈E

pij (13.27)

13.6. X-COORDINATE ASSIGNMENT 441

subject to

pij + pkl + cijkl ≤ 2 (13.28)

constraints(13.21)− (13.24) (13.29)

pij ∈ {0, 1} (13.30)

Among several equal in size maximum level planar subgraph solutions it may be desirable
to favor ones with that will result in fewer crossings. Objective function (13.27) can be
modified to take account of crossing variables and favor solutions with fewer crossings

maximize
∑

(i,j)∈E

pij +
1

kc + 1

∑
(i,j),(k,l)∈E

cijkl (13.31)

where kc is the number of crossing variables.
Kuusik reports [Kuu00] being able to solve a set of randomly generated problems of size

k = 8, V1 = · · · = V8 = 12, E = 110 in times ranging from 62(s) to, in an extreme case,
343(s).

13.6 x-Coordinate Assignment

Having determined a relative ordering of the vertices on each level the final step requires
positioning the vertices so that, insofar as is possible, the edges are straight and vertices are
centered among their neighbors. Aesthetically straight edges are desirable and this can be
achieved by adjusting the positioning – the x-coordinate – of each vertex; there is also some
evidence that, perceptually, straight edges are preferable [HEH09]. However, it is likely that
the width of the graph will increase during this step.

It will be remembered that long edges of the input graph will have been subdivided by the
introduction of dummy nodes and a vertical “flow through” for these vertices is particularly
desirable. Given an edge from level i to level j in the input graph it becomes the path
(vi, vi+1, . . . , vj) after the insertion of dummy nodes. It is reasonable to expect that the
sub-path (vi+1, . . . , vj−1) be drawn strictly vertical with the (at most two) bends occurring
at vertices vi+1 and vj−1, if necessary. Most algorithms in the literature make this a priority.

In their original paper Sugiyama et al. [STT81] propose a mathematical programming
solution with a quadratic objective function that is a convex combination of two separate
goals. Closeness to connected vertices and a balance, or centering, between a vertex’s
predecessor neighbors and its successor neighbors are the two criteria identified. Since these
goals will counteract each other in general they are each weighted by parameters c and 1−c,
0 < c ≤ 1 respectively. All dummy nodes associated with a long edge are restricted to be
vertically aligned; this presupposes that if two long edges cross, the crossing occurs on either
the first or last segment of both edges. Because quadratic programming was computationally
expensive at the time the authors also proposed a “Priority Layout Method” that operates
in a similar spirit to their crossing-minimization level-by-level sweep. Dummy nodes are
assigned a high priority so that they will be aligned, though care is required to ensure that
the level’s vertex ordering is maintained.

Gansner et al., too, propose exact and heuristic algorithms [GKNV93]. Their exact
algorithm is linear programming-based again. Whereas the quadratic objective function of
Sugiyama [STT81] minimizes terms (among others) such as

∑
(u,v∈E(x(u)−x(v)2, Gansner

et al. replace the quadratic term by |x(u) − x(v)|. This can now be linearized but at the
expense of introducing an additional variable and two additional constraints for each edge.

442 CHAPTER 13. HIERARCHICAL DRAWING ALGORITHMS

1 2

3

4 5

6 7

8 9

10 11 12

13 14 15 16

17 18 19 20

21 22

23

(a) leftmost upper

1 2

3

4 5

6 7

8 9

10 11 12

13 14 15 16

17 18 19 20

21 22

23

(b) rightmost upper

1 2

3

4 5

6 7

8 9

10 11 12

13 14 15 16

17 18 19 20

21 22

23

(c) leftmost lower

1 2

3

4 5

6 7

8 9

10 11 12

13 14 15 16

17 18 19 20

21 22

23

(d) rightmost lower

Figure 13.15 Four “extreme” alignments computed by the Brandes-Köpf algorithm.

Thus, on the grounds that the constraint matrix grows from size V E to size (V +E)E, they
dismiss this and propose a heuristic that operates, again, by sweeping up and down over the
levels. Other heuristics have been proposed by Eades et al. who place nodes belonging to any
layer other than the top or bottom according to a degree-weighted barycenter and sweep up
and down the levels “until x converges” [ELT96], and Sander with his Pendulum heuristic,
which lays out edges Manhattan style and thus may require four bends per edge [San96a].

We close this section with a more detailed look at Brandes and Köpf’s algorithm [BK02],
which is considered to be the algorithm of choice for assignment of x-coordinate; the algo-
rithm’s running time is linear in the number of vertices and edge segments. As we have
remarked, the algorithm guarantees that, for long edges, at most two bends will occur, and
if they are necessary they will occur on the external segments of an edge. Thus, provided
the crossing reduction step has ensured that no two long edges cross internally, all dummy
(internal) nodes of a long edge will be aligned.

Similar to Gansner et al. above, the algorithm uses |x(u)− x(v)| as a surrogate for edge-

length. Since, for a set X = {xi} of real numbers,
∑k
i=1 |x− xi| is minimized when x is the

median of the set, the algorithm focuses on placing a vertex at the median of its neighbors.

The algorithm firstly computes four “extreme” layouts where each vertex is aligned either
with its upper or lower median neighbor and, for each case, vertices on a level are considered
in a left-to-right (left alignment) or right-to-left (right alignment) order. Figure 13.15
(reproduced with the authors’ kind permission from their paper [BK02]) illustrates the
four layouts for a given graph. Conflicts – called type 0 conflicts – can arise due to a
pair of external segments that either cross or are incident upon the same vertex and these
are resolved by the order of consideration. Because the algorithm favors vertical inner
segments a crossing of an inner segment with an outer segment – a type 1 conflict – should
give precedence to aligning the vertices of the inner segment. A preprocessing step marks
such external segments as being excluded from consideration for alignment.

After each of the four extreme layouts are computed, the layout’s blocks are computed.
A block is a maximal set of vertically aligned vertices. These blocks may then be compacted,
subject to minimum separation requirements, giving an x-coordinate for each vertex.

Having performed this procedure four times, each with a directional bias, what is sur-
prising, perhaps, is that the four candidate positions can be combined so straightforwardly
to get the final position with such satisfactory results. Of the four possibilities the al-
gorithm chooses what is called the average median, which, for x1 ≤ x2 ≤ . . . ≤ xk, is

13.7. EXTENSIONS AND ALTERNATIVES TO SUGIYAMA’S FRAMEWORK 443

(xb(k+1)/2c + xd(k+1)/2e)/2. One of the arguments for this choice as opposed to the mean,
say, is if a vertex is aligned twice with its upper median neighbor and unevenly positioned
in the other two runs the average median will maintain verticality of the segment.

The main body of the algorithm is the four linear sweeps over the segments. The authors
demonstrate how the type 1 conflicts can be detected in linear time, also. Finally, for each
vertex, the average median of four can be determined in linear time.

13.7 Extensions and Alternatives to Sugiyama’s Framework

There are a few attempts to extend the Sugiyama method beyond the originally proposed
framework. Some extensions such as the cycle-removal step and the edge-concentration step
have become standard features of the Sugiyama framework nowadays.

Do Nascimento and Eades have proposed and extensively studied methods for applying
user constraints to hierarchical drawings interactively [dNE01a, dNE01b]. In particular,
they allow the user to interact with an already-computed hierarchical drawing and introduce
additional constraints on the relative position of some vertices. Taking the user constraints
into account they show how to reapply the Sugiyama method locally to a subgraph of the
digraph and efficiently recompute the coordinates of the affected nodes only. They also
propose an interactive genetic algorithm with similar features [dNE02].

Although the Sugiyama method has been the most popular method for hierarchical
drawing of digraphs, several researchers have proposed successful alternative methods.
Sugiyama and Misue proposed a magnetic-field method for hierarchical drawing of acyclic
digraphs [SM95a]. A global magnetic field is applied to the edges and they are aligned
to it. As a result all edges point unidirectionally without specifically placing the vertices
on parallel horizontal lines. Note that in any drawing with edges pointing into the same
direction and continuous y-coordinates of the vertices levels can be easily induced from by
a simple quantization procedure.

Utech et al. [UBSE98] proposed a genetic algorithm as an alternative to the Sugiyama
method. The chromosome contains values which represent the y-coordinate (i.e., layer) and
x-coordinate (i.e., position within the layer) of each original and dummy vertex. Thus, the
x- and y-coordinates of the vertices evolved simultaneously. The fitness of each individual
is provided by the number of edge crossings.

Carmel et al. proposed an energy-based alternative to the Sugiyama method [CHK04].
Based on rapidly solving a unique one-dimensional optimization problem for each of the
axes their algorithm produces a clear representation of the hierarchical structure of the
digraph. Vertices are not restricted to lie on horizontal levels which allows their layouts to
convey the symmetries of the digraph. An interesting detail is that the algorithm can be
applied without change to both cyclic or acyclic digraphs, and even to graphs containing
both directed and undirected edges.

A few researchers have attempted 3D hierarchical drawing of digraphs. Ostry has pro-
posed wrapping a 2D hierarchy around either a cylinder or a cone [Ost96]. A 3D approach
intrinsically different from the Sugiyama method has been proposed within the graph draw-
ing system GIOTTO3D [GT97]. In its first phase it applies a planarization method to draw
the digraph in 2D; in the second phase vertices and edges are assigned z-coordinates so that
all edges point into the same vertical direction and the total edge span is minimized; and
at the third phase the shape of the vertices and the edges is determined.

444 CHAPTER 13. HIERARCHICAL DRAWING ALGORITHMS

Hong and Nikolov have proposed an extension to the Sugiyama framework for hierarchical
drawing of digraphs in 3D [HN05b, HN05a]. They introduced the convention of drawing the
digraph in a set of parallel planes, called walls, each containing a 2D hierarchical drawing
of a subgraph of the input digraph. The partition of the vertex set into walls is done
at a separate wall-assigning step applied after the layer-assignment step and before the
vertex-ordering step. Hong and Nikolov proposed and evaluated various wall-assignment
algorithms which partition the vertex set into walls according to different criteria.

One of the limitations of the Sugiyama framework is that decisions made at previous
steps influence later steps and yet cannot be undone. We have seen that the edge of a cycle
one chooses to break can have a bearing on how the graph is interpreted. Likewise, how one
levels the graph impacts on the number of dummy nodes which has a bearing on the running
time of the algorithm. Chimani et al. attempt to decouple some of these dependencies by
sidestepping the three-step decomposition and instead search for a global solution with the
principal goal of minimizing crossings [CGMW11, CGMW10]. The algorithm necessarily
sacrifices drawing height for a lower crossing count and thus edge-length is increased. In
spite of this the authors assert that their UPL system improves aspect-ratio; running time
of their system suffers and is greater than their Sugiyama implementation [CGMW11].

An alternative fashion of drawing 2D hierarchies is by arranging the layers as concentric
circles [RFEM88, Ead92]. Such drawings are known as radial level drawings. They can
be very useful if the input digraph represents the structure of a website or a file system,
for example. They have been used for visualizing social networks as well [BKW03]. The
Sugiyama method can be applied with all its steps for making radial hierarchical drawings.
However, each step may require a specific algorithm for producing aesthetically pleasing
result. There are a few recent results in this area of research. Bachmaier et al. have
proposed an algorithm for computing a radial level planar embedding if one exists along
with a linear-time algorithm for the coordinate-assignment step [BFF05]. The figure below
(reproduced with permission of the authors [BBF05]) illustrates one of the advantages of
the drawing style: edge (18,19) of Figure 13.16a effectively can be routed “around the back
of the drawing” thus avoiding the crossings, as demonstrated in Figure 13.16b.

1

3

2

4

5

1

2 3 4

5 6 7 8

9 10 11 12 13 14 15 16 18

19 20 21 22 23

17

(a) Horizontal leveling.

2
3

4

5

2

1

23

22

21

20

19

18

1716

15

14

13

12

11

10

9

8

7

6

5

4

3

(b) Radial leveling.

Figure 13.16 A Horizontally Leveled Drawing and its Radial Counterpart.

Much of what has gone before relies on the input (directed) graph being acyclic, or being
preprocessed so that it becomes one. Yet, Sugiyama and his colleagues in their seminal
paper [STT81] also addressed the drawing of a particular class of cyclic digraph they called
recurrent hierarchies. In this situation an additional set of edges En ⊆ Vn × V1 connect
vertices on the bottom layer to vertices on the top layer. Brunner et al. consider the
cyclic style of drawing [Bru10, BBBL08] where the inevitable “implied ranking” associated

13.7. EXTENSIONS AND ALTERNATIVES TO SUGIYAMA’S FRAMEWORK 445

with a top-to-bottom leveling (see Figure 13.1) is avoided. Vertices assigned to a level are
distributed along a spoke of an imaginary wheel with spokes evenly distributed. Figure
13.17 below illustrates the technique on the example graph of Figure 13.2.

9

10

2

1

4
3

11

5

6

15

8

7
14

13

12

(a) Input graph, G, with cycles.

1

23

4

5
6

2 1

4

3

11

5

6

15

87

10 14

9

13

12

(b) Cyclic drawing.

Figure 13.17 A Cyclic Drawing of the graph G of Figure 13.2.

446 CHAPTER 13. HIERARCHICAL DRAWING ALGORITHMS

References

[AGU72] A. V. Aho, M. R. Garey, and J. D. Ullman. The transitive reduction of a
directed graph. SIAM Journal on Computing, 1(2):131–137, June 1972.

[Bac07] C. Bachmaier. A radial adaptation of the Sugiyama framework for visu-
alizing hierarchical information. IEEE Transactions on Visualization and
Computer Graphics, 13(3):583 –594, 2007.

[BBBF12] Christian Bachmaier, Franz J. Brandenburg, Wolfgang Brunner, and Ray-
mund Fülöp. Drawing recurrent hierarchies. Journal of Graph Algorithms
and Applications, 16(2):151–198, 2012.

[BBBL08] Christian Bachmaier, Franz-Josef Brandenburg, Wolfgang Brunner, and
Gergö Lovász. Cyclic leveling of directed graphs. In Ioannis G. Tollis
and Maurizio Patrignani, editors, Graph Drawing, volume 5417 of Lecture
Notes in Computer Science, pages 348–359. Springer, 2008.

[BBF05] Christian Bachmaier, Franz J. Brandenburg, and Michael Forster. Radial
level planarity testing and embedding in linear time. Journal of Graph
Algorithms and Applications, 9(1):53–97, 2005.

[BELM01] J. Branke, P. Eades, S. Leppert, and M. Middendorf. Width restricted
layering of acyclic digraphs with consideration of dummy nodes. Technical
Report No. 403, Intitute AIFB, University of Karlsruhe, 76128 Karlsruhe,
Germany, 2001.

[BFF05] Christian Bachmaier, Florian Fischer, and Michael Forster. Radial coor-
dinate assignment for level graphs. In L. Wang, editor, Proc. Computing
and Combinatorics Conference, COCOON 2005, volume 3595 of Lecture
Notes in Computer Science, pages 401–410. Springer, 2005.

[BJM02] Wilhelm Barth, Michael Jünger, and Petra Mutzel. Simple and efficient
bilayer cross counting. In Kobourov and Goodrich [KG02], pages 130–141.

[BK02] U. Brandes and B. Köpf. Fast and simple horizontal coordinate assign-
ment. In P. Mutzel, M. Jünger, and Leipert S., editors, Graph Drawing:
Proceedings of 9th International Symposium, GD 2001, volume 2265 of
Lecture Notes in Computer Science, pages 31–44. Springer-Verlag, 2002.

[BKW03] U. Brandes, P. Kenis, and D. Wagner. Communicating centrality in policy
network drawings. IEEE Transact. Vis. Comput. Graph., 9(2):241–253,
2003.

[BLME02] J. Branke, S. Leppert, M. Middendorf, and P. Eades. Width-restriced lay-
ering of acyclic digraphs with consideration of dummy nodes. Information
Processing Letters, 81(2):59–63, January 2002.

[Bré79] D. Brélaz. New methods to color the vertices of a graph. Communications
of the ACM, 22(4):251–256, 1979.

[Bru10] Wolfgang Brunner. Cyclic Level Drawings of Directed Graphs. PhD thesis,
Universitt Passau, Innstrasse 29, 94032 Passau, 2010.

[BS90] B. Berger and P. W. Shor. Approximation algorithms for the maximum
acyclic subgraph problem. In Proceedings of the 1st Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 236–243, 1990.

[BWZ10] Christoph Buchheim, Angelika Wiegele, and Lanbo Zheng. Exact algo-
rithms for the quadratic linear ordering problem. INFORMS Journal on
Computing, 22(1):168–177, 2010.

REFERENCES 447

[Car80] M. J. Carpano. Automatic display of hierarchized graphs for computer
aided decision analysis. IEEE Transactions on Systems, Man and Cyber-
netics, 10(11):705–715, 1980.

[Cat95] T. Catarci. The assignment heuristics for crossing reduction. IEEE Trans-
actions on Systems, Man, and Cybernetics, 25(3):515–521, 1995.

[CG72] E. G. Coffman and R. L. Graham. Optimal scheduling for two processor
systems. Acta Informatica, 1:200–213, 1972.

[CGMW10] Markus Chimani, Carsten Gutwenger, Petra Mutzel, and Hoi-Ming Wong.
Layer-free upward crossing minimization. J. Exp. Algorithmics, 15:2.2:2.1–
2.2:2.27, March 2010.

[CGMW11] Markus Chimani, Carsten Gutwenger, Petra Mutzel, and Hoi-Ming Wong.
Upward planarization layout. J. Graph Algorithms Appl., 15(1):127–155,
2011.

[CHJM11] Markus Chimani, Philipp Hungerländer, Michael Jünger, and Petra
Mutzel. An SDP approach to multi-level crossing minimization. In
Matthias Müller-Hannemann and Renato F. Werneck, editors, ALENEX,
pages 116–126. SIAM, 2011.

[CHK02] Liran Carmel, David Harel, and Yehuda Koren. Drawing directed graphs
using one-dimensional optimization. In Michael Goodrich and Stephen
Koubourov, editors, Proceedings of 10th International Symposium, GD
2002, number 2528 in Lecture Notes in Computer Science, pages 193–206.
Springer, 2002.

[CHK04] L. Carmel, D. Harel, and Y. Koren. Combining hierarchy and energy
for drawing directed graphs. IEEE Transactions on Visualization and
Computer Graphics, 10(1):46–57, 2004.

[DDLM04] Emilio Di Giacomo, Walter Didimo, Giuseppe Liotta, and Henk Meijer.
Computing radial drawings on the minimum number of circles. In János
Pach, editor, Graph Drawing, volume 3383 of Lecture Notes in Computer
Science, pages 251–261. Springer, 2004.

[DETT99] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing.
Prentice Hall, 1999.

[DF03] C. Demetrescu and I. Finocchi. Combinatorial algorithms for feedback
problems with directed graphs. Information Processing Letters, 86:129–
136, 2003.

[DFH+01a] Vida Dujmovic, Michael R. Fellows, Michael T. Hallett, Matthew Kitch-
ing, Giuseppe Liotta, Catherine McCartin, Naomi Nishimura, Prabhakar
Ragde, Frances A. Rosamond, Matthew Suderman, Sue Whitesides, and
David R. Wood. On the parameterized complexity of layered graph draw-
ing. In Friedhelm Meyer auf der Heide, editor, ESA, volume 2161 of Lecture
Notes in Computer Science, pages 488–499. Springer, 2001.

[DFH+01b] Vida Dujmovic, Michael R. Fellows, Michael T. Hallett, Matthew Kitch-
ing, Giuseppe Liotta, Catherine McCartin, Naomi Nishimura, Prabhakar
Ragde, Frances A. Rosamond, Matthew Suderman, Sue Whitesides, and
David R. Wood. A fixed-parameter approach to two-layer planarization.
In Petra Mutzel, Michael Jünger, and Sebastian Leipert, editors, Graph
Drawing, volume 2265 of Lecture Notes in Computer Science, pages 1–15.
Springer, 2001.

448 CHAPTER 13. HIERARCHICAL DRAWING ALGORITHMS

[DFK03] Vida Dujmovic, Henning Fernau, and Michael Kaufmann. Fixed parame-
ter algorithms for one-sided crossing minimization revisited. In Giuseppe
Liotta, editor, Graph Drawing, volume 2912 of Lecture Notes in Computer
Science, pages 332–344. Springer, 2003.

[DGL+00] Giuseppe Di Battista, Ashim Garg, Giuseppe Liotta, Armando Parise,
Roberto Tamassia, Emanuele Tassinari, Francesco Vargiu, and Luca Vis-
mara. Drawing directed acyclic graphs: An experimental study. Int. J.
Comput. Geometry Appl., 10(6):623–648, 2000.

[dNE01a] H. A. D. do Nascimento and P. Eades. A framework for human-computer
interaction in directed graph drawing. In InVis.au, pages 63–69. CRPIT,
2001.

[dNE01b] H. A. D. do Nascimento and P. Eades. User hints for directed graph
drawing. In P. Mutzel, M. Jünger, and S. Leipert, editors, Graph Drawing:
Proceedings of 9th International Symposium, GD 2001, volume 2265 of
Lecture Notes in Computer Science, pages 205–219. Springer-Verlag, 2001.

[dNE02] H. A. D. do Nascimento and P. Eades. A focus and constraint-based
genetic algorithm for interactive directed drawing. HIS, pages 634–643,
2002.

[Dre94] S. Dresbach. A new heuristic layout algorithm for directed acyclic graphs.
In U. Derigs, A. Bachem, and A. Drexl, editors, Operations Research Pro-
ceedings 1994, pages 121–126, Berlin–Heidelberg, 1994.

[DW02] Vida Dujmovic and Sue Whitesides. An efficient fixed parameter tractable
algorithm for 1-sided crossing minimization. In Kobourov and Goodrich
[KG02], pages 118–129.

[Ead84] Peter Eades. A heuristic for graph drawing. Congressus Numerantium,
42:149–160, 1984.

[Ead92] P. Eades. Drawing free trees. Bulletin of the Institute of Combinatorics
and its Applications, 5:10–36, 1992.

[EGDB02] Thomas Eschbach, Wolfgang Günther, Rolf Drechsler, and Bernd Becker.
Crossing reduction by windows optimization. In Kobourov and Goodrich
[KG02], pages 285–294.

[EGM04] D. Eppstein, M. T. Goodrich, and J. Y. Meng. Confluent layered draw-
ings. In J. Pach, editor, Graph Drawing: Proceedings of 12th International
Symposium, GD 2004, volume 3383 of Lecture Notes in Computer Science,
pages 184–194. Springer-Verlag, 2004.

[EK86] P. Eades and D. Kelly. Heuristics for reducing crossings in 2-layered net-
works. Ars Combinatoria, 21-A:89–98, 1986.

[EL95] P. Eades and X. Lin. A new heuristic for the feedback arc set problem.
Australian Journal of Combinatorics, 12:15–26, 1995.

[ELS89] P. Eades, X. Lin, and W. F. Smyth. Heuristics for the feedback arc set
problem. Technical Report 1, Curtin University of Technology, School of
Computing Science, Perth, Australia, 1989.

[ELS93] P. Eades, X. Lin, and W. F. Smyth. A fast and effective heuristic for the
feedback arc set problem. Information Processing Letters, 47(6):319–323,
1993.

[ELT96] Peter Eades, Xue-Min Lin, and Roberto Tamassia. An algorithm for draw-
ing hierarchical graphs. Int. J. Comput. Geom. Appl., 6:145–156, 1996.

REFERENCES 449

[ENRS95] G. Even, J. Naor, S. Rao, and B. Schieber. Divide-and-conquer approxi-
mation algorithms via spreading metrics. In Proceedings of the 36th An-
nual IEEE Symposium on Foundations of Computer Science, pages 62–71,
1995.

[ES90] P. Eades and K. Sugiyama. How to draw a directed graph. Journal of
Information Processing, 13(4):424–437, 1990.

[EW94] P. Eades and N. C. Wormald. Edge crossings in drawings of bipartite
graphs. Algorithmica, 11:379–403, 1994.

[FH96] P. C. Fishburn and P. L. Hammer. Bipartite dimensions and bipartite
degree of graphs. Discrete Mathematics, 160:127–148, 1996.

[Flo90] M. M. Flood. Exact and heuristic algorithms for the weighted feedback
arc set problem: A special case of the skew-symetric quadratic assignment
problem. Networks, 20:1–23, 1990.

[FS04] C. Friedrich and F. Schreiber. Flexible layering in hierarchical drawings
with nodes of arbitrary size. In Proceedings of the 27th Conference on
Australasian Computer Science, pages 369–376, Dunedin, New Zealand,
2004.

[FW95] M. Fröhlich and M. Werner. Demonstration of the interactive graph visual-
ization system daVinci. In R. Tamassia and I. Tollis, editors, Proceedings
of DIMACS Workshop on Graph Drawing ’94, Princeton (USA) 1994,
volume 894 of LNCS. Springer-Verlag, 1995.

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman, New York, 1979.

[GJ83] M. R. Garey and D. S. Johnson. Crossing number is NP -complete. SIAM
J. Algebraic and Discrete Methods, 4(3):312–316, 1983.

[GJR85] M. Grötschel, M. Jünger, and G. Reinelt. On the acyclic subgraph poly-
tope. Mathematical Programming, 33(1):28–42, 1985.

[GKN02] Emden Gansner, Eleftherios Koutsofios, and Stephen North. Draw-
ing graphs with dot. Technical report, AT&T Labs—Research, 2002.
http://www.research.att.com/sw/tools/graphviz/dotguide.pdf.

[GKNV93] E. R. Gansner, E. Koutsofios, S. C. North, and K.-P Vo. A technique
for drawing directed graphs. IEEE Transactions on Software Engineering,
19(3):214–230, March 1993.

[GN00] Emden R. Gansner and Stephen C. North. An open graph visualization
system and its applications to software engineering. Softw., Pract. Exper.,
30(11):1203–1233, 2000.

[GSBM01] W. Günther, R. Schönfeld, B. Becker, and P. Molitor. k-layer straightline
crossing minimization by speeding up sifting. In J. Marks, editor, Graph
Drawing: Proceedings of 8th International Symposium, GD 2000, volume
1984 of Lecture Notes in Computer Science, pages 253–258. Springer-
Verlag, 2001.

[GT97] A. Garg and R. Tamassia. GIOTTO: A system for visualizing hierarchi-
cal structures in 3D. In S. North, editor, Graph Drawing: Symposium
on Graph Drawing, GD ’96, volume 1190 of Lecture Notes in Computer
Science, pages 193–200. Springer-Verlag, 1997.

450 CHAPTER 13. HIERARCHICAL DRAWING ALGORITHMS

[HEH09] Weidong Huang, Peter Eades, and Seok-Hee Hong. A graph reading behav-
ior: Geodesic-path tendency. In Peter Eades, Thomas Ertl, and Han-Wei
Shen, editors, PacificVis, pages 137–144. IEEE Computer Society, 2009.

[Him00] Michael Himsolt. Graphlet: design and implementation of a graph editor.
Softw., Pract. Exper., 30(11):1303–1324, 2000.

[HK04] Patrick Healy and Ago Kuusik. Algorithms for multi-level graph planarity
testing and layout. Theoretical Computer Science, 320(2–3):331–344, 2004.

[HKL04] Patrick Healy, Ago Kuusik, and Sebastian Leipert. A characterisation of
level planar graphs. Discrete Mathematics, 280(1–3):51–63, 2004.

[HN02a] P. Healy and N. S. Nikolov. A branch-and-cut approach to the directed
acyclic graph layering problem. In M. Goodrich and S. Koburov, edi-
tors, Graph Drawing: Proceedings of 10th International Symposium, GD
2002, volume 2528 of Lecture Notes in Computer Science, pages 98–109.
Springer-Verlag, 2002.

[HN02b] P. Healy and N. S. Nikolov. How to layer a directed acyclic graph. In
P. Mutzel, M. Jünger, and S. Leipert, editors, Graph Drawing: Proceedings
of 9th International Symposium, GD 2001, volume 2265 of Lecture Notes
in Computer Science, pages 16–30. Springer-Verlag, 2002.

[HN05a] S.-H. Hong and N. S. Nikolov. Hierarchical layouts of directed graphs in
three dimensions. In P. Healy and N. S. Nikolov, editors, Graph Drawing:
Proceedings of 13th International Symposium, GD 2005, volume 3843 of
LNCS. Springer-Verlag, 2005.

[HN05b] S.-H. Hong and N. S. Nikolov. Layered drawings of directed graphs in
three dimensions. In S.-H. Hong, editor, Information Visualisation 2005:
Asia-Pacific Symposium on Information Visualisation (APVIS2005), vol-
ume 45, pages 69–74. CRPIT, 2005.

[Hu61] T. Hu. Parallel sequencing and assembly line problems. Operations Re-
search, 9:841–848, November 1961.

[JLMO97] M. Jünger, E. K. Lee, P. Mutzel, and T. Odenthal. A polyhedral approach
to the multi-layer crossing minimization problem. In G. Di Battista, editor,
Graph Drawing: 5th International Symposium, GD ’97, volume 1353 of
Lecture Notes in Computer Science, pages 13–24, Rome, Italy, September
1997. Springer-Verlag.

[JM97] Michael Jünger and Petra Mutzel. 2-layer straightline crossing minimiza-
tion: Performance of exact and heuristic algorithms. J. Graph Algorithms
Appl., 1, 1997.

[KA99] Y.-K. Kwok and I. Ahmad. Static scheduling algorithms for allocat-
ing directed task graphs to multiprocessors. ACM Computing Surveys,
31(4):406–471, 1999. ACM Computing Surveys 31(4): 406-471 (1999).

[Kar72] R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller
and J. W. Thatcher, editors, Complexity of Computer Computations,
pages 85–103. Plenum Press, 1972.

[KG02] Stephen G. Kobourov and Michael T. Goodrich, editors. Graph Drawing,
10th International Symposium, GD 2002, volume 2528 of Lecture Notes in
Computer Science. Springer, 2002.

REFERENCES 451

[Kra99] Jan Kratochv́ıl, editor. Graph Drawing, 7th International Symposium,
GD’99, Stiŕın Castle, Czech Republic, September 1999, Proceedings, vol-
ume 1731 of Lecture Notes in Computer Science. Springer, 1999.

[Kuu00] Ago Kuusik. Integer Linear Programming Approaches to Hierarchical
Graph Drawing. PhD thesis, University of Limerick, 2000.

[Lei79] F. T. Leighton. A graph coloring algorithm for large scheduling problems.
Journal of Research of National Bureau of Standard, 84:489–506, 1979.

[Lin00] X. Lin. On the computational complexity of edge concentration. Discrete
Applied Mathematics, 101:197–205, 2000.

[Meh84] K. Mehlhorn. Data Structures and Algorithms, Volume 2: Graph Al-
gorithms and NP-Completeness. Springer-Verlag, Heidelberg, Germany,
1984.

[MELS95] K. Misue, P. Eades, W. Lai, and K. Sugiyama. Layout adjustment and
the mental map. Journal of Visual Languages and Computing, 6:183–210,
1995.

[MS94] E. Mäkinen and M. Sieranta. Genetic algorithms for drawing bipartite
graphs. Technical Report A-1994-1, Department of Computer Science,
University of Tampere, 1994.

[MSM99] Christian Matuszewski, Robby Schönfeld, and Paul Molitor. Using sifting
for k-layer straightline crossing minimization. In Kratochv́ıl [Kra99], pages
217–224.

[Mut01] P. Mutzel. An alternative method to crossing minimization on hierarchical
graphs. SIAM Journal on Optimization, 11(4):1065–1080, 2001.

[MW98] Petra Mutzel and René Weiskircher. Two-layer planarization in graph
drawing. In Kyung-Yong Chwa and Oscar H. Ibarra, editors, ISAAC,
volume 1533 of Lecture Notes in Computer Science, pages 69–78. Springer,
1998.

[Nag05] Hiroshi Nagamochi. On the one-sided crossing minimization in a bipartite
graph with large degrees. Theor. Comput. Sci., 332(1-3):417–446, 2005.

[New89] F. J. Newbery. Edge concentration: A method for clustering directed
graphs. In Proceedings of the 2nd International Workshop on Software
Configuration Management, pages 76–85. ACM Press, 1989.

[NPT90] Frances Newbery-Paulisch and Walter F. Tichy. Edge: An extendible
graph editor. Softw., Pract. Exper., 20(S1):S1/63–S1/88, 1990.

[NSV02] Matthew Newton, Ondrej Sýkora, and Imrich Vrto. Two new heuristics
for two-sided bipartite graph drawing. In Kobourov and Goodrich [KG02],
pages 312–319.

[NT06] N. S. Nikolov and A. Tarassov. Graph layering by promotion of nodes.
Discrete Applied Mathematics, 154(5):848–860, 2006.

[NW88] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimiza-
tion. Wiley-Interscience series in discrete mathematics and optimization.
John Wiley & Sons, Inc., 1988.

[NW01] S. North and G. Woodhull. Online hierarchical graph drawing. In
P. Mutzel, M. Jünger, and Leipert S., editors, Graph Drawing: Proceedings
of 9th International Symposium, GD 2001, volume 2265 of LNCS, pages
232–246. Springer-Verlag, 2001.

452 CHAPTER 13. HIERARCHICAL DRAWING ALGORITHMS

[NY04] Hiroshi Nagamochi and Nobuyasu Yamada. Counting edge crossings in a
2-layered drawing. Inf. Process. Lett., 91(5):221–225, 2004.

[Ost96] D. Ostry. Some three-dimensional graph drawing algorithms. Master’s
thesis, University of Newcastle, 1996.

[PCJ96] H. C. Purchase, R. F. Cohen, and M. James. Validating graph drawing
aesthetics. In F. J. Brandenburg, editor, Graph Drawing: Symposium
on Graph Drawing, GD ’95, volume 1027 of Lecture Notes in Computer
Science, pages 435–446. Springer-Verlag, 1996.

[Pur97] H. C. Purchase. Which aesthetic has the greatest effect on human un-
derstanding? In Giuseppe Di Battista, editor, Graph Drawing. 5th Inter-
national Symposium, GD ’97, volume 1353 of Lecture Notes in Computer
Science, pages 248–261. Springer-Verlag, 1997.

[RDM+87] L. A. Rowe, M. Davis, E. Messinger, C. Mayer, C.and Spirakis, and
A. Tuan. A browser for directed graphs. Software Practice and Expe-
rience, 17(1):61–76, 1987.

[Rei85] G. Reinelt. The linear ordering problem: Algorithms and applications. In
Research and Exposition in Mathematics, volume 8. Heldermann, 1985.

[RFEM88] M. G. Reggiani and F. E. F. E. Marchetti. A proposed method for repre-
senting hierarchies. IEEE Transact. Systems, Man, and Cyb., 18(1):2–8,
1988.

[San94] G. Sander. Graph layout through the VCG tool. Technical Report A03/94,
Universität des Saarlandes, 1994.

[San95] G. Sander. Graph layout through the VCG tool. In Graph Drawing.
DIMACS International Workshop GD’94, volume 894 of Lecture Notes in
Computer Science. Springer-Verlag, 1995.

[San96a] G. Sander. A fast heuristic for hierarchical Manhattan layout. In Franz
Brandenburg, editor, Graph Drawing, volume 1027 of Lecture Notes in
Computer Science, pages 447–458. Springer Berlin / Heidelberg, 1996.
10.1007/BFb0021828.

[San96b] G. Sander. Graph layout for applications in compiler construction. Tech-
nical Report A01-96, Universität des Saarlandes, FB 14 Informatik, 1996.

[Sey95] P. D. Seymour. Packing directed circuits fractionally. Combinatorica,
15:281–288, 1995.

[SM95a] K. Sugiyama and K. Misue. Graph drawing by the magneting spring
model. Journal of Visual Languages and Computing, 6(3):217–231, 1995.

[SM95b] K. Sugiyama and K. Misue. A simple and unified method for drawing
graphs: Magnetic-spring algorithm. In R. Tamassia and I. G. Tollis, edi-
tors, Graph Drawing: DIMACS International Workshop, GD ’94, volume
894 of Lecture Notes in Computer Science, pages 364–375. Springer-Verlag,
1995.

[SS97] B. Schwikowski and E. Speckenmeyer. On computing all minimal solutions
for feedback problems. Technical report, Universität zu Köln, 1997.

[SSSV01] Farhad Shahrokhi, Ondrej Sýkora, László A. Székely, and Imrich Vrto.
On bipartite drawings and the linear arrangement problem. SIAM J.
Computing, 30:1773–1789, 2001.

REFERENCES 453

[STT81] K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understanding
of hierarchical system structures. IEEE Transaction on Systems, Man,
and Cybernetics, 11(2):109–125, 1981.

[TNB04] A. Tarassov, N. S. Nikolov, and J. Branke. A heuristic for minimum-width
of graph layering with consideration of dummy nodes. In C. C. Ribeiro
and S. L. Martins, editors, Experimental and Efficient Algorithms, Third
International Workshop, WEA 2004, volume 3059 of Lecture Notes in
Computer Science, pages 570–583. Springer-Verlag, 2004.

[UBSE98] J. Utech, J. Branke, H. Schmeck, and P. Eades. An evolutionary algorithm
for drawing directed graphs. In Proceedings of the 1998 International
Conference on Imaging Science, Systems, and Technology (CISST’98),
pages 154–160, 1998.

[Ulm75] J. Ulman. NP-complete scheduling problems. Journal of Computer and
System Sciences, 10:384–393, 1975.

[VML96] V. Valls, R. Marti, and P Lino. A branch and bound algorithm for mini-
mizing the number of crossing arcs in bipartite graphs. Eur. J. Op. Res.,
90:303–319, 1996.

[War77] J. N. Warfield. Crossing theory and hierarchical mapping. IEEE Trans-
actions on Systems, Man and Cybernetics, 7(7):502–523, 1977.

[WM99] Vance E. Waddle and Ashok Malhotra. An E logE line crossing algorithm
for levelled graphs. In Kratochv́ıl [Kra99], pages 59–71.

14
Three-Dimensional Drawings

Vida Dujmović
Carleton University

Sue Whitesides
University of Victoria

14.1 Introduction . 455
14.2 Straight-line and Polyline Grid Drawings 457

Straight-line grid drawings • Upward • Polyline

14.3 Orthogonal Grid Drawings . 466
Point-drawings • Box-drawings

14.4 Thickness . 473
14.5 Other (Non-Grid) 3D Drawing Conventions 477
References . 482

14.1 Introduction

Two-dimensional graph drawing, that is, graph drawing in the plane, has been widely
studied. While this is not yet the case for graph drawing in 3D, there is nevertheless a
growing body of research on this topic, motivated in part by advances in hardware for
three-dimensional graphics, by experimental evidence suggesting that displaying a graph
in three dimensions has some advantages over 2D displays [WF94, WF96, WM08], and by
applications in information visualization [WF94, WM08], VLSI circuit design [LR86], and
software engineering [WHF93]. Furthermore, emerging technologies for the nano through
micro scale may create demand for 3D layouts whose design criteria depend on, and vary
with, these new technologies.

Not surprisingly, the mathematical literature is a source of results that can be regarded
as early contributions to graph drawing. For example, a theorem of Steinitz states that a
graph G is a skeleton of a convex polyhedron if and only if G is a simple 3-connected planar
graph.

It is natural to generalize from drawing graphs in the plane to drawing graphs on other
surfaces, such as the torus. Indeed, surface embeddings are the object of a vast amount of
research in topological graph theory, with entire books devoted to the topic. We refer the
interested reader to the book by Mohar and Thomassen [MT01] as an example.

Numerous drawing styles or conventions for 3D drawings have been studied. These styles
differ from one another in the way they represent vertices and edges. We focus on the most
common ones and on the algorithms with provable bounds on layout properties and running
time.

In this chapter, by a drawing we always mean a graph representation (realization, layout,
embedding) where no two vertices overlap and no vertex-edge intersections occur unless
there is a corresponding vertex-edge incidence in the combinatorial graph. We say that two
edges cross if they intersect at a point that is not the location of a shared endpoint of the
edges in the combinatorial graph. A drawing is crossing-free if no two edges cross.

455

456 CHAPTER 14. THREE-DIMENSIONAL DRAWINGS

It is natural to represent each vertex by a point and each edge by a straight-line segment
joining its endpoint vertices. These so-called straight-line drawings are one of the earliest
drawing styles considered both in the plane and in 3D. Steinitz’s Theorem, for example,
ensures the existence of 3D straight-line crossing-free drawings of all 3-connected planar
graphs. In fact, as will be seen later, all graphs have such drawings in 3D.

Regardless of the application, the placement of vertices is usually limited to points in
some discretized space. For example, when a drawing is to be displayed on a computer
screen, vertices must be mapped to integer grid points (pixels). This motivates the study of
grid drawings, where vertices are required to have integer coordinates. An attractive feature
of such drawings is that they ensure a minimum separation of at least one grid unit between
any pair of vertices. This aids readability and is thus a desirable aesthetic in visualization
applications.

straight-line crossing-free drawings whose vertices are located at points in Z
3 are called

3D (straight-line) grid drawings. The relaxation where edges are represented with polyg-
onal chains with bends (if any) also at grid-points gives rise to the so-called 3D polyline
grid drawings. Here, a point where a polygonal chain changes its direction is called a bend.
Straight-line grid drawings are thus a special case of polyline grid drawings. Polyline draw-
ings provide great flexibility. In particular, they allow 3D drawings with smaller volume
than is possible in the straight-line model. The number of bends, however, should be kept
as small as possible, since bends typically reduce the readability of a drawing.

If each segment of each edge in a polyline drawing is parallel to one of the three coordinate
axes, then we say the drawing is an orthogonal drawing. Orthogonal drawings are thus
special cases of polyline drawings. Since the orthogonal style guarantees very good angular
resolution, it is commonly chosen for VLSI design and data-flow diagrams. However, since
each vertex is represented by a point, for a graph to admit a 3D orthogonal drawing, each
vertex must have degree at most six. To overcome this difficulty, orthogonal box drawings
were introduced, where each vertex is represented by an axis-aligned box. In such drawings,
in addition to the volume and number of bends, various aspects of the sizes and shapes of
the boxes are taken as quality measures for the drawing.

Different drawing styles may be subject to different measures of quality. More often than
not, however, the measure of a good drawing, regardless of its purpose, rewards having few
edge crossings. When a drawing is to be displayed on a page or a computer screen, or is to
be used for VLSI design, it is important to keep the volume small to avoid wasting space.
On the other hand, a bend on an edge increases the difficulty for the eye to follow the course
of the edge. For this reason, it is desirable to keep the edges straight, or at least to keep
small the total number of bends and the maximum number of bends per edge.
Since by definition 3D grid drawings have straight edges and no crossings, volume is the

main aesthetic criterion for this drawing style. The convention for measuring the volume
of a drawing is to multiply together the number of grid points on each of three mutually
orthogonal sides of the axis-aligned bounding box of the drawing. In polyline and orthogonal
3D drawings, in addition to the volume, the number of bends is a measure of the quality of
the drawing.

In the last decade, this topic has been extensively studied by the graph drawing commu-
nity. Hence much of the following chapter, in particular Sections 14.2 and 14.3, is dedicated
to reviewing the results obtained for 3D (polyline) grid drawings and 3D orthogonal draw-
ings with the volume and the number of bends as the main aesthetic criteria.

Other measures of quality for 3D drawings include: angular resolution, defined as the size
of the smallest angle between any pair of edges incident to the same vertex; aspect ratio,
which is the ratio of the length of the longest side to the length of the shortest side of the
bounding box of the drawing; and edge resolution, which is the minimum distance between

14.2. STRAIGHT-LINE AND POLYLINE GRID DRAWINGS 457

a pair of edges not incident to the same vertex. When the underlying combinatorial graph
has non-trivial automorphisms, displaying some of the symmetries of the graph can produce
beautiful drawings. The display of symmetry in a 3D drawing is one of the various topics
covered in Section 14.5. Another one concerns 3D crossing-free straight-line drawings where
vertices have real coordinates, that is, they are not restricted to lie on the integer grid.

Suppose edge crossings are permitted for graphs drawn in the plane, but that the edges
must then be colored so that no two edges that cross each other have the same color. The
minimum number of colors, taken over all possible drawings of that graph, is the classical
graph parameter known as thickness. If the edges are required to be straight, then this
parameter is called the geometric thickness. If, in addition, the vertices are required to lie
in convex position (i.e., the convex hull of the vertices contains no vertices in its interior),
then the parameter is called the book thickness.

These three extensively studied graph parameters have a natural interpretation in 3D
graph drawing that is important for multilayered VLSI design. Undesired crossings of
uninsulated wires are avoided by having wires placed onto several different physical layers,
making each layer crossing-free. The graph drawing convention associated with this appli-
cation area represents each vertex as a line-segment parallel to the Z-axis. Each vertex is
intersected by all layers (that is, by planes orthogonal to the Z-axis). Each edge is confined
to one of the layers and is drawn between its endpoints in its layer. Edges in the same layer
are not allowed to cross. Associating layers, and the edges placed in them, with colors,
clearly two edges with the same color do not cross. Thus the minimum possible number of
layers corresponds to the thickness parameter. Motivated by the fact that only a limited
but increasing number of layers is possible in VLSI technology and also noting that a small
number of layers is easier for humans to understand visually, the number of layers of a
drawing, that is, its thickness, is the main criterion for the quality for such drawings. The
thickness parameters are the subject of Section 14.4.

Graph theory notation used in this chapter: In what follows, all graphs are simple unless
stated otherwise. A multigraph is a graph with no loops but it may have multiple copies
of edges. A graph G with n = |V (G)| vertices, m = |E(G)| edges, maximum degree at
most ∆, and chromatic number c is referred to as an n-vertex m-edge degree-∆ c-colorable
graph. The complete graph on n vertices is denoted by Kn.

A graph H is a minor of a graph G if H is isomorphic to a graph obtained from a
subgraph of G by contracting edges. A class of graphs is minor-closed if for any graph in
the class, all its minors are also in the class. For example, the class of all planar graphs is
minor-closed since contracting and/or deleting an edge in a planar graph results in another
planar graph. On the contrary, contracting an edge in a 4-regular graph may result in a
vertex of degree higher than 4, thus the class of all 4-regular graphs is not minor-closed. A
minor-closed class of graphs is proper if it is not the class of all graphs.

14.2 Straight-Line and Polyline Grid Drawings

14.2.1 Straight-Line Grid Drawings

A three-dimensional straight-line grid drawing (sometimes called a three-dimensional Fary
grid drawing) of a graph, henceforth called a 3D grid drawing , represents the vertices by
distinct points in Z

3 (called grid-points), and represents each edge as a line-segment between
its endpoints, such that edges only intersect at common endpoints, and an edge intersects
only the two vertices that are its endpoints (see Figure 14.1). In contrast to the case for
the plane, every graph has a 3D grid drawing, by a folklore construction. It is therefore of

458 CHAPTER 14. THREE-DIMENSIONAL DRAWINGS

interest to optimize certain quality measures of such drawings. The most commonly studied
measure for 3D grid drawings is their volume, measured as follows.

Figure 14.1 A 3D grid drawing of a graph.

The bounding box of a 3D grid drawing is the minimum axis-aligned box containing the
drawing. If the bounding box has side lengths X − 1, Y − 1 and Z − 1, then we speak
of an X × Y × Z grid drawing with volume X · Y · Z. That is, the volume of a 3D grid
drawing is the number of gridpoints in the bounding box. This definition is formulated so
that two-dimensional straight-line grid drawings have positive volume.

A starting point for many results on 3D grid drawings is the following simple fact.

Fact 14.1 A straight-line drawing of a graph (on n > 3 vertices) such that no four vertices
are coplanar has no crossings.

This fact is key to the folklore construction that proves that every graph has a 3D grid
drawing. In particular, a moment curve M is a curve defined by parameters (q, q2, q3).
It is not difficult to prove that no four distinct points on this curve are coplanar. Thus
given a graph G on n vertices, a 3D grid drawing of G can be obtained by placing each
vertex vi ∈ V (G), 1 ≤ i ≤ n, at (i, i2, i3). This construction gives an n × n2 × n3 3D
grid drawing with O(n6) volume. Cohen et al. [CELR96] improved this bound by placing
each vertex vi at the grid-point (i, i2 mod p, i3 mod p), where p is a prime such that n <
p ≤ 2n. The resulting drawing is an n × 2n × 2n 3D grid drawing with O(n3) volume.
This construction is a generalization of an analogous two-dimensional technique due to
Erdös [Erd51]. Furthermore, Cohen et al. [CELR96] proved that the Ω(n) × Ω(n) × Ω(n)
bounding box and thus the Θ(n3) volume bound is asymptotically optimal in the case of
the complete graph Kn. The proof of this lower bound is based on the fact that in any 3D
grid drawing of Kn, no five vertices can be coplanar, so each side of the bounding box has
size at least n/4.

Theorem 14.1 [CELR96] Every n-vertex graph has a 3D grid drawing with O(n3) volume.
Moreover, the bounding box of every 3D grid drawing of Kn, the complete graph on n
vertices, is at least n

4 × n
4 × n

4 , and thus has Ω(n3) volume.

14.2. STRAIGHT-LINE AND POLYLINE GRID DRAWINGS 459

Since complete graphs require cubic volume, it is of interest to identify fixed graph pa-
rameters that allow for 3D grid drawings with smaller volume. The first such parameter
to be studied was the chromatic number [CS97, PTT99]. Calamoneri and Sterbini [CS97]
proved that each 4-colorable graph has a 3D grid drawing with O(n2) volume. Generalizing
this result, Pach et al. [PTT99] proved the following theorem.

Theorem 14.2 [PTT99] Every n-vertex graph with chromatic number χ has a 3D grid
drawing with O(χ2n2) volume. This bound is asymptotically optimal for the complete bi-
partite graphs with equal sized bipartitions.

The main idea behind this result is similar to the one for general graphs. In case of
complete graphs, crossings are avoided by ensuring that no four vertices are coplanar.
That restriction, however, necessarily leads to cubic volume 3D grid drawings and is overly
cautious for graphs that have small chromatic number. In particular, vertices that belong
to the same color class may all be coplanar, as there are no edges between them. To avoid
crossings, it suffices to ensure that if two edges share an endpoint, that they are not collinear
and otherwise, that they are not coplanar. The construction in [PTT99] does exactly that.
All the vertices that belong to the same color class have the same x-coordinate; in particular,
they all belong to some plane orthogonal to the X-axis. Edge crossings are then avoided
by appropriate choice of y- and z-coordinates for the vertices. Specifically, if p ∈ O(n) is
a suitably chosen prime, the main step of this algorithm represents the vertices in the i-th
color class by grid-points in the set {(i, t, it) : t ≡ i2 (mod p)}. It follows that the volume
bound is O(c2n2) for c-colorable graphs.

Many interesting graph families have bounded chromatic number, including planar graphs,
bounded genus graphs, and bounded treewidth graphs. In fact all proper minor-closed fam-
ilies have bounded chromatic number. By the above result, all such families have 3D grid
drawings with quadratic volume. This naturally gives rise to the question of which graph
families admit 3D grid drawings with subquadratic, or even linear volume for each mem-
ber of a class. Since n distinct points on the 3D integer grid cannot fit in a sublinear
volume bounding box, linear volume grid drawings are the best possible for any graph.
Pach et al. [PTT99] proved that the quadratic volume bound is asymptotically optimal
for the complete bipartite graph with equal sized bipartitions. This was generalized by
Bose et al. [BCMW04] for all graphs.

Theorem 14.3 [BCMW04] Every 3D grid drawing with n vertices and m edges has volume
at least 1

8 (n+m). In particular, the maximum number of edges in an X × Y × Z drawing
is exactly (2X − 1)(2Y − 1)(2Z − 1)−XY Z.

For example, graphs admitting 3D grid drawings with O(n) volume have O(n) edges.
Planar graphs are one natural class to consider as a candidate for admitting 3D grid

drawings with small volume. They have chromatic number at most four, and thus, by the
above results [CS97, PTT99], they admit O(n2) volume 3D grid drawings. More strongly,
the classical result of de Fraysseix et al. [dFPP90] and Schnyder [Sch89] states that every
planar graph has a 1×O(n)×O(n) 3D grid drawing, that is, planar graphs admit 2D grid
drawings in O(n2) area. In 2D this is the best possible, as there are planar graphs that
require quadratic area. Intuition suggests, however, that in 3D one should be able to do
better. The following open problem has been first suggested by Felsner et al. [FLW01].

Open Problem 14.1 [FLW01] Do planar graphs admit linear volume 3D grid drawings?

Although the problem is still open, in a recent breakthrough, Di Battista et al. [DFP10]
showed that planar graphs admit O(n log16 n) volume 3D grid drawings. Some progress has

460 CHAPTER 14. THREE-DIMENSIONAL DRAWINGS

also been made for more general classes of graphs. In particular, all proper minor-closed
families of graphs have been proved to admit O(n

3

2) volume 3D grid drawings [DW04c].
Refer to Table 14.1 for exact bounds.

Most, if not all, of the successful attempts to derive linear volume bounds have been done
by constructing 3D grid drawings that fit in a bounding box with dimensions O(1)×O(1)×
O(n). In such a drawing all the vertices lie on O(1) parallel lines. Thus not only does
such a drawing have many quadruples of vertices that are coplanar, but in fact a constant
fraction of all vertices are collinear.

Consider a drawing of a graph where all vertices lie on t lines parallel to the Z-axis, such
that no three lines are coplanar and no two vertices on the same line are adjacent. Suppose
there is a pair of edges that cross in such a drawing and that we would like to remove just
that one crossing. If the four endpoints of the edges belong to four distinct parallel lines,
as illustrated in Figure 14.2, then, for example, increasing the z-coordinate of the highest
vertex removes the crossing. Whenever four endpoints belong to three distinct lines, the two
edges do not cross in the projection to the XY-plane and thus cannot cross in the drawing. If,
however, the endpoints belong to two parallel lines, then the only way to remove the crossing
is to change the ordering of the vertices on one of the two lines, as illustrated in Figure 14.2.
These are the difficult crossings to handle, as they arise from a combinatorial situation
of “bad” vertex orderings. Having that in mind, Dujmović et al. [DMW02] introduced
track layouts of graphs, although similar structures are implicit in much previous work
[FLW01, HLR92, HR92, RVM95].

y z

x

v vx x

y w yw

Figure 14.2 Removing a crossing when the edge endpoints are on parallel lines.

Let {Vi : i ∈ I} be a proper vertex t-coloring of a graph G. Let <i be a total order on
each color class Vi. Then {(Vi, <i) : i ∈ I} is a t-track assignment of G. An X-crossing in a
track assignment consists of two edges vw and xy such that v <i x and y <j w, for distinct
colors i and j. A t-track layout of G is a t-track assignment of G with no X-crossing. The
track-number of G, denoted by tn(G), is the minimum integer t such that G has a t-track
layout. Some authors [DLMW05, Di 03, DLW02, DM03] use a slightly different definition of
track layout (called improper), in which intra-track edges are allowed between consecutive
vertices in a track.

14.2. STRAIGHT-LINE AND POLYLINE GRID DRAWINGS 461

Track layouts, which are a purely combinatorial structure, and 3D grid drawings are
intrinsically related. In particular, a graph G has a O(1)×O(1)×O(n) 3D grid drawing if
and only if G has O(1) track number [DMW05]. More precisely:

Theorem 14.4 [DMW05, DW04c] Let G be an n-vertex graph with chromatic number
χ(G) = c and track-number tn(G) = t. Then:

(a) G has an O(t)×O(t)×O(n) 3D grid drawing with O(t2n) volume, and

(b) G has an O(c)×O(c2t)×O(c4n) 3D grid drawing with O(c7tn) volume.

Conversely, if a graph G has an X × Y × Z 3D grid drawing, then G has track-number
tn(G) ≤ 2XY .

The key to proving part (a) of the theorem is knowing that there are no bad orderings,
that is, no X-crossings; the rest is a generalization of the number theoretic teachings of
Erdös that assigns appropriate z-coordinates to vertices such that crossings between edges
whose endpoints belong to four distinct tracks are avoided. Proving part (b) of this theorem
is much more involved.

Theorem 14.4 (a) says that graphs that have bounded track number admit linear volume
3D grid drawings. Part (b) says that graphs that have bounded chromatic number and sub-
linear track number have sub-quadratic 3D grid drawings. This provides a strong motivation
for studying track layouts of different graph families. Consider first a few simple examples.
A caterpillar is a tree such that deleting the leaves gives a path. It is simple to verify that
a graph has track-number two if and only if it is a caterpillar. Trees have track number at
most three. That can be verified by starting with a natural 2D crossing-free drawing of a
tree, then wrapping it around a triangular prism, as illustrated in Figure 14.3.

4

5

2

1

3

1

2

3

Figure 14.3 3-track layout of trees.

For track layouts such that no two adjacent vertices are allowed to be in the same track,
the chromatic number of a graph is a lower bound for its track number. For example,

462 CHAPTER 14. THREE-DIMENSIONAL DRAWINGS

tn(Kn) = n. However, that lower bound is very weak. Observe, for example, that the
complete bipartite graph Kn,n, although 2-colorable, has track number n+1: if two vertices
from the same bipartition belong to the same track, then no pair of vertices from the other
bipartition can lie on the same track, as otherwise that would imply that K4,4 has track
number two.

The concept of track layouts, in the case of three tracks, is implicit in the work of
Felsner et al. [FLW01]. They established the first non-trivial O(n) volume bound for out-
erplanar graphs. Their algorithm “wraps” a two-dimensional drawing around a triangular
prism. They proved that outerplanar graphs have improper track number at most three.

Dujmović et al. [DMW05] proved that graphs of bounded treewidth have bounded track
number and therefore have linear volume 3D grid drawings. Many graphs arising in ap-
plications of graph drawing have small tree-width. Outerplanar and series-parallel graphs
are the obvious examples. They have treewidth at most two. Another example arises in
software engineering applications. Thorup [Tho98] proved that the control-flow graphs of
go-to free programs in many programming languages have treewidth bounded by a small
constant: in particular, 3 for Pascal and 6 for C. Other families of graphs having bounded
tree-width (for constant k) include: almost trees with parameter k, graphs with a feedback
vertex set of size k, band-width k graphs, cut-width k graphs, planar graphs of radius k,
and k-outerplanar graphs. If the size of a maximum clique is a constant k then chordal,
interval and circular arc graphs also have bounded tree-width.

Note that bounded tree-width is not necessary for a graph to have a 3D grid drawing with
O(n) volume. The

√
n×√

n plane grid graph has Θ(
√
n) tree-width and has a

√
n×√

n×1
grid drawing with n volume. It also has a 3-track layout (simply wrap the grid graph,
along its diagonals, around a triangular prism,) and thus has a O(1)×O(1)×O(n) 3D grid
drawing.

The track number of a graph is at most its pathwidth plus one [DMW02]. Many interest-
ing graph families have bounded chromatic number and pathwidth at most O(

√
n). Thus

by Theorem 14.4 (b) they have O(n
3

2) volume 3D grid drawings [DW04c]. Included in this
family are planar graphs, graphs of bounded genus, graphs with no Kh-minor where h is a
constant, and in fact all proper minor-closed families. Refer to Table 14.1 for details.

A vertex coloring is said to be a strong star coloring [DW04c] if, for each pair of color
classes, all edges (if any) between them are incident to a single vertex. That is, each
bichromatic subgraph consists of a star and possibly some isolated vertices. The strong
star chromatic number of a graph G, denoted by χsst(G), is the minimum possible number
of colors in a strong star coloring of G. No matter what ordering on the vertices in each
color class in a strong star coloring, there is no X-crossing. Thus the track-number tn(G) ≤
χsst(G), as observed in [DW04c].

Every graph with m edges and maximum degree ∆ has track number at most 14
√
∆m.

The proof relies on the Lovàsz Local Lemma [DW04c]. It is well known that the chromatic
number χ of a graph G is at most its maximum degree plus one. Together with Theorem 14.4
(b), this implies that graphs of bounded degree have 3D grid drawings with O(n

3

2) volume.

Recently these results have been improved by essentially replacing ∆ by the weaker notion
of degeneracy. A graph G is d-degenerate if every subgraph of G has a vertex of degree at
most d. The degeneracy of G is the minimum integer d such that G is d-degenerate. A
d-degenerate graph is (d+1)-colorable by a greedy algorithm. For example, every forest is 1-
degenerate, every outerplanar graph is 2-degenerate, and every planar graph is 5-degenerate.
Dujmović and Wood proved that every m-edge d-degenerate graph G satisfies (tn(G) ≤)
χsst(G) ≤ 5

√
2dm and (tn(G) ≤) χsst(G) ≤ (4 + 2

√
2)m2/3. Again, Theorem 14.4 (b)

implies that graphs of bounded degeneracy have 3D grid drawings with O(n
3

2) volume.

14.2. STRAIGHT-LINE AND POLYLINE GRID DRAWINGS 463

The family of graphs with bounded degeneracy is vast. It includes all proper minor-
closed families, such as, for example, planar graphs. In fact the family is strictly larger than
that, since there are graph classes with bounded degeneracy but with unbounded clique
minors. For example, the graph K ′

n obtained from Kn by subdividing every edge once has
degeneracy two, yet contains a Kn minor.
An affirmative answer to the following open problem would imply linear volume 3D grid

drawings for planar graphs and thus an affirmative answer to Open Problem 14.1.

Open Problem 14.2 [DMW05] Do planar graphs have O(1) track-number?

A tight relationship between track layout and another well-studied type of graph drawing
called queue layout has been established in [DPW04]. Queue layouts were introduced by
Heath et al. [HLR92, HR92] and are defined as follows. A queue layout of a graphG = (V,E)
consists of a total order < on the vertices V (G), and a partition of the edges E(G) into
queues, such that no two edges in the same queue are nested with respect to <: two edges
vw and xy are nested with respect to < if v < x < y < w. The minimum number of queues
in a queue layout of G is called the queue-number of G, and is denoted by qn(G).
It has been established in [DPW04] that a graph has a bounded track number if and only

if it has a bounded queue number. Thus Open Problem 14.2 is equivalent to following open
problem from 1992 due to Heath et al. [HLR92, HR92].

Open Problem 14.3 [HLR92, HR92] Do planar graphs have O(1) queue-number?

The best-known upper bound for the queue-number of planar graph is O(log4n), due to Di
Battista et al. [DFP10]. Unfortunately, for more general proper minor closed families, the
best-known bound for both the track number and the queue number is O(

√
n). The bound

follows easily from the fact that proper minor closed families have pathwidth bounded by
O(

√
n).

The best-known bounds on the volume of 3D grid drawings for different graph families
are summarized in Table 14.1.

Although almost all of the results on 3D grid drawings focus on the volume of such
drawings, some results about aspect ratio of 3D grid drawings were reported in [DMW02].

3D grid drawings have been generalized in a number of ways.

Crossings allowed: Pór and Wood [PW04] considered a variation of 3D grid drawings
where edges are allowed to cross. Specifically, they considered 3D drawings where each
vertex is represented by a distinct grid point in Z

3 such that the line-segment representing
each edge does not intersect any vertex, except the two at the endpoints of the edge. Let
such drawings be called 3D straight-line grid drawings. With that relaxation, better volume
bounds are possible. For instance, a 3D straight-line grid drawing of the complete graph
Kn is nothing more than a set of n gridpoints with no three collinear, and such a set
can be found with grid volume Θ(n

3

2) [PW04]. Generalizing this construction, Pór and
Wood [PW04] proved that if edge crossings are allowed, every c-colorable graph has a 3D
straight-line grid drawing with O(n

√
c) volume. That bound is optimal for the c-partite

Turán graph.
Dujmović et al. [DMS13] studied the crossing number of graphs that have linear volume

3D straight-line grid drawings. In particular, they showed that in every 3D straight-line grid

drawing of volume N of a graph with m ≥ 16N edges, there are at least Ω(m
2

N log log m
N)

crossings. They also showed that this bound cannot be much bigger, namely for all m ≤
N2/4, there is a graph with m edges that has a 3D straight-line grid drawing of volume

464 CHAPTER 14. THREE-DIMENSIONAL DRAWINGS

N and O(m
2

N log m
N) crossings. One such graph is the complete bipartite graph, KN/2,N/2.

They showed similar results in higher dimensions.

14.2.2 Upward

Another straight-line graph drawing model for the 3D integer grid is the upward 3D grid
drawing. A 3D grid drawing of a directed graph G is upward if z(v) < z(w) for every arc
vw of G. Obviously an upward 3D grid drawing can only exist if G is a directed acyclic
graph (a dag). Upward two-dimensional drawings have been widely studied.

Poranen [Por00] proved that series-parallel digraphs have upward 3D grid drawings with
O(n3) volume, and that this bound can be improved to O(n2) and O(n) in certain special
cases.

Di Giacomo et al. [DLMW05] extended the definition of track layouts to dags as follows.
An upward track layout of a dag G is a track layout of the underlying undirected graph of
G, such that if G+ is the directed graph obtained from G by adding an arc from each vertex
v to the successor vertex in the track that contains v (if it exists), then G+ is still acyclic.
The upward track number of G, denoted by utn(G), is the minimum integer t such that G
has an upward t-track layout. Di Giacomo et al. [DLMW05] proved the following analogue
of Theorem 14.4 (a).

Theorem 14.5 [DLMW05] Let G be an n-vertex graph with upward track-number utn(G) ≤
t. Then G has an O(t)×O(t)×O(tn) upward 3D grid drawing with O(t3n) volume. Con-
versely, if a dag G has an X × Y ×Z upward 3D drawing then G has upward track-number
utn(G) ≤ 2XY .

This theorem provides motivation for studying upward track layouts of dags. Di Gia-
como et al. [DLMW05] proved that directed trees have upward track number at least four
and at most seven. The upper bound was subsequently improved to five [DW06]. Together
with the above theorem, that implies that all directed trees have upward 3D grid drawings
with linear volume [DLMW05]. Although undirected outerplanar graphs (and all bounded
treewidth graphs) have bounded track number and linear volume 3D grid drawings, the
situation is much different in the case of dags. In particular, Di Giacomo et al. [DLMW05]
proved that there is an outerplanar dag that requires Ω(n3/2) volume in every upward 3D
grid drawing. In particular, as illustrated in Figure 14.4, let Gn be the dag with vertex set
{ui : 1 ≤ i ≤ 2n} and arc set {−−−−→uiui+1 : 1 ≤ i ≤ 2n− 1} ∪ {−−−−−−−→uiu2n−i+1 : 1 ≤ i ≤ n}.

u1 u2 u3 u4 u5 u6 u7 u8 u9 u10

Figure 14.4 Illustration of G5.

Suppose that Gn has an X × Y × Z upward 3D grid drawing. Observe that Gn is
outerplanar and has a Hamiltonian directed path (u1, u2, . . . , u2n). Thus (u1, u2, . . . , u2n)
is the only topological ordering of Gn. Thus Z ≥ 2n . Di Giacomo et al. [DLMW05] proved

14.2. STRAIGHT-LINE AND POLYLINE GRID DRAWINGS 465

that utn(Gn) ≥
√
2n. Theorem 14.5 implies that 2XY ≥ utn(Gn) ≥

√
2n. Hence the

volume is Ω(n3/2) [DLMW05].
This result highlights a substantial difference between 3D grid drawings of undirected

graphs and upward 3D grid drawings of dags, since every (undirected) outerplanar graph
has a 3D grid drawing with linear volume [FLW01]. In the full version of their paper, Di
Giacomo et al. [DLMW05] constructed an upward 3D grid drawing of Gn with O(n3/2)
volume. It is unknown whether every n-vertex outerplanar dag has an upward 3D grid
drawing with O(n3/2) volume.

The proof that every graph has a 3D grid drawing with O(n3) volume [CELR96] gener-
alizes to upward 3D grid drawings. In particular,

Theorem 14.6 [DW06] Every dag G on n vertices has a 2n × 2n × n upward 3D grid
drawing with 4n3 volume. Moreover, the bounding box of every upward 3D grid drawing of
the complete dag on n vertices is at least n

4 × n
4 × n, and thus has Ω(n3) volume.

As already stated, Pach et al. [PTT99] proved that every c-colorable graph has an O(c)×
O(n) × O(cn) drawing with O(c2n2) volume. The result generalizes to upward 3D grid
drawings as follows.

Theorem 14.7 [DW06] Every n-vertex c-colorable dag G has a c×4c2n×4cn upward 3D
grid drawing with volume O(c4n2).

Every acyclic orientation of Kn,n requires O(n2) volume in every upward 3D grid drawing
[PTT99]. Hence Theorem 14.7 is tight for constant c. The theorem implies the quadratic
volume upper bound for numerous families of dags, including series-parallel dags, planar
dags, dags of constant treewidth, all proper minor-closed dags, dags with bounded degen-
eracy, and so on.

14.2.3 Polyline

Consider a relaxation of 3D straight-line grid drawings where edges are allowed to have
bends. In particular, a three-dimensional polyline grid drawing of a graph, henceforth
called a 3D polyline drawing , represents the vertices by distinct gridpoints, and represents
each edge as a polygonal chain between its endpoints with bends (if any) also at gridpoints,
such that distinct edges only intersect at common endpoints, and each edge only intersects
a vertex that is an endpoint of that edge. Here a point where a polygonal chain changes its
direction is called a bend. A 3D polyline drawing with at most b bends per edge is called a
3D b-bend drawing. Thus 0-bend drawings are 3D grid drawings.

As discussed in the next section, the volume and number of bends in 3D polyline drawings
where edges are restricted to be axis-aligned have been studied extensively. The study of
3D polyline drawings has only recently been initiated [DW04b]. Tools developed for 3D
(straight-line) grid drawings, such as track layouts, turned out to be useful for the polyline
drawings as well. That is simply because a 3D b-bend drawing of a graph G is precisely
a 3D straight-line drawing of a subdivision of G with at most b division vertices per edge.
This provides a motivation for a study of track layouts of graph subdivisions. Recall that a
subdivision of a graph G is a graph D obtained from G by replacing each edge vw ∈ E(G)
by a path having v and w as endpoints and having at least one edge. Internal vertices on
this path are called division vertices.
Dujmović and Wood [DW04b] proved that every n-vertex m-edge graph G has a subdi-

vision D with at most log n division vertices per edge and such that the track number of D
is at most four. Thus by the aforementioned relationship to the 3D grid drawings, D has a

466 CHAPTER 14. THREE-DIMENSIONAL DRAWINGS

(straight-line) 3D grid drawing with O(|V (D)|) volume. Since |V (D)| = m log n, it follows
that every graph G has a 3D polyline drawing with O(m log n) volume and at most log n
bends per edge. These results are further generalized [DW04b] as indicated in Table 14.1.
For example, complete graphs admit 2-bend 3D polyline grid drawings in O(n2) volume.
That bound is best possible if the number of bends per edge is restricted to be at most two.
If only one bend per edge is allowed, then the complete graphs admit 1-bend 3D polyline
grid drawings with O(n5/2) [DEL+05] volume. The best-known lower bound in this case is
Ω(n2).

Table 14.1 summarizes the best-known upper bounds on the volume and bends per edge
in 3D grid drawings and 3D polyline drawings. In general, there is a trade-off between few
bends and small volume in such drawings, which is evident in Table 14.1.

graph family bends volume reference
per edge

straight-line
arbitrary 0 O(n3) [CELR96]

arbitrary 0 O(m4/3n) [DW04c]
maximum degree ∆ 0 O(∆mn) [DW04c]

maximum degree ∆ 0 O(∆15/2m1/2n) [DW06]
d-degenerate 0 O(dmn) [DW06]

d-degenerate 0 O(d15/2m1/2n) [DW04c]
c-colorable 0 O(c2n2) [PTT99]

c-colorable 0 O(c6m2/3n) [DW04c]

proper minor-closed 0 O(n3/2) [DW04c]
planar 0 O(n log16 n) [DFP10]
outerplanar 0 O(n) [FLW01]
bounded treewidth 0 O(n) [DMW05]

polyline
c-colorable q-queue 1 O(cqm) [DW04b]
arbitrary 1 O(nm) [DW04b]

arbitrary 1 O(n5/2) [DEL+05]
q-queue 2 O(qn) [DW04b]
q-queue (constant ǫ > 0) O(1) O(mqǫ) [DW04b]
q-queue O(log q) O(m log q) [DW04b]

Table 14.1 Volume of 3D straight-line and polyline drawings of graphs with n vertices
and m ≥ n edges.

In the case of dags, upward variants of 3D polyline grid drawings have also been consid-
ered. For instance, with two bends per edge allowed, every n-vertex dag G has an upward
2-bend n× 2× 2n 3D grid drawing with volume 4n2 [DW06].

14.3 Orthogonal Grid Drawings

3D polyline (b-bend) drawings where all edge segments are restricted to be parallel to one
of the three axes are called 3D orthogonal (b-bend) point-drawings . This restriction implies
that only graphs with maximum degree at most six have such drawings. For that reason the
notion is generalized to 3D orthogonal (b-bend) (box -)drawings, where vertices of the graph

14.3. ORTHOGONAL GRID DRAWINGS 467

are represented by pairwise non-intersecting boxes. A box is a rectanguloid with all of its
corners at grid points. A 3D orthogonal (b-bend) (box)-drawing where all boxes degenerate
to cubes, line-segments, or points is called, respectively, a 3D orthogonal (b-bend) cube-,
line-, or point-drawing.

The 3D orthogonal drawings have very good angular resolution, which makes them suit-
able for numerous applications. Minimum edge separation and minimum vertex separation
are also guaranteed in such drawings. Notice that neither good angular resolution nor good
edge separation is a feature of 3D (straight-line) grid drawings. The main quality measures
for 3D orthogonal drawings are the volume and the number of bends (per edge). Other
criteria of importance include the length of the edges, and, in the case of 3D orthogonal
box-drawings, the size and the shape of the boxes. While the focus of this section is orthog-
onal drawings in 3D, degree-4 graphs admit 3D polyline drawings with angular resolution
even better than 90 degrees. Study of such drawings with small number of bends and good
volume bounds has recently been initiated by Eppstein et al. [ELMN11].

It is NP-hard to optimize most of these aesthetic criteria for 3D orthogonal drawings. Us-
ing straightforward extensions of known two-dimensional hardness results, Eades et al. [ESW96]
showed that it is NP-hard to find a 3D orthogonal point-drawing of a graph that minimizes
any one of the following aesthetic criteria: the volume, the number of bends per edge, the
total number of bends, and the total edge length.

Not surprisingly, the 3D orthogonal point-drawings were the first to be studied; we con-
sider them in the next section, followed by a review of 3D orthogonal box-drawings in
Section 14.3.2.

14.3.1 Point-Drawings

In a 3D orthogonal point-drawing a vertex can have at most six neighbors. Thus only graphs
of degree at most six may admit such drawings. In fact a graph has a 3D orthogonal point-
drawing if and only if its maximum degree is at most six. This result will be discussed
shortly (Theorem 14.8 below). The drawings used in establishing this result have many
bends. This is unavoidable, since every 3D orthogonal point-drawing of the triangle (that
is, K3) obviously has at least one bend. Moreover, to draw an edge between any pair of
vertices not on the same grid line, at least one bend is required, and to draw and edge
between a pair not on the same grid plane, at least two bends are required. This sheds
light on the fact that no nontrivial class of graphs (excluding trees) is known to admit 3D
orthogonal point-drawings with zero bends. Less obvious is the well-known result that any
3D orthogonal point-drawing of a multi-graph comprising of two vertices and six edges has
an edge with at least three bends. For simple graphs, K5 requires an edge with at least two
bends [Woo03a]. This provides the best-known lower bound on the number of bends per
edge for 3D orthogonal point-drawings of degree-6 graphs.

Volume Θ(n3/2):

One of the earliest results concerning 3D orthogonal point-drawings is due to Kolmogorov
and Barzdin [KB67] and established a lower bound of Ω(n3/2) for the volume of degree-6
graphs. This lower bound was matched with an upper bound by Eades et al. [ESW96] to
establish the following theorem.

Theorem 14.8 [ESW96, KB67] Every n-vertex degree-6 graph has a 3D orthogonal point-
drawing in O(n3/2) volume, and that bound is best possible for some degree-6 graphs.

468 CHAPTER 14. THREE-DIMENSIONAL DRAWINGS

Figure 14.5 3D orthogonal 2-bend point-drawing of K5 (in coplanar model).

To obtain the upper bound, Eades et al. [ESW96] developed an O(n)-time algorithm1

that produces a 3D orthogonal point-drawing for a degree-6 graph G. Their algorithm is
a modification of the method developed by Kolmogorov and Barzdin [KB67] for a similar
problem. The algorithm places all the vertices of G on an O(n) × O(n) grid in the Z = 0
plane and draws each edge with at most sixteen bends. This model of drawing where all
the vertices intersect one grid plane is known as the coplanar model. Figure 14.5 illustrates
a 2-bend orthogonal point-drawing of K5 in the coplanar model.

2 and 3 Bends:

Theorem 14.8 states that for the point-drawings, the optimal volume for degree-6 graphs
is known (at least asymptotically). The situation is different for the number of bends per
edge. As noted above two bends per edge may be necessary. The best-known upper bound
is three. This result was first proved by Eades et al. [ESW00].

Theorem 14.9 [ESW00] Every degree-6 graph has a 3D 3-bend orthogonal point-drawing.

We now overview the most commonly used approach for producing 3D orthogonal point-
drawings. The approach was first taken by Eades et al. [ESW00] in their 3-bend algorithm
that establishes Theorem 14.9.

A cycle cover of a graph G, also called a 2-factor, is a 2-regular spanning subgraph of G,
that is, a spanning subgraph that consists of cycles. If the graph is directed, then the cycles
in the cover are required to be directed as well. Eades et al. [ESW00] gave an algorithmic
proof that the edges of every degree-6 graph G can be oriented in such a way that G is a
subgraph of some directed graph G′ (possibly with loops) such that the edges of G′ can be
colored with three colors each of which induces a directed cycle cover of G′. The proof can
be viewed as a repeated application of the classical result of Petersen that every regular
graph of even degree has a 2-factor. The cycle covers can be computed in O(n) time for
n-vertex graphs.

Having this in mind, most algorithms for producing 3D orthogonal point-drawings start
off with the decomposition of G′ into three cycle covers, denoted, say, by Cred, Cblue, and
Cgreen. In the second step vertices of G′ are positioned on the 3D grid in some way that
makes drawing the red cycles easy. For example, in the coplanar model, vertices can be
placed in the Z = 0 plane and all red edges can be drawn in that plane. The remaining

1The running time in the conference paper is O(n3/2). This was later reduced in [ESW00].

14.3. ORTHOGONAL GRID DRAWINGS 469

edges Cblue and Cgreen are then routed above and below the Z = 0 plane, respectively. In
general, the third step involves finding drawings for the edges in Cblue and Cgreen.
The 3-bend algorithm of Eades et al. [ESW00] positions each vertex vi of G

′ at (3i, 3i, 3i)
for some arbitrary vertex ordering (v1, v2, . . . , vn) of V (G′). This model of 3D orthogonal
point-drawings, where vertices are place along the 3D diagonal of a cube, is called the
diagonal model. The resulting drawings have volume at most 8n3 after all the grid planes
not containing a vertex or a bend are deleted. Wood [Woo04] modifies the 3-bend algorithm
of Eades et al. [ESW00] to produce 3-bend drawings in the diagonal model with n3 + o(n3)
volume, which is to date the best volume bound on 3D orthogonal 3-bend drawings. To
achieve this, Wood places each vertex vi of G′ at (i, i, i) in a particular vertex ordering
(v1, v2, . . . , vn) stemming from book embeddings. For more on book embeddings, refer to
the next section on graph thickness. While the algorithm of Eades et al. runs in O(n) time,
the algorithm of Wood runs in O(n5/2) time due to the book embedding computation. The
diagonal model was also used in the incremental algorithm of Papakostas and Tollis [PT99].
Their algorithm, which runs in O(n) time, supports on-line insertion of vertices in constant
time. The resulting 3D orthogonal 3-bends point-drawings have volume at most 4.63n3.

The upper bound from Theorem 14.9 and the lower bound of two on the number of bends
per edge leave the following open problem.

Open Problem 14.4 [ESW00] Does every degree-6 graph have a 3D 2-bend orthogonal
point-drawing?

This problem is considered to be the most important open problem concerning 3D orthog-
onal point-drawings. The answer to the question remains unknown even when attention
is restricted to more specific classes of graphs, including degree-6 planar graphs, degree-6
series-parallel graphs, and degree-6 outerplanar graphs. It is easy to observe that every
degree-6 tree has a 3D orthogonal point-drawing with no bends.
A natural candidate for answering Open Problem 14.4 in the negative was K7, as con-

jectured in the conference version of [ESW00]. The counterexample to that conjecture was
discovered by Wood [Woo03a]. His construction is illustrated in Figures 14.6 and 14.7
(courtesy of David R. Wood). Moreover, Wood exhibited 3D 2-bend point-drawings for
other small multipartite 6-regular graphs: K6,6, K3,3,3 and K2,2,2,2.
For degree-5 graphs, Wood [Woo03b] answered Open Problem 14.4 in the affirmative.

Theorem 14.10 [Woo03b] Every degree-5 graph has a 3D 2-bend orthogonal point-drawing.

The O(n2)-time algorithm of Wood that establishes this result produces 3D orthogonal
point-drawings of degree-6 graphs in the so-called general position model, where no pair of
vertices belongs to the same grid plane. (Note, for example, that a drawing in the diagonal
model is also in the general position model.) In the case of degree-5 graphs, the algorithm
outputs 2-bend drawings in the general position model. While this model allows for 2-bend
drawings for degree-5 graphs, the same is not the case for degree-6 graphs. In particular,
Wood [Woo03a] constructed an infinite family of degree-6 graphs that have an edge with at
least 3 bends in every 3D orthogonal point-drawing in the general position model.

Tradeoffs and more bounds:

Tradeoff issues between the maximum number of bends per edge and the volume of 3D
orthogonal point-drawings were first studied by Eades et al. [ESW00]. They began with an
algorithm to draw a degree-6 graph in the coplanar model with O(n3/2) volume and at most
7 bends per edge. By successive refinements of this algorithm, they obtained 3D orthogonal
point-drawings of degree-6 graphs with the following bounds: volume O(n2) with at most 6

470 CHAPTER 14. THREE-DIMENSIONAL DRAWINGS

X

Y

Z

Figure 14.6 A 3D orthogonal 2-bend point-drawing ofK7. (Figure taken from [Woo03a].)

bends per edge, and volume O(n5/2) with at most 5 bends per edge. For drawings in O(n2)
volume, Biedl [BJSW01] reduced the number of bends per edge to 4.

Numerous refinements of these results have appeared in the literature. Table 14.2 sum-
marizes the best-known bounds on 3D orthogonal point-drawings. Some of the algorithms
associated with the bounds in Table 14.2 are dynamic, supporting operations such as vertex
insertion [PT99, CGJW01] and deletion, as well as edge deletion and insertion [CGJW01].
See also [DPV00].

In addition to the number of bends per edge, the total number of bends in 3D orthogonal
point-drawings has also been investigated. Wood [Woo03a] showed that every 3D orthogonal
point-drawing of K7 has at least 20 bends, which implies the lower bounds of 20m/21 bends
for simple m-edge graphs. The algorithm of Wood [Woo03b] that establishes Theorem 14.10
also produces 3D orthogonal point-drawings for simple m-edge degree-6 graphs with at most
16m/7 bends, thus having an average of 2 2

7 bends per edge. The drawings are in the general
position model, for which the bound is optimal since K7 requires 16

7 |E(K7)| bends in that
model, as established in [Woo03a].

14.3.2 Box-Drawings

Only degree-6 graphs admit 3D orthogonal point-drawings. Hence it was only natural
to consider the extension to box-drawings for general graphs. For point-drawings, it was
enough to consider K3 to realize that there are degree-6 graphs that do not admit such
drawings with straight-line edges. It is less obvious that not all graphs admit 3D orthogonal
box-drawings with straight-line edges (that is, with zero bends). In a straight-line orthogo-

14.3. ORTHOGONAL GRID DRAWINGS 471

X

Y

Z

Figure 14.7 Breakaway view of the 3D orthogonal 2-bend point-drawing of K7. (Figure
taken from [Woo03a].)

graph family max. (avg.) bends volume reference
per edge

multigraph 7 Θ(n3/2) [ESW00]

multigraph (dynamic) 14 Θ(n3/2) [BJSW01]
multigraph 4 O(n2) [BJSW01]
multigraph (dynamic) 5 O(n2) [CGJW01]
multigraph ∆ ≤ 4 3 O(n2) [ESW00]
simple 4 (2 2

7
) 2.13n3 [Woo03b]

multigraph (dynamic) 3 4.63n3 [PT99]
multigraph 3 n3 + o(n3) [Woo04]
simple ∆ ≤ 5 2 n3 [Woo03b]

Table 14.2 The volume and the number of bends per edge in 3D orthogonal point-
drawings of n-vertex graphs with maximum degree ∆ ≤ 6.

nal box-drawing of a graph G, each edge is a line segment parallel to one of the three axes.
This defines an associated coloring of the edges with three colors, where a subgraph of G
induced by each color class has a visibility representation by rectangles. (Refer to the last
section, page 478, for the definition of a visibility representation.) Bose et al. [BEF+98]
proved that Kn does not have such a representation for n ≥ 56.

472 CHAPTER 14. THREE-DIMENSIONAL DRAWINGS

Ramsey theory implies that for every constant c ∈ N there is a constant r(c) (the Ramsey
number) such that every edge 3-coloring of the complete graph Kn with n ≥ r(c) contains
a monochromatic subgraph isomorphic to Kc. With c = 56, that establishes the fact that
Kr(56) does not have a straight-line 3D orthogonal box-drawing. This argument (in three
and higher dimensions) was first pointed out by Biedl et al. [BSWW99]. The constant
r(56), stemming from Ramsey theory, is a truly big number. Fekete and Meijer [FM99]
significantly improved that upper bound to K184. Their proof uses the fact that K56 does
not have a 3D rectangle visibility representation. The largest complete graph known to
admit a straight-line 3D orthogonal box-drawing is K56 [FM99].

The above discussion highlights that not all graphs have 3D orthogonal box-drawings
with zero bends. Indeed, it is easy to observe that every n-vertex m-edge graph G has
an orthogonal (line)-drawing with one bend per edge: simply represent each vertex vi,
1 ≤ i ≤ n, of G by a line-segment with endpoints (i, i, 1) and (i, i,m), and then draw
each edge in distinct Z = j planes, 1 ≤ j ≤ m, using one bend. The resulting drawing has
O(n2m) volume. Better volume bounds are possible for 3D orthogonal 1-bend box-drawings.
Biedl et al. [BSWW99] showed that in the previous construction with the segments having
endpoints at (i, i, 1) and (i, i, n), it is possible to draw all the edges of Kn in Z = j,
1 ≤ j ≤ m, using one bend per edge. They suggested a relationship between assigning
edges to the planes in this type of drawing and assigning edges to the pages of a book
embedding. This relationship was later explored by Wood [Woo01], resulting in improved
volume bounds for 1-bend box-drawings of m-edge graphs. In particular, he proved that
every graph has a 3D orthogonal 1-bend box-drawing in O(n3/2m) volume.

A lower bound of Ω(n5/2) for the volume of 3D orthogonal box-drawings of n-vertex
graphs (regardless of the number of bends) was established by Biedl et al. [BSWW99].
They developed an O(m)-time algorithm that constructs drawings matching that volume
bound and using at most 3 bends per edge, thus establishing that all n-vertex graphs have
3D orthogonal 3-bend box-drawings in Θ(n5/2) volume. Closing the gap between the O(n3)
upper bound and the Ω(n5/2) lower bound for 3D orthogonal 1-bend box-drawings of Kn

remains an interesting open problem.
The lower bound of Biedl et al. [BSWW99] was established using the complete graph Kn.

The proof relies critically on the fact that between any two disjoint vertex sets of size Ω(n)
in Kn, there are Θ(n2) edges. To generalize this lower bound to sparse graphs and to be able
to express it in terms of the number of edges, Biedl et al. [BTW06] exhibited graphs such
that between any two disjoint vertex sets of size Ω(n) there are Θ(m) edges. That allowed
them to extend the arguments of [BSWW99] to establish the lower bound of Ω(m

√
n) on

the volume of 3D orthogonal box-drawings of m-edge n-vertex graphs. They developed
an O(m2/

√
n)-time algorithm that constructs drawings matching that volume bound and

using at most 4 bends per edge, thus establishing that all graphs have 3D orthogonal 4-
bend box-drawings in Θ(m

√
n) volume. It is unknown whether all m-edge graphs admit

3D orthogonal box-drawings with such volume and at most 3 bends per edge, as is the case
for Kn.

The discussion above pertains to drawings where the volume and the number of bends
per edge are the only concerns. The shapes and the sizes of boxes used to represent vertices
are unrestricted. However, for box-drawings the size and the shape of a vertex with respect
to its degree are also important aesthetic criteria. For a vertex v in a 3D orthogonal box-
drawing the surface of v is the number of grid lines intersecting the box-representing v times
two. The surface of v indicates the number of grid lines available for drawing edges incident
to v. In point-drawings, for example, the surface of each vertex is six. Generally, in any
3D orthogonal box-drawing, the surface of each vertex v is at least the degree of v. Ideally,
the surface of v should also not be much bigger than the degree of v. Biedl et al. [BTW06]

14.4. THICKNESS 473

defined a 3D orthogonal box-drawing of a graph G to be degree-restricted if there exists
some constant α ≥ 1 such that for every vertex v in G, surface(v) ≤ α·degree(v).

Degree-restricted drawings do not, however, impose any aesthetic restriction on the shape
of the boxes used to represent vertices. The aspect ratio of a vertex in a 3D orthogonal
box-drawing is the ratio of the length (measured in the number of grid points) of the longest
side of the box representing that vertex to the shortest side of that box. 3D orthogonal
box-drawings have a bounded vertex-aspect ratio if there exists a constant r such that all
vertices have aspect ratios at most r. Note that r ≥ 1, and for the case of 3D orthogonal
point-drawings and cube-drawings, it is one. Also note that degree-restricted drawings may
have unbounded vertex-aspect ratio; consider, for example, a drawing in which each vertex
is represented by a segment with length equal to its degree.

The discussion at the beginning of this subsection pertains to 3D orthogonal box-drawings
with (possibly) unbounded vertex-aspect ratios and with no degree-restrictions. The best-
known upper bounds on the volume and the number of bends per edge in such unrestricted
3D orthogonal box-drawings are summarized in the top part of Table 14.3. The upper
bounds can be compared to the best-known lower bound on the volume of such drawings
which, as discussed above, is Ω(m

√
n) regardless of the number of bends [BTW06]. The

table exhibits the tradeoff between the number of bends per edge and the volume of such
drawings.

Biedl et al. [BTW06] derived lower bounds for the volume of 3D orthogonal box-drawings
that are required to be degree-restricted and/or have bounded vertex-aspect ratio. In
particular, they proved an Ω(m3/2/α) lower bound on the volume of 3D orthogonal box-
drawings that are degree-restricted for some α ≥ 1, as well as an Ω(m3/2/

√
r) lower bound

on the volume of 3D orthogonal box-drawings for which each vertex has aspect ratio at most
r. For bounded α and bounded r, both bounds become Ω(m3/2). The discussion pertaining
to the proof technique of Biedl et al. [BTW06] used to derive the Ω(m

√
n) volume bound

for unrestricted drawings applies to these two lower bounds as well.

Biedl et al. [BTW06] also developed an algorithm that constructs the corresponding 3D
orthogonal box-drawings matching the volume lower-bound and using at most 6 bends
per edge, thus establishing that all m-edge graphs have 3D orthogonal 6-bend box-drawings
with volume Θ(m3/2) such that the drawings are degree-restricted and have bounded aspect
ratio.

The best-known upper bounds on the volume and the number of bends per edge in degree-
restricted 3D orthogonal box-drawings are summarized in the middle part of Table 14.3,
while drawings that are both degree-restricted and have bounded vertex-aspect ratio are
addressed at the bottom of the table. These upper bounds on the volume can be compared
to the best-known lower bound of Ω(m3/2).

The table reveals that no further asymptotic improvements are possible for the volume of
drawings in all three aesthetic models discussed. There is room for improvement, however,
with regard to the number of bends per edge, as suggested by some of the open problems
mentioned in this subsection.

14.4 Thickness

Thickness is a classical graph parameter that has been studied since the early 1960s. It
was first defined by Tutte [Tut63]. The thickness of a graph G, denoted by θ(G), is the
minimum k ∈ N such that the edge set of G can be partitioned into k planar subgraphs.

For ease of exposition in this section, we express the concept of thickness in terms of
drawings in the plane. The thickness of a drawing in the plane with vertices represented

474 CHAPTER 14. THREE-DIMENSIONAL DRAWINGS

graphs bends volume reference
unbounded vertex-aspect ratio / not degree-restricted

simple 1 O(n3) [BSWW99]

simple 1 O(n3/2m) [Woo01]
simple 2 O(nm) [Woo01]

simple 3 O(n5/2) [BSWW99]
multigraphs 3 O(nm) [BTW06]
simple 4 Θ(m

√
n) [BTW06]

unbounded vertex-aspect ratio / degree-restricted
simple 2 O(n2m) [Bie98, Woo99]
simple 2 O(n2∆) [Bie98]
multigraphs 5 O(m2) [BTW06]

multigraphs 6 Θ(m3/2) [BTW06]

bounded vertex-aspect ratio / degree-restricted

simple 2 O((nm)3/2) [Bie98, Woo99]

simple 2 O(nm
√
∆) [Bie98]

multigraphs 5 O(m2) [BTW06]

simple 10 O((n∆)3/2) [HTS83]

multigraphs 6 Θ(m3/2) [BTW06]

Table 14.3 Volume and the maximum number of bends in 3D orthogonal (box)-drawings
of n-vertex m-edge degree-∆ graphs for various aesthetic criteria.

as points and edges represented as simple curves is the minimum k ∈ N such that the
edges of the drawing can be partitioned into k subgraphs such that each subgraph has no
crossings in the drawing; that is, each edge is assigned one of k colors such that no pair
of like-colored edges of the drawing cross. Since any planar graph can be drawn with its
vertices at prespecified points in the plane (see, for example, [PW01]), a graph has thickness
k if and only if it has a drawing in the plane with thickness k [Hal91]. However, in such
a drawing the edges may be highly curved and thus unsuitable for most applications. For
instance, when the edges are represented by polygonal chains, then Ω(n) bends per edge
may be needed [PW01]. This motivates the notion of geometric thickness.

A drawing of a graph in the plane is geometric if every edge is represented by a straight-
line segment. The geometric thickness of a graph G, denoted by θ(G), is the minimum
k ∈ N such that there is a geometric drawing of G with thickness k. Kainen [Kai73] first
defined geometric thickness under the name of real linear thickness, and it has also been
called rectilinear thickness. By the Fáry-Wagner theorem, a graph has geometric thickness
one if and only if it is planar. Graphs of geometric thickness two, the so-called doubly linear
graphs, were studied by Hutchinson et al. [HSV99] in the context of rectangle-visibility
graphs.

Another parameter closely related to geometric thickness is book thickness. A geometric
drawing in which the vertices are in convex position is called a book embedding. The book
thickness of a graph G, denoted by bt(G), is the minimum k ∈ N such that there is book
embedding of G with thickness k. The book embeddings have also been called stack layouts,
and book thickness is also called stacknumber, pagenumber and fixed outerthickness.

Whether two edges cross in a book embedding is simply determined by the relative
positions of their endpoints in the cyclic order of the vertices around the convex hull. One
can think of the vertices as being ordered on the spine of a book and each plane subgraph
being drawn without crossings on a single page. A graph has book thickness one if and

14.4. THICKNESS 475

only if it is outerplanar [BK79]. Bernhart and Kainen [BK79] proved that a graph has book
thickness at most two if and only if it is a subgraph of a Hamiltonian planar graph. Unlike
thickness, being able to partition the edge set of a graph G into k outerplanar subgraphs
does not imply that G has book thickness at most k. For example, the edge set of K5 can
be partitioned into two cycles, yet K5 has book thickness more than two, since it is not a
subgraph of a Hamiltonian planar graph. The situation is similar for geometric thickness
as will soon become clear.

Book embeddings, first defined by Ollmann [Oll73], are ubiquitous structures with a
variety of applications; see [DW04a] for a survey with over 50 references. These applications
include sorting permutations, fault-tolerant VLSI design, and compact graph encodings
as well as graph drawing. In general, drawings arising from the study of thickness have
applications in graph visualization (where each plane subgraph is colored by a distinct
color), and in multilayer VLSI (where each plane subgraph corresponds to a set of wires
that can be routed without crossings in a single layer).

First we consider the relationship between the three thickness parameters. By definition,
for every graph G

θ(G) ≤ θ(G) ≤ bt(G). (14.1)

These inequalities have been shown to be strict for certain graphs [DEH00]. In the other
direction, no such relationship is possible for any bounding function. Eppstein [Epp01]
proved that geometric thickness is not bounded by any function of book thickness. In par-
ticular, the graph obtained by subdividing each edge of Kn once has geometric thickness at
most two. On the other hand, a Ramsey-theoretic argument shows that the book thickness
of that graph is not bounded by any constant.

Using a more elaborate Ramsey-theoretic argument applied to graphs formed by start-
ing with n points and adding a new point adjacent to each triple of the n points, Epp-
stein [Epp04a] proved that geometric thickness is not bounded by any function of thickness.
In particular, for every t there exists a graph with thickness three and geometric thickness
at least t. This leaves an interesting open problem.

Open Problem 14.5 [Epp04a] Do graphs with thickness two have bounded geometric thick-
ness?

Complete graphs: The thickness of the complete graph Kn was intensely studied in the
1960s and 1970s. Results by a number of authors [AG76, Bei67, BH65, May72] together
prove that θ(Kn) = ⌈(n+ 2)/6⌉, unless n = 9 or 10, in which case θ(K9) = θ(K10) = 3.

Bernhart and Kainen [BK79] proved that bt(Kn) = ⌈n/2⌉. In fact, they proved that
every convex drawing of Kn can be partitioned into ⌈n/2⌉ plane spanning paths.

Bose et al. [BHRCW06] proved that every geometric drawing of Kn has thickness at most
n −

√

n/12. It is unknown whether every geometric drawing of Kn has thickness at most
(1− ǫ)n. Dillencourt et al. [DEH00] studied the geometric thickness of Kn, and proved that

⌈(n/5.646) + 0.342⌉ ≤ θ(Kn) ≤ ⌈n/4⌉ . (14.2)

Their upper bound construction generalizes to show that for any n, θ(Kn) ≤ ⌈n/4⌉.
What is θ(Kn)? It seems likely that the answer is closer to ⌈n/4⌉ rather than to the above
lower bound.

Maximum degree: Next, we consider the relationships among the three thickness parameters
and the maximum degree. Recall that, a graph with maximum degree ∆ is called a degree-
∆ graph. Wessel [Wes84] and Halton [Hal91] proved independently that the thickness of a

476 CHAPTER 14. THREE-DIMENSIONAL DRAWINGS

degree-∆ graph is at most ⌈∆/2⌉. The proof is based on the classical result of Petersen that
every regular graph of even degree has a 2-factor, that is, a set of vertex disjoint cycles that
together cover all the vertices. The theorem implies that the edges of a ∆-regular graph
for even ∆ can be partitioned into ∆/2 sets of vertex disjoint cycles. Vertex disjoint cycles
are planar, and thus the upper bound follows by proving that every degree-∆ graph is a
subgraph of some ∆-regular graph. Sýkora et al. [SSV04] proved that this bound is tight.
Malitz [Mal94b] proved that there exist ∆-regular n-vertex graphs with book thickness at

least Ω(
√
∆n1/2−1/∆). Thus, unlike thickness, book thickness is not bounded by any func-

tion of maximum degree. The proof is based on a probabilistic construction. Malitz [Mal94b]
also derived an upper bound of O(

√
m) ∈ O(

√
∆n) for the book thickness, and thus the

geometric thickness, of m-edge graphs.
Eppstein [Epp04a] asked whether bounded degree graphs have bounded geometric thick-

ness. Duncan et al. [DEK04] gave an affirmative answer for degree-4 graphs. By Petersen’s
theorem, the edges of a degree-4 graph G can be partitioned into two sets each of which in-
duces a subgraph comprised of vertex disjoint paths and cycles in G. Duncan et al. [DEK04]
proved that two such subgraphs can be drawn simultaneously on some planar point set us-
ing straight-line edges, thus proving that G has a geometric drawing with thickness at most
two. Moreover, they provided a linear-time algorithm to produce such thickness-2 geometric
drawings for degree-4 graphs. In the case of degree-3 graphs, the resulting drawings fit in
the n× n grid.

In a recent development, the above-mentioned question of Eppstein has been answered
in the negative. Barát et al. [BMWR3] have shown that bounded degree graphs may have
unbounded geometric thickness, even approaching the square root of the number of vertices.
In particular, for all ∆ ≥ 9 there exists a ∆-regular n-vertex graph with geometric thickness
Ω(

√
∆n1/2−4/∆−ǫ). The proof is non-constructive and based on counting arguments. The

authors have shown that there are more graphs with bounded degree than with bounded
geometric thickness. To count the number of n-vertex graphs of thickness k, they considered
the number of order types of n points and all the ways of connecting the points in an order
type into a geometric drawing of thickness k.

Open Problem 14.6 [BMWR3] Do degree-∆ graphs with ∆ ∈ {5, 6, 7, 8} have bounded
geometric thickness?

Proper minor-closed families: Blankenship and Oporowski [Bla03, BO01] proved that all
proper minor-closed families have bounded book thickness and therefore, by Equation 14.1,
bounded thickness and geometric thickness. Proper minor-closed families include, for ex-
ample, planar graphs, bounded genus graphs, and bounded treewidth graphs. The proof
depends on Robertson and Seymour’s deep structural characterization of the graphs exclud-
ing a fixed minor. As a result, the obtained bound on book thickness for graphs excluding
a Kℓ-minor is a truly huge function of ℓ.
A much better bound is known for the thickness of such families. Kostochka [Kos82] and

Thomason [Tho84] proved independently that graphs excluding a Kℓ-minor have thickness
at most O(ℓ log ℓ). Better bounds on book thickness (and thus geometric thickness) are also
known for many minor-closed families. The question of book thickness of planar graphs was
settled by Yannakakis [Yan86] in 1986: he proved that the book thickness of planar graphs
is at most four and that there are planar graphs with book thickness matching that bound.
There is some dispute over this lower bound. The construction is given in the conference
version of the paper only [Yan86], where the proof is far from complete.

Endo [End97] determined that the book thickness of toroidal graphs, that is, graphs with
genus one, is at most seven. Malitz [Mal94a] proved by a probabilistic argument that the
book thickness of graphs with genus γ is at most O(

√
γ).

14.5. OTHER (NON-GRID) 3D DRAWING CONVENTIONS 477

Exact bounds are known for all three thickness parameters in relation to treewidth. In
particular, for graphs of treewidth k the maximum thickness and the maximum geometric
thickness both equal ⌈k/2⌉ [DW05]. This says that the lower bound for thickness can be
matched by an upper bound, even in the more restrictive geometric setting. For graphs of
treewidth k, the maximum book thickness equals k if k ≤ 2 and equals k+1 if k ≥ 3. While
the lower bounds are proved in [DW05], the upper bounds on book thickness are due to
Ganley and Heath [GH01].

Computational complexity: The graphs with book thickness one are precisely the outer-
planar graphs [BK79], and thus can be recognized in linear time. The graphs with book
thickness two are characterized as the subgraphs of planar Hamiltonian graphs [BK79],
which implies that it is NP-complete to test if bt(G) ≤ 2 [Wig82]. In fact, even deter-
mining thickness of a given book embedding is hard. Specifically, a book embedding with
k pairwise crossing edges has thickness at least k, since each edge must receive a distinct
color. However, the converse is not true. There exist book embeddings with no (k + 1)
pairwise crossing edges for graphs that have thickness at least Ω(k log k) [KK97]. Moreover,
it is NP-complete to test if a given book embedding of a graph has thickness k [GJMP80].

Testing whether a graph has thickness k is NP-hard [Man83] even for k = 2. Eppstein
[Epp04b] considered the problem of testing if a given geometric drawing has thickness k. For
k = 2 the problem can be solved in polynomial time but becomes NP-complete for k ≥ 3.
Dillencourt et al. [DEH00] asked what the complexity is for determining the geometric
thickness of a given graph.

Open Problem 14.7 [DEH00] Is it NP-hard to test if the geometric thickness of a graph
is k?

We close this section with an open problem that relates book thickness and 3D grid
drawings.

Open Problem 14.8 [DW04b] Do all bipartite graphs that have book thickness three have
bounded track-number?

By studying book thickness of graph subdivisions Dujmović and Wood [DW04b] proved
that an affirmative answer to this question would imply an affirmative answer to Open
Problems 14.1, 14.2, and 14.3. More generally, it would imply that the queue-number is
bounded by book-thickness, which is a long standing open problem [HLR92]. Since all
proper minor-closed graph families have bounded book thickness [BO01], an affirmative
answer to this question would further imply that all proper minor-closed graph families
have linear volume 3D grid drawings.

14.5 Other (Non-Grid) 3D Drawing Conventions

3D crossing-free straight-line drawings with real coordinates: Three dimensional straight-line
crossing-free graph drawings in which the vertices are allowed real coordinates have also been
studied. Naturally, having a less restrictive model allows for drawings with better bounds,
for example better volume bounds, in comparison to the grid model. One disadvantage to
using real coordinates, however, becomes evident when a drawing is to be displayed, on
a computer screen for example. Then the real vertex coordinates must be converted into
integer coordinates. There are no guarantees that rounding off will maintain the correctness
of the embedding.

478 CHAPTER 14. THREE-DIMENSIONAL DRAWINGS

As in the grid model, the main criterion for measuring the quality of a drawing is its vol-
ume. To make a discussion about volume meaningful, that is, to disallow arbitrary scaling,
the vertices are required to lie at least unit distance apart. As noted in the introduction,
a classical result of Steintz states that the triconnected planar graphs are exactly the 1-
skeletons of convex polyhedra in 3D, that is, they admit 3D convex drawings. This may
be considered as one of the first results in the real coordinates model. The construction,
however, seems to require exponential volume in the number of vertices of a graph. The
same is true for the number of bits needed to represent the coordinates of the vertices. This
outlook has been greatly improved by Chrobak et al. [CGT96]. The technique they used to
derive their results falls under the category of so-called force directed methods.

Force directed methods model the graph as a physical system. For example, edges can be
modeled as springs and vertices as charged particles that repel each other. A configuration
where the sum of the forces on each particle is zero, that is, a local minimum of the system,
gives a straight-line drawing of the graph. The famous barycenter method developed by
Tutte [Tut60] is an example of the force directed approach. Specifically, the barycenter
method takes a 3-connected plane graph G and fixes the vertices of the outer face in a
convex position in the plane. The remaining vertices of G are then added one by one at the
barycenter of their neighbors. The resulting system of linear equations gives coordinates for
the internal vertices, and results in a 3D drawing of G where all internal faces are convex.
This method can be extended to 3D.

As noted above, the best-known bounds are due to Chrobak et al. [CGT96]. They de-
veloped a force-directed algorithm that, given an n-vertex triconnected planar graph G,
outputs a 3D drawing of G with O(n) volume. Moreover, the vertex coordinates in the
drawing can be represented by O(n log n)-bit rational numbers. The algorithm runs in
O(M(n1/2)) time, where M(n) is the time needed to multiply two n × n matrices. They
also showed that if the minimum angle between two edges incident to the same vertex is
required to be some fixed function of the maximum degree, then there are bounded-degree
triconnected planar graphs that require 2Ω(n) volume in any 3D convex drawing.

In other results in the real coordinate model, Garg et al. [GTV96] proved that all graphs
with bounded chromatic number can be drawn in O(n3/2) volume with constant aspect
ratio and using O(log n)-bit rational numbers for vertex coordinates. If the number of bits
is increased to O(n log n), they showed that all graphs have 3D straight-line crossing-free
drawings in O(n) volume. Their algorithms run in O(n) time provided that the graph
coloring is given as a part of the input.

Simulated annealing techniques for generating 3D straight-line drawings of general graphs
have also been considered [CT96].

3D graph representations: In a graph representation, vertices are depicted as some set of
objects and edges indicate a relationship between the objects. In the case of visibility
representations, for example, there is an edge between two vertices in the graph if and only
if there is a line-segment that joins the objects representing the vertices and that does not
intersect any other object, that is, if the two objects are (mutually) visible. Typically,
these line-segments may be required to align with an axis. In two dimensions, popular
visibility representations studied are bar - and rectangle visibility . Both models are related
to orthogonal drawings in the plane. Only thickness-2 graphs have such two-dimensional
visibility representations, which motivates the study of 3D counterparts.

The concept generalizes naturally to three dimensions. The vertices may be disjoint
2D objects parallel to the XY-plane, and the edges may be line-segments parallel to Z-axis
connecting pairs of visible objects. It is easy to see that all graphs have such a representation
if the objects may be arbitrary non-convex polygons. Attention has therefore been restricted

14.5. OTHER (NON-GRID) 3D DRAWING CONVENTIONS 479

to convex polygons. For instance, K7 has a representation with unit squares and K8 does
not, and every graph has a representation with unit disks. Bose et al. [BEF+98] proved
that Kn has a representation with arbitrary rectangles for n ≤ 22, while for n ≥ 56 it
does not. They also showed that all planar graphs and all complete bipartite graphs have a
representation with arbitrary rectangles, but that the family of representable graphs is not
closed under graph minors.

Alt et al. [AGW98] considered representations with arbitrary convex polygons and showed
that there is no convex polygon P that would allow every complete graph to have a visibility

representation by shifted copies of P . In particular, for n > 22
k

, Kn cannot be represented
by a convex k-gon. This bound has been improved by Štola [Što04], who proved that
the maximum size of a complete graph with a visibility representation by copies of regu-
lar k-gon is between k + 1 and 26k. Visibility representations with boxes have also been
considered [FM99].

Kotlov et al. [KLV97] discovered a relationship between graph representations by touching
spheres in 3D and the algebraic graph invariant µ introduced by Colin de Verdière.

Surfaces and the theory of graph minors: The field of topological graph theory studies
geometric realizations of graphs in 3-space and embeddings on surfaces. Embeddings of
graphs on higher surfaces are a natural generalization of embeddings in the plane.
The celebrated graph minors theorem of Robertson and Seymour [RS] implies that there

is a finite number of forbidden minors for graphs embeddable on any given fixed surface.
The Kuratowski theorem identifies the forbidden minors for the plane. The projective plane
is the only other surface for which all the forbidden minors (35 of them) are known. Mohar
[Moh99] gave a linear-time algorithm that for any graph and any fixed surface S, either
finds an embedding of the given graph in S or identifies a subgraph homeomorphic to a
forbidden minor for S.

The power of the graph minors theorem can be nicely illustrated by means of the following
3D graph drawing problem. A graph is knotless if it has an embedding in 3D that does
not contain a non-trivial knot, that is, if it has an embedding such that every cycle in the
embedding bounds a disk. For example K7 is known not to have a knotless embedding.
It is easy to observe that the class of all knotless graphs is minor-closed. One algorithmic
consequence of the graph minors theory is that there is a cubic time algorithm to test
membership of a graph in any proper minor-closed family. Thus, remarkably, there exists
a cubic time algorithm to test if a graph is knotless. This problem was not even known to
be decidable before the advent of the graph minors theory. At present, however, no explicit
algorithm is known, let alone a polynomial-time one, as the theory only guarantees the
existence of such an algorithm.

A related concept is that of a linkless embedding. A graph is linkless if it has an embed-
ding in 3D that does not contain a pair of linked cycles, that is, two cycles in the embedding
that cannot be separated by a 2-sphere embedded in 3D. For example, K6 is known not to
be linkless. Unlike the case for knotless graphs, the full characterization of linkless graphs
is known. In particular, a graph is linkless if and only if it does not contain as a minor one
of the six members of the Peterson family of graphs. A ∆Y -exchange in a graph replaces
a triangle by a 3-star, while a Y∆-exchange replaces a 3-star by a triangle. The Peterson
family is comprised of the six graphs that can be obtained from K6 by a sequence of ∆Y -
and Y∆-exchanges. It is also known that a graph G is linkless if and only if its Colin de
Verdière invariant µ(G) is at most four. Whether knotless graphs are precisely those graphs
whose Colin de Verdière invariant is at most five is an interesting open problem.

Good viewpoints: In most visualization applications, a 3D drawing of a graph will eventually
be displayed as an image on some kind of 2D medium, such as a computer screen or a sheet

480 CHAPTER 14. THREE-DIMENSIONAL DRAWINGS

of paper. This can be achieved by using projections. In computer graphics the most
commonly used projections are the parallel and perspective projections. A 2D image, by
its very nature, will necessarily contain less information than the original 3D drawing. It is
therefore desirable to find viewpoints (the position and the direction the viewer is facing)
that result in “nice” 2D images, that is, projections that preserve as much information
about the 3D drawing as possible. Having an edge of the 3D drawing map to one point in
the projection is lossy in that context, as is having two vertices project to the same point.
Bose et al. [BGRT99] developed an algorithm that, given a 3D straight-line drawing,

computes an arrangement of curves that describe all bad viewpoints for that drawing. A
viewpoint is bad if it maps three 3D points to the same point in the projection (vertices
count as two points). Their algorithm runs in O(m4 logm+k) time, where m is the number
of edges of the graph and k may be O(m6) in the worst case.

The arrangement above distinguishes between bad and good viewpoints. Eades et al. stud-
ied a model with a continuous measure of goodness for a viewpoint [EHW97]. In particular
the goodness of a viewpoint increases with distance from its nearest bad point. They also
considered different definitions of bad points and developed an algorithm to compute them
based on techniques of Bose et al. [BGRT99].

3D symmetry: Connections between symmetry and aesthetics have long been recognized.
Thus displaying automorphisms of a graph as symmetries in its drawing is a very desirable
feature. Drawing graphs symmetrically involves solving at least two problems. The first is
to determine the symmetries (automorphisms) of a graph. The second problem is, given
the graph automorphisms, to display as many of them as possible as geometric symmetries
of a drawing of the graph. Symmetries in 3D can be displayed by, for example, rotation,
reflection, and inversion. For a detailed account on symmetric drawings, including 3D
symmetric drawings, the reader is referred to Chapter 3.

Higher dimensions: One of the basic problems in discrete geometry is determining when a
graph can be realized with prescribed edge lengths in R

d. An interesting graph invariant
related to that concept is the dimension of a graph, introduced by Erdős et al. [EHT65].
It is defined as the minimum d such that the graph has a drawing in R

d with straight-line
edges all of unit length (with possible crossings). They show, among other results, that
the dimension of the complete graph Kn is n − 1 and that the dimension of the complete
bipartite graph is at most four.

A concept related to the dimensionality of a graph is that of realizability. A realization
of a graph is a straight-line “drawing” with vertices represented as points, where there is no
restriction on how vertices and edges may intersect. A graph G is d-realizable if, given any
realization of G in R

t, there exists a realization of G with the same edge-lengths in R
d. For

example, a path is 1-realizable since its vertices can be arranged on a line with any desired
edge-lengths. A tree is also 1-realizable. On the other hand, the triangle is not 1-realizable,
since it has a realization in R2 with unit distance edges but no such realization is possible
in R1. Connelly and Sloughter [BC07] proved that a graph is 1-realizable if and only if it
is a forest. It is 2-realizable if and only if it has treewidth at most two, that is, if it is a
series-parallel graph. They showed that a graph is 3-realizable if and only if it does not
contain K5 or an octahedral graph as a minor.

A relationship between the connectivity of graphs and higher dimensional drawings has
been established [LLW88]. In particular, k-connected graphs were characterized in terms
of particular convex drawings in R

k−1. A force directed method was used to derive these
results.

Dujmović et al. [DMS13] studied higher dimensional straight-line grid drawings (with
possible crossings). They showed that in every d-dimensional (d ≥ 4) straight-line grid

14.5. OTHER (NON-GRID) 3D DRAWING CONVENTIONS 481

drawing of volume N of a graph with m ≥ (22 + 1)N edges, there are at least Ω(m
2

N)
crossings. They also showed that there are graphs for which this bound is tight.

Some other directions explored include the idea of producing 2D drawings by starting with
a “nice” higher dimensional drawing of a graph and then projecting it to a plane. Higher-
dimensional visibility representations with hyper-rectangles [CDH+96] have also been con-
sidered.
Applications and information visualization: This chapter was mainly focused on theory and
foundations of 3D Graph Drawing, that is, results with provable bounds on properties on
drawings and provable bounds on the running times of drawing algorithms. An important
theme outside the scope of this chapter is that of development of software packages for 3D
graph drawing (see, for example, [GT97, PV97]) as well as information visualization in 3D.
Graph drawing in 3D relates to this area particularly because graphs model hierarchies and
networks. Understanding large social and biological trees and networks requires the support
of visualization tools [BvLH+11, LLB+12, NJBJ09]. A substantial body of research litera-
ture explores the possibility of combining 3D graphics and interactive animation technology
with an understanding of human perception for the purpose of conveying information, in-
cluding graph models, to humans [XRP+12]. Classic work of Robertson et al. [RMC91]
proposed to visualize organizational hierarchies with 3D animations of trees. Work on
visualization of graphs is found not only in the information visualization literature, but
also domain specific literature such as that of biology and bioinformatics. Important key
words include information visualization, human computer interaction, computer graphics,
animation, human perception.

482 CHAPTER 14. THREE-DIMENSIONAL DRAWINGS

References

[AG76] V. B. Alekseev and V. S. Gonchakov. Thickness of arbitrary complete
graphs. Mat. Sbornik, 101:212–230, 1976.

[AGW98] H. Alt, M. Godau, and S. Whitesides. Universal 3-dimensional visibility
representations for graphs. Comput. Geom., 9:111–125, 1998.

[BC07] M. Belk and R. Connelly. Realizability of graphs. Discrete and Compu-
tational Geometry, 37(2):125–137, 2007.

[BCMW04] P. Bose, J. Czyzowicz, P. Morin, and D. R. Wood. The maximum number
of edges in a three-dimensional grid-drawing. J. of Graph Algorithms and
Appl., 8(1):21–26, 2004.

[BEF+98] P. Bose, H. Everett, S. Fekete, M. E. Houle, A. Lubiw, H. Meijer, K. Ro-
manik, G. Rote, T. C. Shermer, S. Whitesides, and C. Zelle. A visibility
representation for graphs in three dimensions. J. of Graph Algorithms
and Appl., 2(3):1–16, 1998.

[Bei67] L. W. Beineke. The decomposition of complete graphs into planar sub-
graphs. In Graph Theory and Theoretical Physics, pages 139–154. 1967.

[BGRT99] P. Bose, F. Gómez, P. A. Ramos, and G. T. Toussaint. Drawing nice
projections of objects in space. J. of Visual Communic. and Image Rep-
resentation, 10:155–172, 1999.

[BH65] L. W. Beineke and F. Harary. The thickness of the complete graph.
Canad. J. Math., 17:850–859, 1965.

[BHRCW06] P. Bose, F. Hurtado, E. Rivera-Campo, and D. R. Wood. Partitions of
complete geometric graphs into plane trees. Computational Geometry:
Theory and Applications, 34(2):116–125, 2006.

[Bie98] T. C. Biedl. Three approaches to 3D-orthogonal box-drawings. In Proc.
6th Int. Symp. on Graph Drawing (GD’98), volume 1547 of LNCS, pages
30–43. Springer, 1998.

[BJSW01] T. Biedl, J. R. Johansen, T. C. Shermer, and D. R. Wood. Orthogonal
drawings with few layers. In Proc. 9th Int. Symp. on Graph Drawing
(GD’01), volume 2265 of LNCS, pages 297–311. Springer, 2001.

[BK79] F. Bernhart and P. C. Kainen. The book thickness of a graph. J. Combin.
Theory Ser. B, 27(3):320–331, 1979.

[Bla03] Robin Blankenship. Book Embeddings of Graphs. PhD thesis, Dept. of
Mathematics, Louisiana State University, U.S.A., 2003.

[BMWR3] J. Bárat, J. Matoušek, and D. R. Wood. Bounded-degree graphs have
arbitrarily large geometric thickness. The Electronic Journal of Combi-
natorics, 13, 2006, R3.

[BO01] R. Blankenship and B. Oporowski. Book embeddings of graphs and
minor-closed classes. In Proc. 32nd Southeastern Int. Conf. on Com-
binatorics, Graph Theory and Comp. Dept. of Math., Louisiana State
University, 2001.

[BSWW99] T. C. Biedl, T. C. Shermer, S. Whitesides, and S. K. Wismath. Bounds
for orthogonal 3-D graph drawing. J. of Graph Algorithms and Appl.,
3(4):63–79, 1999.

[BTW06] T. Biedl, T. Thiele, and D. R. Wood. Three-dimensional orthogonal
graph drawing with optimal volume. Algorithmica, 44(3):233–255, 2006.

REFERENCES 483

[BvLH+11] S. Bremm, T. von Landesberger, M. Hess, T. Schreck, P. Weil, and
K. Hamacherk. Interactive visual comparison of multiple trees. In Visual
Analytics Science and Technology (VAST), 2011 IEEE Conference on,
pages 31–40, 2011.

[CDH+96] F. Cobos, J. Dana, F. Hurtado, A. Márquez, and F. Mateos. On a
visibility representation of graphs. In Proc. Int. Symp. on Graph Drawing
(GD’95), volume 1027 of LNCS, pages 152–161. Springer, 1996.

[CELR96] R. F. Cohen, P. Eades, T. Lin, and F. Ruskey. Three-dimensional graph
drawing. Algorithmica, 17(2):199–208, 1996.

[CGJW01] M. Closson, S. Gartshore, J. Johansen, and S. K. Wismath. Fully dy-
namic 3-dimensional orthogonal graph drawing. J. of Graph Algorithms
and Appl., 5(2):1–34, 2001.

[CGT96] M. Chrobak, M. T. Goodrich, and R. Tamassia. Convex drawings of
graphs in two and three dimensions (preliminary version). In Proc. 12th
Annual Symposium on Computational Geometry, pages 319–328, 1996.

[CS97] T. Calamoneri and A. Sterbini. 3D straight-line grid drawing of 4-
colorable graphs. Inform. Process. Lett., 63(2):97–102, 1997.

[CT96] I. F. Cruz and J. P. Twarog. 3D graph drawing with simulated annealing.
In Proceedings of the Symposium on Graph Drawing, GD ’95, pages 162–
165, London, UK, UK, 1996. Springer-Verlag.

[DEH00] M. B. Dillencourt, D. Eppstein, and D.S. Hirschberg. Geometric thickness
of complete graphs. J. of Graph Algorithms and Appl., 4(3):5–17, 2000.

[DEK04] C. A. Duncan, D. Eppstein, and S. G. Kobourov. The geometric thickness
of low degree graphs. In Proc. of the 20th Annual Symp. on Computa-
tional Geometry (SoCG’04), pages 340–346, 2004.

[DEL+05] O. Devillers, H. Everett, S. Lazard, M. Pentcheva, and S. Wismath.
Drawing Kn in three dimensions with one bend per edge. In Proc. 13th
Int. Symp. on Graph Drawing (GD’05), volume 3843 of LNCS, pages 83–
88. Springer, 2005. Also in, J. Graph Algorithms Appl., 10(2): 287-295
(2006).

[DFP10] G. Di Battista, F. Frati, and J. Pach. On the queue number of pla-
nar graphs. In Proc. 51st Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pages 365 –374, 2010.

[dFPP90] H. de Fraysseix, J. Pach, and R. Pollack. How to draw a planar graph
on a grid. Combinatorica, 10(1):41–51, 1990.

[Di 03] E. Di Giacomo. Drawing series-parallel graphs on restricted integer 3D
grids. In Proc. 11th Int. Symp. on Graph Drawing (GD’03), volume 2912
of LNCS, pages 238–246. Springer, 2003.

[DLMW05] E. Di Giacomo, G. Liotta, H. Meijer, and S. K. Wismath. Volume re-
quirements of 3D upward drawings. In Proc. 13th Int. Symp. on Graph
Drawing (GD’05), volume 3843 of LNCS, pages 101–110. Springer, 2005.
Aslo in Discrete Mathematics, 309(7):1824–1837 (2009).

[DLW02] E. Di Giacomo, G. Liotta, and S. Wismath. Drawing series-parallel
graphs on a box. In Proc. 14th Canadian Conf. on Computational Geom-
etry (CCCG’02), pages 149–153. The University of Lethbridge, Canada,
2002.

484 CHAPTER 14. THREE-DIMENSIONAL DRAWINGS

[DM03] E. Di Giacomo and H. Meijer. Track drawings of graphs with constant
queue number. In Proc. 11th Int. Symp. on Graph Drawing (GD’03),
volume 2912 of LNCS, pages 214–225. Springer, 2003.

[DMS13] V. Dujmović, P. Morin, and A. Sheffer. Crossings in grid drawings. Arxiv
preprint, January 2013. http://arxiv.org/abs/1301.0303.

[DMW02] V. Dujmović, P. Morin, and D. R. Wood. Path-width and three-
dimensional straight-line grid drawings of graphs. In Proc. 10th Int.
Symp. on Graph Drawing (GD’02), volume 2528 of LNCS, pages 42–53.
Springer, 2002.

[DMW05] V. Dujmović, P. Morin, and D. R. Wood. Layout of graphs with bounded
tree-width. SIAM J. of Computing, 34(3):553–579, 2005.

[DPV00] G. Di Battista, M. Patrignani, and F. Vargiu. A split & push approach to
3D orthogonal drawing. J. Graph Algorithms Appl., 4(3):105–133, 2000.

[DPW04] V. Dujmović, A. Pór, and D. R. Wood. Track layouts of graphs. Discrete
Mathematics and Theoretical Computer Sci., 6(2):497–522, 2004.

[DW04a] V. Dujmović and D. R. Wood. On linear layouts of graphs. Discrete
Mathematics and Theoretical Computer Sci., 6(2):339–358, 2004.

[DW04b] V. Dujmović and D. R. Wood. Stacks, queues and tracks: layouts of
graph subdivisions. In Proc. 12th Int. Symp. on Graph Drawing (GD’04),
volume 3383 of LNCS, pages 133–143. Springer, 2004. Also in Discrete
Mathematics and Theoretical Computer Sci., DMTCS, 7:155–202, 2005.

[DW04c] V. Dujmović and D. R. Wood. Three-dimensional grid drawings with sub-
quadratic volume. In János Pach, editor, Towards a Theory of Geometric
Graphs, volume 342 of Contemporary Mathematics, pages 55–66. Amer.
Math. Soc., 2004.

[DW05] V. Dujmović and D. R. Wood. Graph treewidth and geometric thickness
parameters. In Proc. 13th Int. Symp. on Graph Drawing (GD’05), volume
3843 of LNCS, pages 129–140. Springer, 2005. Also in, Discrete and
Computational Geometry, 37(4): 641-670 (2007).

[DW06] V. Dujmović and D. R. Wood. Upward three-dimensional grid drawings
of graphs. Order, 23(1):1–20, 2006.

[EHT65] P. Erdős, F. Harary, and W. T. Tutte. On the dimension of a graph.
Mathematika, 12:118–122, 1965.

[EHW97] P. Eades, M. E. Houle, and R. Webber. Finding the best viewpoints
for three-dimensional graph drawings. In Proc. Int. Workshop on Graph
Drawing, volume 1353 of LNCS, pages 87–98. Springer, 1997.

[ELMN11] D. Eppstein, M. Löffler, E. Mumford, and M. Nöllenburg. Optimal 3D
angular resolution for low-degree graphs. In Proc. 18th Symposium on
Graph Drawing (GD’10), volume 6502, pages 208–219, 2011.

[End97] T. Endo. The pagenumber of toroidal graphs is at most seven. Discrete
Math., 175(1-3):87–96, 1997.

[Epp01] D. Eppstein. Separating geometric thickness from book thickness.
arXiv.org math.CO/0109195, Sept. 2001.

[Epp04a] D. Eppstein. Separating thickness from geometric thickness. In János
Pach, editor, Towards a Theory of Geometric Graphs, number 342 in
Contemporary Mathematics, pages 75–86. Amer. Math. Soc., 2004.

REFERENCES 485

[Epp04b] D. Eppstein. Testing bipartiteness of geometric intersection graphs.
In Proc. 15th Annual ACM-SIAM Symp. on Discrete Algorithms
(SODA’04), pages 860–868, 2004. Also in ACM Transactions on Al-
gorithms, 5(2), Article No. 15, 2009.

[Erd51] P. Erdös. Appendix. In K. F. Roth, On a problem of Heilbronn. J.
London Math. Soc., 26:198–204, 1951.

[ESW96] P. Eades, C. Stirk, and S. Whitesides. The techniques of Kolmogorov
and Barzdin for three dimensional orthogonal graph drawings. Inform.
Proc. Lett., 60(2):97–103, 1996.

[ESW00] P. Eades, A. Symvonis, and S. Whitesides. Three dimensional orthogonal
graph drawing algorithms. Discrete Applied Math., 103:55–87, 2000.

[FLW01] S. Felsner, G. Liotta, and S. Wismath. Straight-line drawings on re-
stricted integer grids in two and three dimensions. In Proc. 9th Int.
Symp. on Graph Drawing (GD’01), volume 2265 of LNCS, pages 328–342.
Springer, 2001. Also in J. of Graph Algorithms and Appl., 7(4):363–398,
2003.

[FM99] S. Fekete and H. Meijer. Rectangle and box visibility graphs in 3D.
Internat. J. Comput. Geom. Appl., 9(1):1–27, 1999.

[GH01] J. L. Ganley and L. S. Heath. The pagenumber of k-trees is O(k). Discrete
Appl. Math., 109(3):215–221, 2001.

[GJMP80] M. R. Garey, D. S. Johnson, G. L. Miller, and C. H. Papadimitriou.
The complexity of coloring circular arcs and chords. SIAM J. Algebraic
Discrete Methods, 1(2):216–227, 1980.

[GT97] A. Garg and R. Tamassia. GIOTTO3D: A system for visualizing hi-
erarchical structures in 3D. In Proc. Symposium on of Graph Drawing
(GD’96), volume 1190, pages 193–200. Springer-Verlag, 1997.

[GTV96] A. Garg, R. Tamassia, and P. Vocca. Drawing with colors. In Proc. 4th
Annual European Symp. on Algorithms (ESA’96), volume 1136 of LNCS,
pages 12–26. Springer, 1996.

[Hal91] J. H. Halton. On the thickness of graphs of given degree. Inform. Sci.,
54(3):219–238, 1991.

[HLR92] L. S. Heath, F. T. Leighton, and A. L. Rosenberg. Comparing queues
and stacks as mechanisms for laying out graphs. SIAM J. Discrete Math.,
5(3):398–412, 1992.

[HR92] L. S. Heath and A. L. Rosenberg. Laying out graphs using queues. SIAM
J. Comput., 21(5):927–958, 1992.

[HSV99] J. P. Hutchinson, T. Shermer, and A. Vince. On representations of some
thickness-two graphs. Comput. Geom., 13(3):161–171, 1999.

[HTS83] K. Hagihara, N. Tokura, and N. Suzuki. Graph embedding on a three-
dimensional model. Systems-Comput.-Controls, 14(6):58–66, 1983.

[Kai73] P. C. Kainen. Thickness and coarseness of graphs. Abh. Math. Sem.
Univ. Hamburg, 39:88–95, 1973.

[KB67] A. N. Kolmogorov and Ya. M. Barzdin. On the realization of nets in
3-dimensional space. Problems in Cybernetics, 8:261–268, 1967.

[KK97] A. V. Kostochka and J. Kratochv́ıl. Covering and coloring polygon-circle
graphs. Discrete Math., 163(1-3):299–305, 1997.

486 CHAPTER 14. THREE-DIMENSIONAL DRAWINGS

[KLV97] A. Kotlov, L. Lovász, and S. Vempala. The Colin de Verdière number
and sphere representations of a graph. Combinatorica, 17(4):483–521,
1997.

[Kos82] A. V. Kostochka. The minimum Hadwiger number for graphs with a
given mean degree of vertices. Metody Diskret. Analiz., 38:37–58, 1982.

[LLB+12] A. G. Landge, J. A. Levine, A. Bhatele, K. E. Isaacs, T. Gamblin,
M. Schulz, S. H. Langer, P.-T. Bremer, and V. Pascucci. Visualizing
network traffic to understand the performance of massively parallel sim-
ulations. IEEE Trans. Vis. Comput. Graph., 18(12):2467–2476, 2012.

[LLW88] N. Linial, L. Lovász, and A. Wigderson. Rubber bands, convex embed-
dings and graph connectivity. Combinatorica, 8(1):91–102, 1988.

[LR86] F. T. Leighton and A. L. Rosenberg. Three-dimensional circuit layouts.
SIAM J. Comput., 15(3):793–813, 1986.

[Mal94a] S. M. Malitz. Genus g graphs have pagenumber O(
√
g). J. Algorithms,

17(1):85–109, 1994.

[Mal94b] S. M. Malitz. Graphs with E edges have pagenumber O(
√
E). J. Algo-

rithms, 17(1):71–84, 1994.

[Man83] A. Mansfield. Determining the thickness of graphs is NP-hard. Math.
Proc. Cambridge Philos. Soc., 93(1):9–23, 1983.

[May72] J. Mayer. Décomposition de K16 en trois graphes planaires. J. Combi-
natorial Theory Ser. B, 13:71, 1972.

[Moh99] B. Mohar. A linear time algorithm for embedding graphs in an arbitrary
surface. SIAM J. Discrete Math., 12(1):6–26, 1999.

[MT01] B. Mohar and C. Thomassen. Graphs on Surfaces. Johns Hopkins Uni-
versity Press, 2001.

[NJBJ09] C. B. Nielsen, S. D. Jackman, I. Birol, and S. J. M. Jones. ABySS-
Explorer: Visualizing genome sequence assemblies. IEEE Trans. Vis.
Comput. Graph., 15(6):881–888, 2009.

[Oll73] L. T. Ollmann. On the book thicknesses of various graphs. In Proc. 4th
Southeastern Conference on Combinatorics, Graph Theory and Comput-
ing, volume VIII of Congressus Numerantium, page 459, 1973.

[Por00] T. Poranen. A new algorithm for drawing series-parallel digraphs in
3D. Technical Report A-2000-16, Dept. of Computer and Information
Sciences, University of Tampere, Finland, 2000.

[PT99] A. Papakostas and I. G. Tollis. Algorithms for incremental orthogonal
graph drawing in three dimensions. J. of Graph Algorithms and Appl.,
3(4):81–115, 1999.

[PTT99] J. Pach, T. Thiele, and G. Tóth. Three-dimensional grid drawings of
graphs. In Bernard Chazelle, Jacob E. Goodman, and Richard Pollack,
editors, Advances in Discrete and Computational Geometry, volume 223
of Contemporary Mathematics, pages 251–255. Amer. Math. Soc., 1999.

[PV97] M. Patrignani and F. Vargiu. 3DCube: a tool for three dimensional graph
drawing. In Proc. Symposium on Graph Drawing (GD’97), volume 1353,
pages 284–290. Springer, 1997.

[PW01] J. Pach and R. Wenger. Embedding planar graphs at fixed vertex loca-
tions. Graphs and Combinatorics, 17:717–728, 2001.

REFERENCES 487

[PW04] A. Pór and D. R. Wood. No-three-in-line-in-3D. In Proc. 12th Int.
Symp. on Graph Drawing (GD’04), volume 3383 of LNCS, pages 395–
402. Springer, 2004. Also in Algorithmica, 47(4): 481–488, 2007.

[RMC91] G. G. Robertson, J. D. Mackinlay, and S. K. Card. Cone trees: ani-
mated 3D visualizations of hierarchical information. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, CHI
’91, pages 189–194, New York, NY, USA, 1991. ACM.

[RS] N. Robertson and P. D. Seymour. Graph minors I–XX. J. Combin.
Theory Ser. B. 1983–2004.

[RVM95] S. Rengarajan and C. E. Veni Madhavan. Stack and queue number of
2-trees. In Proc. 1st Annual Int. Conf. on Computing and Combinatorics
(COCOON’95), volume 959 of LNCS, pages 203–212. Springer, 1995.

[Sch89] W. Schnyder. Planar graphs and poset dimension. Order, 5(4):323–343,
1989.

[SSV04] O. Sýkora, L. A. Székely, and I. Vrto. A note on Halton’s conjecture.
Information Sci., 164(1-4):61–64, 2004.

[Što04] J. Štola˙ 3D visibility representations of complete graphs. In Proc. 12th
Int. Symp. on Graph Drawing (GD’04), volume 3383 of LNCS, pages
226–237. Springer, 2004.

[Tho84] A. Thomason. An extremal function for contractions of graphs. Math.
Proc. Cambridge Philos. Soc., 95(2):261–265, 1984.

[Tho98] M. Thorup. All structured programs have small tree-width and good
register allocation. Information and Computation, 142(2):159–181, 1998.

[Tut60] W. T. Tutte. Convex representations of graphs. Proc. London Math.
Soc., 10(3):304–320, 1960.

[Tut63] W. T. Tutte. The thickness of a graph. Nederl. Akad. Wetensch. Proc.
Ser. A 66=Indag. Math., 25:567–577, 1963.

[Wes84] W. Wessel. Über die abhängigkeit der dicke eines graphen von seinen
knotenpunktvalenzen. In Proc. of the Geometrie und Kombinatorik ’83,
volume 2, pages 235–238, 1984.

[WF94] C. Ware and G. Franck. Viewing a graph in a virtual reality display
is three times as good as a 2D diagram. In Proc. IEEE Symp. Visual
Languages (VL’94), pages 182–183. IEEE, 1994.

[WF96] C. Ware and G. Franck. Evaluating stereo and motion cues for visualizing
information nets in three dimensions. ACM Trans. Graphics, 15(2):121–
140, 1996.

[WHF93] C. Ware, D. Hui, and G. Franck. Visualizing object oriented software
in three dimensions. In Proc. IBM Centre for Advanced Studies Conf.
(CASCON’93), pages 1–11, 1993.

[Wig82] A. Wigderson. The complexity of the hamiltonian circuit problem for
maximal planar graphs. Technical Report EECS 198, Princeton Univer-
sity, USA, 1982.

[WM08] Colin Ware and Peter Mitchell. Visualizing graphs in three dimensions.
ACM Trans. Appl. Percept., 5(1), 2008.

[Woo99] D. R. Wood. Multi-dimensional orthogonal graph drawing with small
boxes. In Proc. 7th Int. Symp. on Graph Drawing (GD’99), volume 1731
of LNCS, pages 311–222. Springer, 1999.

488 CHAPTER 14. THREE-DIMENSIONAL DRAWINGS

[Woo01] D. R. Wood. Bounded degree book embeddings and three-dimensional
orthogonal graph drawing. In Proc. 9th Int. Symp. on Graph Drawing
(GD’01), volume 2265 of LNCS, pages 312–327. Springer, 2001.

[Woo03a] D. R. Wood. Lower bounds for the number of bends in three-dimensional
orthogonal graph drawings. J. of Graph Algorithms and Appl., 7(1):33–
77, 2003.

[Woo03b] D. R. Wood. Optimal three-dimensional orthogonal graph drawing in the
general position model. Theoret. Comput. Sci., 299(1-3):151–178, 2003.

[Woo04] D. R. Wood. Minimising the number of bends and volume in three-
dimensional orthogonal graph drawings with a diagonal vertex layout.
Algorithmica, 39(3):235–253, 2004.

[XRP+12] K. Xu, C. Rooney, P. Passmore, D.-H. Ham, and P. Nguyen. A user
study on curved edges in graph visualization. IEEE Trans. Vis. Comput.
Graph., 18(12):2449–2456, 2012.

[Yan86] M. Yannakakis. Four pages are necessary and sufficient. In Proc. 18th
ACM Symp. on Theory of Comput. (STOC’86), pages 104–108, 1986.

15
Labeling Algorithms

Konstantinos G.
Kakoulis
T.E.I. of West Macedonia,

Greece

Ioannis G. Tollis
University of Crete, Greece

15.1 Introduction . 489
15.2 The Labeling Problem . 490

Searching for a Good Label Assignment • A Definition of the
Labeling Problem

15.3 Solving the Labeling Problem . 492
The GFLP Problem • The ELP Problem • The NLP
Problem • The MLP Problem • Placing Labels by Modifying
the Drawing

References . 513

15.1 Introduction

An important aspect of information visualization is the automatic placement of text or
symbol labels corresponding to graphical features of drawings and maps. Labels are textual
descriptions that convey information or clarify the meaning of complex structures presented
in a graphical form. The automatic label placement problem is identified as an important
research area by the ACM Computational Geometry Task Force [C+99]. It has applications
in many areas including cartography [RMM+95], geographic information systems [Fre91],
and graph drawing [DETT99].

Because the labeling process is a monotonous and very demanding task, its automation
is very desirable. It is very difficult to quantify all the characteristics of a good label place-
ment since they reflect human visual perception, intuition, and experience, which have been
perfected through the centuries by cartographers who have elevated the placement of labels
into an art. Hence, it is unlikely that computer-based systems will be able to deliver fully
automated placement of labels in maps of a sufficient quality to be comparable to those pro-
duced manually by experienced cartographers. Nevertheless, there are many areas where the
requirements for high aesthetic quality are not as strict and automatic labeling techniques
may be applied. For example, these techniques may be used for real time name placement
in the context of on-line geographic information systems or internet-based map search, and
special-purpose maps such as those used to display census [EG90], oil exploration [Zor90]
or soil survey data [FMC96]. Additionally, semi-automated interactive name placement
systems may be the most practical approach at the present time. Labeling systems may
produce an initial label placement that could be improved manually by cartographers to
produce desirable results. Furthermore, the whole concept of map labeling may change de-
pending on computer capabilities [RMM+95]. Maps may be viewed in an electronic format
allowing the user to interact and display information on demand as opposed to viewing all
the map information at once.

489

490 CHAPTER 15. LABELING ALGORITHMS

In the following sections, we study the labeling problem not only in its traditional form
(i.e., cartography), but also in the context of information visualization, specifically as it
relates to graph drawing. In Section 15.2 we present a model for the labeling problem: we
discuss the qualities of good label assignment and give a formal definition of the problem. In
Section 15.3, we present a variety of algorithms for the labeling problem. Finally, we discuss
how one can modify a drawing to accommodate the placement of labels in Section 15.3.5.

15.2 The Labeling Problem

15.2.1 Searching for a Good Label Assignment

Let Γ be a drawing and F be the set of graphical features of Γ to be labeled. A solution to
the labeling problem for drawing Γ assigns text or symbol labels to each graphical feature f
of F such that the relevant information is communicated in the best possible way. This can
be achieved by positioning the labels in the most appropriate places. For each graphical
feature there is a large number of potential label positions, and the most preferable among
them must be assigned.

Good label placement aids in conveying information and enhances the aesthetics of the
input drawing. It is difficult to quantify all the characteristics of a good label placement,
because they reflect human visual perception and intuition. It is trivial to place a label
when its associated object is isolated. The real difficulty arises when the freedom to place
a label is restricted by the presence (in close proximity) of other objects of the drawing.
In this common scenario, we must consider not only the position of a label with respect to
its associated object, but also how it relates to other labels and objects in the surrounding
area.

In a successful label assignment, labels must be positioned such that they are legible and
follow basic aesthetic quality criteria. According to cartographers like Imhof [Imh75] and
Yoeli [Yoe72], who have extensively studied this subject, labels must be placed in the best
position available following some basic rules: Labels must be easily read, quickly located, a
label and the object to which it belongs should be easily recognized, labels must be placed
very close to the objects they belong to, labels must not obscure other labels or objects,
a label must be placed in the most preferred position, among all legible positions. We
summarize the labeling quality evaluation in the following three basic rules:

• No overlaps of a label with other labels or other graphical features of the drawing
are allowed.

• Each label can be easily identified with exactly one graphical feature of the
drawing.

• Each label must be placed in the best possible position (among all acceptable
positions).

The order of preference among possible label positions varies depending on the specific
application.

In the production of geographical maps, we rank label positions according to rules de-
veloped through years of experience with manual placement, which typically capture the
aesthetic quality of label positions. A typical rule when labeling points (nodes) is that
labels must be placed to the right and above the point. For example, in Figure 15.1(a) the
number of each label position reveals the rank (priority) of the label. In addition, a point
label is allowed to touch but not overlap its associated point or any other graphical feature
in the drawing. In the case of labeling lines (edges), a label is allowed to touch the edge that

15.2. THE LABELING PROBLEM 491

12

3 4

5

6

(b)(a) (c)

A
B

E
L

LDE

U
R

V

C

2

1

A

B

D

C

Figure 15.1 (a) Labeling space of a node. (b) Labeling space of an edge. (c) Labeling
space of an area. Figure taken from [KT03].

Source

Source

Target

Source

(a)

Source

Target

(b)

Figure 15.2 (a) A good label assignment. (b) A misleading label assignment. Figure
taken from [KT03].

it belongs to, but it should not overlap any other graphical feature in a drawing. In Figure
15.1(b), where the graphical feature to be labeled is an edge, labels like A, B and D are
preferable but certainly a label like C, which overlaps its associated edge, can be acceptable
with some appropriate cost assigned to it. The accepted practice for placing a label asso-
ciated with an area is to have the label span the entire area and conform to its shape, as
shown in Figure 15.1(c). For more details on name placement rules for geographical maps,
see [FA87, Imh75, vR89, Yoe72].

When the graphical objects to be labeled belong to a technical map or drawing, then,
usually a different set of rules govern the preferred label positions. These rules depend on
the particular application, and must follow user specifications. For example, if the graphical
feature is an edge of a graph drawing, the user must be able to specify that the preferred
position for an edge label is closer to the source or destination node. For example, a label of
a single edge that is relevant to its source node must be placed close to the source node (see
Figure 15.2(a)) to avoid ambiguity (see Figure 15.2(b)). It is important to emphasize that
a user must be able to customize the rules of label quality to meet specific needs and/or

492 CHAPTER 15. LABELING ALGORITHMS

expectations. Therefore, any successful labeling algorithm must take into account the user’s
preferences.

15.2.2 A Definition of the Labeling Problem

Given a set F of graphical features of a map or drawing to be labeled we define the following
notation:

• Λf is the set of all label positions for graphical feature f of F .

• Λ is the set of all label positions for all graphical features to be labeled.

• λ : F → Λ is a function that assigns a label position from Λ to graphical feature
f in F , that is λ(f) = λf ∈ Λf .

The labeling problem can be viewed as an optimization problem where the objective is
to find a label assignment of minimum total cost where each graphical feature has a label
position assigned to it. Each label position λf that is part of a final label assignment is
associated with a cost. COST : Λ → N is a function that gives the cost of label λf with
respect to quality.

Labeling Problem

Instance: Let F be a set of graphical features to be labeled.
Question: Find a label assignment that minimizes the following function:

∑

i∈F

∑

j∈Λi

COST (λ(i))P (i, j)

Where:

P (i, j) =

{

1, if λ(i) = j,

0, otherwise

and

∑

i∈F

∑

j∈Λi

P (i, j) = |F |

Where:
∑

j∈Λi

P (i, j) = 1, i ∈ F.

✷

15.3 Solving the Labeling Problem

Most of the research addressing the labeling problem has been focused on labeling graphical
features of geographical and technical maps. The label placement problem is typically
partitioned into three tasks: (a) labeling points (e.g., cities), (b) labeling lines (e.g., roads
or rivers), and (c) labeling areas (e.g., lakes or oceans).

Progress has been made in solving the problem of assigning labels to a set of points or
nodes, the Node Label Placement (NLP) problem [CMS95, DMM+97, FW91, Hir82, WW95,
Zor90]. The problem of assigning labels to a set of lines or edges, also known as the Edge
Label Placement (ELP) problem, has been addressed in [DKMT07, KT98, vR89, Zor90].
The general labeling problem, the Graphical Feature Label Placement (GFLP) problem

15.3. SOLVING THE LABELING PROBLEM 493

(where a graphical feature can be a node, edge, or area), has been addressed primarily in
the context of cartography; however, it has direct application in the area of graph drawing
[AF84, DF92, ECMS97, EG90, FA87, KT03].

In many practical applications, each graphical feature may have more than one label. The
need for assigning multiple labels is necessary not only when objects are large or long, but
also when it is necessary to display different attributes of an object. This problem is known
as the Multiple Label Placement (MLP) problem and has been addressed in [FA87, KT06].

The labeling process is not allowed to modify the underlying geometry of geographical
and technical maps which is fixed. However, one can modify a graph drawing in order to
accommodate the placement of labels. In [Hu09, KT11], algorithms that modify an existing
layout of a graph drawing to make room for the placement of labels are presented.

In [BDLN05, DDPP99, KM99], algorithms that combine the layout and labeling process
of orthogonal drawings of graphs are presented.

An alternative approach for displaying edge labels is presented in [WMP+05]. Each edge
is replaced by its corresponding edge label in the drawing. The label font starts out larger
from the source node and shrinks gradually until it reaches the destination node. The
tapered label also indicates the direction of the edge.

It is worth noting that both the NLP [FW91, KI88, MS91] and ELP [KT01] problems
are NP-hard. Because automatic labeling is a very difficult problem we rely on heuristics
to provide practical solutions for real world problems.

A variety of types of algorithms have been used in order to solve the labeling problem:
greedy algorithms [CMS95, Hir82], exhaustive search algorithms [DF92, EG90, FA87], algo-
rithms that simulate physical models (i.e., Simulated Annealing [CMS95]), algorithms that
reduce the labeling problem to a variant of 0-1 integer programming [Zor90], algorithms that
restrict the labeling problem to a variant of the 2-SAT problem [FW91, WW95], and algo-
rithms that transform the labeling problem into a matching problem [KT98, KT03, KT06].

15.3.1 The GFLP Problem

Most labeling algorithms that address the general labeling problem are based on local
and exhaustive search algorithms [DF92, EG90, FA87]. These algorithms perform well
for small problems. These methods use inferior optimization techniques, as pointed out
in [Zor90] and verified in [CMS95]. Actually, these methods use a rule based approach to
evaluate good label placement and variants of depth-first search to explore different labeling
configurations. The approach in [ECMS97] uses simulated annealing to find solutions for the
general labeling problem, and it separates the cartographic knowledge needed to recognize
the best label positions from the optimization procedure needed to find them.

All of the above techniques for the general labeling problem first create an initial label
assignment in which conflicts between labels are allowed. Then conflicts are resolved by
repositioning assigned labels until all conflicts are resolved, or no further improvement can
be achieved. Furthermore, they start with a rather small initial set of potential label posi-
tions from which they derive a final label assignment. The performance of these techniques
decreases when the number of potential label positions increases.

In [KT03] the labeling problem is transformed into a matching problem. The general
framework of this technique is flexible and can be adjusted for particular labeling require-
ments. In the next section this technique is presented in more detail.

494 CHAPTER 15. LABELING ALGORITHMS

A practical matching algorithm for the GFLP problem

The placement of labels is a post-layout operation (i.e., performed on a fixed geometry
of nodes and edges). The basic idea behind this labeling technique is the following: a
set of discrete potential label solutions for each object is carefully selected. This set of
labels is reduced by removing heavily overlapping labels. Finally, an assignment of labels
is performed by solving a variant of the matching problem. This method is shown in
Figure 15.3. An example of the resulting label placement is given in Figure 15.4.

Basic Labeling Algorithm

INPUT: A drawing Γ and a set F of objects to be labeled.
OUTPUT: A label assignment free of overlaps.
1. A set of discrete potential label solutions for each object in F is carefully selected.
2. This set of labels is reduced by removing heavily overlapping labels. The remaining

labels are assigned to groups, such that, if two labels overlap then they belong to
the same group.

3. Labels are assigned by solving a variant of the matching problem, where at most
one label position from each group is part of the solution.

Figure 15.3 Basic labeling algorithm.

Next, the three basic steps of the basic labeling algorithm are presented in detail.

Selecting labels

To find a set of discrete label positions for each graphical feature, a number of heuristics
can be used. For points, a number of label positions that touch their corresponding point
is defined. In most algorithms a finite set of potential label positions are associated with
each point, typically the size of this set is four or eight as shown in Figure 15.5 (see also
[CMS95]).

It is generally accepted, especially in the framework of cartography, that area labels must
follow the general shape of their corresponding area, and that they must be inside the
boundaries of the area. For each area, a number of potential label positions is defined
according to the techniques described in [FA87, Fre88, PF96, vR89].
Next, a simple heuristic for finding a set of label positions corresponding to edges of

graph drawings is presented. As Figure 15.6 illustrates, a number of equally spaced points
on each edge is defined. Each assigned label position λi is associated with exactly one of
these points i, such that one of the corners of label λi coincides with point i. In addition,
label λi does not overlap its corresponding graphical feature or any other graphical feature
(except other label positions). A global approach for finding an initial set of label positions
for non-horizontal edges can be found in Section 15.3.2 and in [KT98].

Reducing labels

The size of the initial set of label positions must be kept reasonably small since it
affects the performance of any labeling algorithm.

In order to reduce the set of label positions an intersection graph is first created, where
each label position is a node and if two label positions intersect then there is an edge

15.3. SOLVING THE LABELING PROBLEM 495

Figure 15.4 A force-directed drawing where labels are positioned by the matching tech-
nique for the GFLP problem. The labels are parallel to the horizontal axis. The grey boxes
are node labels and the white boxes are edge labels. Figure taken from [KT03].

1

4

2

3

5

6

7

8

12

3 4

Figure 15.5 Potential label positions for a point. Figure taken from [KT03].

connecting their corresponding nodes. If label positions are parallel to the axis then overlaps
can be detected using the techniques for detecting overlaps among isothetic rectangles in
O(n log n + K) time (n is the number of rectangles and K the number of intersections)
[Ede83a, Ede83b]. Otherwise, in order to detect overlaps of labels with arbitrary orientation,
the techniques of [GJS96] can be used to detect intersections between convex polygons in
O(n4/3+ǫ +K) time (n is the total number of vertices of the polygons, K is the number of
pairs of polygons that intersect, and ǫ is any constant greater than zero).

Then, heavily overlapping labels are removed. The remaining labels are assigned to
groups, such that, if two labels overlap then they belong to the same group. The goal of
the third step of the algorithm is to select at most one label from each group as part of the
solution. This way, the algorithm will produce a label assignment free of overlaps.

The optimal solution would be one with the maximum number of minimum size complete
subgraphs (groups) of the intersection graph, with the additional constraint that each object
has a large number of label positions as part of some groups. It is most likely to have a

496 CHAPTER 15. LABELING ALGORITHMS

label for edge (2,3)

label for edge (1,3)

label for edge (1,2)

2

3

4

5

1

1

2

6
7

8

3

9

10

11

Figure 15.6 A graph drawing with label positions assigned to each edge of the drawing.
Figure taken from [KT03].

successful label assignment when each object has a large number of potential label positions
associated with it. In reality the goal is to find an independent set of complete subgraphs
of label positions. This can be done by using heuristics based on techniques that solve the
independent set problem.

Heavily overlapping labels are removed, while maintaining a large number of potential
labels for each object f by keeping track of the number of labels associated with f . Our
aim is to reduce the intersection graph into a set of disconnected subgraphs.
First, in order to make this process more efficient a preprocessing step is applied that

eliminates unnecessary labels or assigns labels in obvious cases. For example, if a label
position l of an object f is free of overlaps, then all label positions for f with lower ranking
than l can be safely removed.

Next, an appropriate number of overlapping labels is removed. A simple and very success-
ful (according to experiments) technique for removing overlapping labels is the following: If
a subgraph c must be split, then the node with the highest degree is removed from c, unless
that node corresponds to a label position of some object with very few label positions. In
that case the next highest degree node from c is removed. This process is repeated until
either c is split into at least two disjoint subgraphs, or c is complete.

Matching labels to objects

To further clarify the main idea of this technique the matching graph is introduced:

DEFINITION 15.1 Given a drawing Γ, a set F of graphical features to be labeled, and
a set Λ of label positions for F , the matching graph Gm(Vf , Vc, Em) is defined as follows:

• Each node in Vf corresponds to a graphical feature in F .

• Each node in Vc corresponds to a group of overlapping labels.

• Each edge (i, j) in Em connects a node i in Vf , to a node j in Vc, if and only if
the graphical feature that corresponds to i has a label position that is a member
of the group that corresponds to j.

15.3. SOLVING THE LABELING PROBLEM 497

Notice that Gm is a bipartite graph and the cost of assigning label l to graphical feature
f is the weight of edge (f, l) in Gm. Therefore, a maximum cardinality minimum weight
matching for graph Gm will give us an optimal (maximum number of labels with minimum
cost) label assignment with no overlaps with respect to the reduced set of label positions.

By representing the labeling problem as a bipartite graph, the inherent hardness of the
problem is revealed. According to [KR92], the labeling problem is closely related to the
independent set problem. Indeed, consider the very simple case where there is only one
potential label position for each graphical feature in the drawing, the problem of assigning
labels to the maximum number of graphical features is equivalent to finding a maximum
size independent set.

Once the set of groups is found, the construction of the matching graph is trivial. A
final label assignment can be found by solving the maximum cardinality minimum weight
matching problem (see [GK95, Tar83] for efficient algorithms) for graph Gm. The size of
the matching graph depends not only on the size of the input drawing, but also on the size
of set Λ of labels and the density of overlaps. Notice that at most one label position from
each group may be part of a label assignment. Thus, a matching of graph Gm produces
an assignment free of overlaps. Because the label assignment is free of overlaps, the cost of
each label position will depend only on the ranking of that label. This implies that the cost
of each label position can be computed by a preprocessing step.

15.3.2 The ELP Problem

The problem of assigning labels to a set of lines or edges, also known as the Edge Label
Placement (ELP) problem, has been addressed in the context of geographical and technical
maps [AH95, ECMS97, vR89, WKvK+00, Zor90] and graph drawing [KT98, DKMT07].
Furthermore, any of the techniques for solving the general labeling problem (see section
15.3.1) can be applied in solving the ELP problem.

In the context of geographical and technical maps edges are linear features. Labels should
be placed alongside and parallel to rivers, boundaries, roads or linear features. If the linear
feature is curved, the shape of the label must follow the curvature of the linear feature. The
positioning of linear labels has the greatest degree of freedom since labels can be placed
almost anywhere along the linear feature, thus cartographers have been focusing their efforts
on finding the right shape of the linear label.

However, in the context of graph drawing, placing labels to edges is a more complicated
process. Edges are not necessarily long, they are usually straight lines or polygonal chains
and they have to follow user preferences and specifications. For example an edge label might
be related to the source node of the edge, thus it must be placed closer to the source node
rather than the target node to avoid a misleading label assignment (see Figure 15.2).

In [DKMT07] a labeling system is presented that includes a very functional interface and
labeling engine that addresses the ELP problem in the context of a graph drawing editor. It
is noteworthy that the interface of that system allows the user to set the labeling preferences
interactively.

In the following section a fast and simple technique, first proposed in [KT98], is presented
for solving the problem of positioning text or symbol labels corresponding to edges of a graph
drawing.

A fast and simple algorithm for labeling edges of graph drawings

This technique is based on the matching technique for solving the general labeling
problem presented in section 15.3.1.

498 CHAPTER 15. LABELING ALGORITHMS

The technique works for labels that are parallel to the horizontal axis, and have approx-
imately equal height and arbitrary width. In order to simplify the discussion the following
assumptions are made:

• All labels have the same size.

• Each edge has only one label associated with it.

The goal of this technique is to assign to each edge a label position that is free of overlaps
and touches only its associated edge. The main idea of this technique is the following:

First, a set Λ of label positions is produced. Next, label positions are grouped such that
each label position that is part of a group overlaps every other label position that belongs
to the same group. Then, edges to label positions are matched by allowing at most one
label position from each group to be part of a label assignment by using a fast matching
heuristic. The key to restricting the ELP problem to a matching problem is to create a
suitable initial set of label positions.

The initial set of label positions is created in the following way. The input drawing is
divided into consecutive horizontal strips of equal height. The height of each strip is equal
to the height of the labels. Next, a set of label positions Λe for each edge e is found. Each
label position must be inside a horizontal strip. Labels are slided inside each horizontal
strip until a label touches its edge, say e. That label position is included into set Λe if it
does not overlap any other graphical feature or only overlaps label positions of some edge
other than e, as shown in Figure 15.7. Label positions that overlap nodes or edges of the
layout are not considered. Also label positions are not allowed to intersect their associated
edges. Label positions lie entirely inside horizontal strips. Thus, label positions can only
overlap other labels that belong to the same horizontal strip. Hence, the following are true:

• A label position of an edge e does not overlap any other label position of e.

• If two label positions overlap then they are inside the same horizontal strip.

• Each label position overlaps at most one other label position.

label for edge (1,2) label for edge (2,3)

1

2

1 3

2

(a) (b)

Figure 15.7 Assigning potential labels to edges of a drawing. Figure taken from [KT98].

15.3. SOLVING THE LABELING PROBLEM 499

If two label positions overlap then they belong to the same group. If a label position is
free of overlaps then it belongs to a single member group.

The size of the initial set of label positions must be kept reasonably small since it affects
the performance of any labeling algorithm. The above method of defining a set of potential
label positions is very practical and effective because it partitions the solution space and
identifies the areas of the drawing where conflicts of label assignment may occur. In addition,
it significantly reduces the search space for potential conflicts (overlaps).

1 2

A C,B D
D

2

2

CA

(b)(a)

B

1

1

Figure 15.8 (a) A simple drawing with label positions for each edge. (b) The corre-
sponding matching graph. Figure taken from [KT03].

In Figure 15.8 a simple example of how to construct the matching graph (see Def. 15.1)
is presented. Figure 15.8(a) represents a simple drawing with two edges and two label
positions for each edge. Figure 15.8(b) shows its corresponding matching graph. Label
positions that overlap belong to the same node in the matching graph, in this example label
position A of edge 1 overlaps label position C of edge 2, thus they are represented by a
single node in the matching graph.

Since at most one label position from each group may be part of a label assignment, a
matching of graph Gm produces an assignment free of overlaps. A maximum cardinality
matching of graph Gm assigns labels to the maximum number of edges.

A description of the labeling technique is given in the algorithm of Figure 15.9.

Algorithm ELP

INPUT: A drawing Γ of graph G(V,E).
OUTPUT: A label assignment free of overlaps.
1. Split Γ into horizontal strips.
2. Find all label positions for each edge and construct the groups of overlapping labels.
3. Create the matching graph Gm for Γ.
4. Match label positions to edges, by finding a maximum cardinality minimum weight

matching of Gm.

Figure 15.9 Algorithm ELP.

500 CHAPTER 15. LABELING ALGORITHMS

The size of the matching graph depends on the size of set Λ of label positions. Unfor-
tunately the size of Λ can be large with respect to the size of the original graph G. This
implies that a typical matching algorithm might take a long time. The best algorithms for
finding a maximum cardinality minimum weight matching of Gm take more than quadratic
time with respect to the size of Gm [GK95, Tar83]. In order to reduce the time complexity
of the matching, in the next section a heuristic is presented that finds a maximum cardinal-
ity matching with low total weight in linear time with respect to the size of Gm, by taking
advantage of the structure and properties of graph Gm.

A Fast Matching Heuristic

Here, a fast heuristic is presented that solves the maximum cardinality matching
problem for a matching graph where each node corresponding to a group of overlapping
labels has degree at most two. The fast heuristic that solves the matching problem takes
advantage of the simple structure of the matching graph. By construction, each node in Vc

has degree at most 2 (see Figures 15.7 and 15.8). The algorithm of Figure 15.10 finds a
maximum cardinality matching for Gm.

Algorithm Fast Matching

INPUT: Matching graph Gm.
OUTPUT: A maximum cardinality matching for Gm with low total weight.
1. If the minimum weight incident edge of a node in Vf connects this node to a node

in Vc of degree 1 then:
1.1. Assign this edge as a matched edge.
1.2. Update Gm.

2. If a node in Vf has degree 1 then:
2.1. Assign its incident edge as a matched edge.
2.2. Update graph Gm.

3. Repeat Steps 1 and 2 until no new edge can be matched.
4. Delete all nodes of degree 0 from Gm.
5. For each node f in Vf do

5.1. Remove all but the two incident edges of f with the least weight.
6. The remaining graph consists of simple cycles and/or paths.

6.1. Find the only two maximum cardinality matchings for each component.
6.2. Choose the matching of minimum weight.

Figure 15.10 Algorithm Fast Matching.

Note: The Update Gm operation removes the two nodes incident to a new matched edge
and stores that edge and its incident nodes as part of the matching. Also removes all
incident edges from the two nodes.

In Step 1 matched edges are found that are part of any optimal solution. In Step 2 edges
are matched to those nodes in Vf that are of degree 1. If two nodes of degree 1 in Vf

are connected to the same node in Vc, as matched edge is chosen the edge with minimum
weight. This implies that one of the edges will have no label. In Step 4 nodes are removed
from Gm that correspond to either edges that have no potential labels assigned to them or
have potential labels that will not be part of a final labeling assignment. In Step 5, for each

15.3. SOLVING THE LABELING PROBLEM 501

node in Vf of degree more than 2, only its two incident edges of least weight are kept and
the rest of the edges are removed. The remaining bipartite graph has a simple structure:
It consists of simple cycles or simple paths, because each node in Vf has degree 2 and each
node in Vc has degree at most 2. Each path or cycle has exactly two maximum cardinality
matchings. It is trivial to find both of them by simply traversing the cycle or path and
picking as part of the matching only the even or odd numbered edges.

2 4 8

5 9 12

1 13 15 14

3 7 11

6 10

2_to_4 4_to_8

1_to_2 2_to_5 4_to_9 8_to_12

5_to_9 9_to_12

9_to_13 12_to_15

13_to_15 14_to_15

1_to_3 10_to_13 11_to_14

3_to_7 7_to_11 10_to_14

3_to_6 7_to_10

6_to_10

Figure 15.11 An orthogonal drawing with edge labels produced by the fast ELP tech-
nique. Figure taken from [KT03].

It is trivial to see that Algorithm Fast Matching runs in linear time. Notice that it also
finds a maximum cardinality matching with low total weight because in the last step it
considers only the two incident edges of nodes in Ve with the lowest weight. Figure 15.11
shows a label assignment produced by the fast ELP technique.

Further Improvements

For the above fast and simple technique for labeling edges of graph drawings it is
clear that the longer and the more vertical the edges are, the more potential label positions
are associated with each edge. Thus, the greater the possibility for the labeling algorithm
to assign a label to each of these edges. Therefore, hierarchical drawings are particularly
suitable for this algorithm since edges are usually long and almost vertical. This technique
performs very well also for straight-line drawings, such as ones produced by force-directed
and circular techniques. One weakness of this labeling technique is that it ignores horizontal

502 CHAPTER 15. LABELING ALGORITHMS

edges or edge segments. Thus, as presented, this technique is not suitable for orthogonal
drawings. However, one can use the general technique by dividing an orthogonal drawing
into horizontal and vertical strips in order to find a set of label positions, followed by the
assignment of labels to edges. Figure 15.12 shows the results with an example.

Figure 15.12 An orthogonal drawing with edge labels, which contains many horizontal
edge segments, produced by the fast ELP technique. Figure taken from [DKMT07].

In addition, when drawings are very dense or there is a large number of oversized labels,
the default label assignment produced by the labeling system might not be satisfactory. In
such cases, the user can fine tune the algorithm by relaxing the labeling quality constraints
by allowing overlaps (see Figure 15.13).

15.3.3 The NLP Problem

The problem of assigning labels to a set of points or nodes, also known as the Node La-
bel Placement (NLP) problem, has been extensively studied in the context of automated
cartography and many successful algorithmic approaches have been introduced [CMS95,
DMM+97, FW91, Hir82, WW95, Zor90]. Also, any of the techniques for solving the general
labeling problem (see section 15.3.1) can be applied to the NLP problem.

Algorithms based on local and exhaustive search [DF92, EG90, FA87] and simulated
annealing [ECMS97] are well suited for solving the NLP problem. Experimental results
[CMS95] have shown that simulated annealing outperforms all algorithms based on local
and exhaustive search. In addition simulated annealing is one of the easiest algorithms to
implement.

15.3. SOLVING THE LABELING PROBLEM 503

Figure 15.13 A circular drawing with edge labels, where labels are allowed to overlap
other graph objects, produced by the fast ELP technique. Figure taken from [DKMT07].

These algorithms start with a rather small initial set of potential label positions from
which they derive a final label assignment. This is because the size of the initial set of label
positions plays a critical role in the performance of these algorithms. This precondition
works well when solving the NLP problem. For example, each point is given at most four
or eight potential label positions (see Figure 15.5).

Approximation algorithms for restricted versions of the NLP problem are presented in
[DMM+97, FW91]. Specifically, the approach of [FW91] assigns labels of equal size to all
points while attempting to maximize the size of the assigned labels. The work in [WW95]
improves the results in [FW91] by using heuristics. A similar approach has been taken in
[DMM+97]. In effect, finding the maximum label size is equivalent to finding the smallest
factor by which the map has to be zoomed out such that each point has a label assigned
to it. However, it is not clear how these techniques can be modified to solve real-world
problems, including the labeling of graphical features of graph drawing, where the label size
is usually predefined and labels are not necessarily of equal size.

Another approach to solve the NLP problem is based on the sliding model, where sliding
labels can be attached to the point they label anywhere on their boundary. This model was
first introduced in [Hir82] who gave an iterative algorithm that uses repelling forces between
labels in order to eventually find a placement of labels. A polynomial-time approximation
scheme and a fast factor-2 approximation algorithm for maximizing the number of points
that are labeled by axis-parallel sliding rectangular labels of common height, based on the
sliding model, is presented in [vKSW99].

504 CHAPTER 15. LABELING ALGORITHMS

15.3.4 The MLP Problem

Many algorithms exist for the labeling problem; however, very little work has been directed
toward positioning many labels per graphical feature in a map or drawing [FA87, Fre88,
KT06]. This problem is known as the Multiple Label Placement (MLP) problem.

In existing automated name placement systems for geographic maps simple techniques
have been utilized to address the MLP problem [FA87, Fre88]. Specifically, each feature to
be labeled is partitioned into as many pieces as the number of labels for that feature. Then,
labeling algorithms for single label per graphical feature may be applied to the new set of
partitioned graphical features. In many applications, this straightforward approach presents
some difficulties. For example, it might be necessary or preferable to position labels that
are associated with the same graphical feature next to each other (e.g., two labels assigned
to an edge must be close to the source node of the edge). This is often the case when
labels describe more than one attribute of the same feature. Furthermore, the feature to be
labeled might be a point or an area. Then, we must partition the solution space and assign
one label to each of the partitions. However, efficiently partitioning the solution space is
as hard as solving the original labeling problem. Even when we need to place more than
one label associated with a linear graphical feature in regular intervals from each other,
this approach seems weak. Since, by splitting the features beforehand we eliminate solution
space that otherwise could be used to position a label.

One can avoid the situations described in the previous paragraph by allowing each of
the labels to be placed in any legible label position of the associated graphical feature. An
iterative approach based on existing labeling algorithms that assigns one label per graphical
feature can be used to produce a solution. This can be done by applying these algorithms
as many times as the number of labels per graphical feature. This scheme presents a new
challenge: most labeling algorithms are based on local and exhaustive search. Thus, their
performance (running time and quality of solutions) is sensitive to the size of the graphical
features to be labeled and to the density of the drawing. Clearly, if each graphical feature
in a drawing is associated with i labels, then the size of the problem is i times larger.
Therefore, the above techniques might be slow even for small instances.
In [KT06] the MLP problem is treated in the context of graph drawing. A framework for

evaluating the quality of label positions is presented. In addition, two algorithmic schemes
are presented: (i)A simple and practical iterative technique and (ii) A flow-based technique
which is an extension of the matching technique presented in section 15.3.1. In the following
sections these techniques will be presented in detail.

Labeling quality rules for the MLP problem

Multiple labels per graphical feature are needed not only when objects are very long
(i.e., long edges) and repetition is necessary, but also when more than one attribute per
graph object must be displayed. Therefore, some additional considerations have to be taken
into account with respect to the quality of a label assignment, when graphical features have
many labels. Specifically, we must take into account how labels for the same graphical
feature influence each other. For example, many times each of the labels corresponds to
some attribute of a graphical feature and the relative position of a label with respect to
other labels of the same graphical feature reveals that attribute.

Next, we present some constraints that may be used to ensure that each label is unam-
biguous, easily read and recognized, when more than one label is associated with a graphical
feature. These constraints can be divided into three general categories: (i) proximity, (ii)
partial order, and (iii) priority. In order to illustrate the three different sets of constraints
we will use as an example the labeling of a single edge (s, t) with two labels ls and lt. Label

15.3. SOLVING THE LABELING PROBLEM 505

region

region

Source

Target

Source

Target

Source

Target

Source Target

(c)(b)(a)

Source

Target

(d)

Source Source

Target Target

Target

Source

region

region

Figure 15.14 (a) A preferable label assignment. (b) A misleading label assignment. (c)
Defining strict proximity constraints. (d) Defining relaxed proximity constraints. Figure
taken from [KT06].

ls is associated with the source node and label lt is associated with the target node, as
shown in Figure15.14(a).

Proximity:

Label ls (resp. lt) must be in close proximity with the source (resp. target) node to avoid
ambiguity. Therefore, it is necessary to define a maximum distance from the source (resp.
target) node that label ls (resp. lt) may be positioned. When edge (s, t) is associated with
exactly one label, then that label may be located anywhere inside the solution space. If
there are more than one label associated with (s, t), then each label must be positioned
inside an area that is a subset of the solution space.

In Figure 15.14 we illustrate the importance of the proximity constraints. For example the
label assignment in Figure 15.14(a) is a preferable assignment. The assignment in Figure
15.14(b) does not convey clearly the meaning of the labels, because they are very close to
the target node; hence by observing the picture we cannot establish with certainty that the
source label is associated with the source node. In Figure 15.14(c) the proximity constraint
is that the distance between the source (resp. target) node and its label must be at most
half the length of the edge. This implies that the source (resp. target) label must be inside
the source (resp. target) region. The defined proximity constraints in Figure 15.14(c) are
too restrictive, since the defined regions do not intersect. One could define more relaxed
proximity constraints, as shown in Figure 15.14(d), where intersecting of different regions
is allowed. In practice the latter is preferable since it increases the labeling solution space
and improves the possibility for finding a labeling assignment, especially in cases where the
drawing is crowded.

Partial Order:

A label associated with the source (resp. target) node must be closer to the source (resp.
target) node than any other label to avoid ambiguity. Thus, in many cases, it is appropriate
to define a partial order between labels of the same graphical feature according to some
invariant (e.g., x or y axis, distance from a fixed point).

In Figure 15.15(c) we present an example where the absence of a partial order rule pro-
duces a misleading label assignment, since by simply looking at the picture we associate
the target (resp. source) label to the source (resp. target) node. In Figures 15.15(a) and

506 CHAPTER 15. LABELING ALGORITHMS

Source

Target Source

Target

Target

Source

(a)

Source

Target

(b)

Source

Target

(c)

Source

Target

Figure 15.15 (a) A preferable label assignment. (b) An acceptable label assignment. (c)
A misleading label assignment. Figure taken from [KT06].

15.15(b) the additional condition that a label associated with the source node must be closer
to the source node than the label associated with the target node ensures the correct inter-
pretation of the label assignment. If we define restrictive proximity constraints, as shown
in Figure 15.14(c), then a partial order constraint is not necessary. However, if we relax the
proximity constraints, as shown in Figure 15.14(d), then we need to define a partial order
constraint in order to avoid misleading labeling assignments.

Priority:

In many cases, it is impossible to assign all labels associated with a graphical feature, due
to the density of the drawing. Then, the user might prefer to have the important labels
assigned first, and then assign the rest of the labels if there is available space.

These three sets of constraints present a succinct framework for a good label assignment
with respect to the MLP problem.

In the following sections we focus on two sets of heuristics, iterative and flow-based, to
solve the MLP problem.

An iterative algorithm for the MLP problem

First a simple iterative approach to solve the problem of assigning multiple labels to
each graphical feature of a drawing is presented. For simplicity, let us assume that each
graphical feature is associated with the same number of label positions. The main idea is
the following: existing algorithms solve the labeling problem for single label per graphical
feature. Therefore, one could solve the MLP problem by applying these algorithms as many
times as the number of labels per graphical feature. This method consists of a main loop,
and we execute the loop as many times as the number of labels per graphical feature. In
particular, at the i-th execution of the loop, we assign the i-th label to each graphical feature.

This technique can take into account all three sets of constraints: (a) proximity (by
considering only the label positions that respect the proximity rules), (b) partial order

15.3. SOLVING THE LABELING PROBLEM 507

(by eliminating from the set of potential label positions, after each execution of the loop,
the label positions that do not respect the partial order) and (c) priority (by selecting, if
possible, the label position of highest priority among the available label positions). One can
refine this technique by first finding a set of label positions before entering the loop, and
then executing inside the loop only the step of positioning labels. The refinement works
because the cited labeling algorithms produce a label assignment from an initial finite set
of discrete potential label positions. The refined algorithm is shown in Figure 15.16.

Iterative Algorithm

INPUT: A drawing Γ, a set of graphical features F in Γ to be labeled,
a number N of labels for each graphical feature f in F .

OUTPUT: A label assignment.
1. Find an initial set of label positions L.
2. For i = 1 to N do:

2.1. Assign the i-th label to each graphical feature in F from the set L of
potential labels using existing labeling algorithms.

2.2. Remove potential label positions from L that overlap already assigned labels.

Figure 15.16 Iterative algorithm.

Figure 15.17 An orthogonal drawing with two labels per edge, positioned by the Iterative
algorithm. Figure taken from [KT06].

Even though this technique is very attractive, especially because it can be realized by
using existing labeling algorithms, it presents some challenges that have to be addressed.
Labeling techniques based on local or exhaustive search first create an initial label assign-

508 CHAPTER 15. LABELING ALGORITHMS

ment where conflicts between labels are allowed. Then conflicts are resolved by repositioning
assigned labels until all conflicts are resolved, or no further improvement can be achieved.
When applying these techniques in the context of the iterative algorithm one can either ap-
ply repositioning only for labels assigned in the current run of the loop or for any assigned
label (even in previous runs of the loop). In either case such techniques are slow.

This iterative approach is especially suited for the labeling algorithms presented in [KT98,
KT03], because they first find a set of label positions, and then they produce a label
assignment in a single step without any repositioning of labels (see Figures 15.17 and 15.18).

Figure 15.18 A hierarchical drawing with two labels per edge, positioned by the Iterative
algorithm. Figure taken from [KT06].

A Flow-Based algorithm for the MLP problem

The matching technique presented in Section 15.3.1 can be further extended to support
placement of more than one label per graphical feature of a graph drawing. The algorithm
presented here assigns label positions in a non-iterative fashion. It solves the MLP problem
by reducing it to an assignment problem.

First the matching graph Gm is created (see Section 15.3.1 for more details).
Next, the matching graph Gm is transformed into a flow graph Gflow(s, t, Vf , Vc, Ef).

Gm is converted to an st-graph by introducing two nodes s and t. Node s is connected to
each node in Vf , and node t is connected to each node in Vc, as shown in Figure 15.19.
Finally capacities to each edge of the flow graph Gflow are assigned in the following way:

• Each edge of the original matching graph has capacity one.

• Each edge (c, t) of Gflow incident to the target node has capacity one.

• Each edge (s, v) incident to the source node has capacity equal to the number of
labels associated with the graphical feature of the input graph that is represented
by node v in Gm.

15.3. SOLVING THE LABELING PROBLEM 509

a

d

c

b

Matching graph

Source Target

Objects to be labeled Clusters of overlapping labels

Figure 15.19 The flow graph. Figure taken from [KT06].

Clearly a maximum flow of graph Gflow will produce a maximum cardinality label as-
signment with respect to the set of labels encoded in the matching graph. Sophisticated
techniques can solve the maximum flow problem in O(nm log n) time [AMO93], where n is
the number of vertices and m is the number of edges of the flow graph.

This technique is summarized in the algorithm of Figure 15.20.

Flow-based Algorithm

INPUT: A drawing Γ, a set of graphical features F in Γ to be labeled,
a number M(f) of labels for each graphical feature f in F .

OUTPUT: A label assignment free of overlaps.
1. Find a set of label positions for each graphical feature in the drawing.
2. Arrange overlapping label positions into groups.
3. Create the matching graph Gm.
4. Augment graph Gm to a flow graph Gflow.
5. Assign capacities to each edge of Gflow.
6. Assign cost to edges of Gflow.
7. Find the maximum flow minimum cost of graph Gflow.
8. Assign labels according to the results of Step 7.

Figure 15.20 Flow-based algorithm.

510 CHAPTER 15. LABELING ALGORITHMS

The two most time consuming steps of the above algorithm are the detection of overlaps
between label positions and the matching produced by running a maximum flow minimum
cost algorithm on the flow graph. Clearly the time required for those two steps depends
highly on the size of the initial set of label positions. Therefore, the performance of the
above algorithm is closely related to the size of the initial set of label positions.

One point that needs to be emphasized is that the framework just described can take
into account the cost of a label assignment with respect to priority, proximity and aesthetic
criteria. Since the final label assignment is free of overlaps, one may assume that there is
no cost associated with the relative position of any pair of assigned labels. Each edge in
the bipartite graph Gm connects a graphical feature to a label position of that feature that
belongs to some group. The cost of label position l of graphical feature f is included as the
weight of edge (f, l) in the matching graph. Then, by assigning to edges incident to source
and target nodes weight equal to zero, one can find a maximum cardinality minimum cost
label assignment for the reduced MLP problem by solving the maximum flow minimum
cost problem for the flow graph Gflow (see [AMO93] for efficient techniques for solving the
flow problem). Figures 15.21 and 15.22 show label assignments produced by the Flow-based
algorithm.

Figure 15.21 A force-directed drawing with two labels per edge, positioned by the Flow-
based algorithm. Figure taken from [KT06].

15.3. SOLVING THE LABELING PROBLEM 511

Figure 15.22 A circular drawing with three labels for each edge and node positioned by
the Flow-based algorithm. The white boxes are edge labels and the dark boxes are node
labels. Figure taken from [KT06].

15.3.5 Placing Labels by Modifying the Drawing

Automatic labeling is a very difficult problem, and because we rely on heuristics to solve it,
there are cases where the best methods available do not always produce an acceptable or
legible solution even if one exists. Furthermore, there are cases where no feasible solution
exists. Given a specific drawing and labels of fixed size, then it might be impossible to
assign labels without violating any of the basic rules of a good label assignment (e.g., label
to label overlap, legibility, unambiguous assignment). These cases appear often in practical
applications when drawings are dense, labels are oversized, or the label assignment must
meet minimum requirements set by the user (e.g., font size or preference of placing labels).

To solve the labeling problem where the best solution we can have is either incomplete or
not acceptable one must modify the drawing. This approach cannot be applied in drawings
that represent geographical or technical maps where the underlying geometry is fixed by
definition. However, the layout of a given graph drawing can be changed since it is the
result of the algorithm used to draw the graph.

512 CHAPTER 15. LABELING ALGORITHMS

Generally speaking, there can be two algorithmic approaches in modifying the layout of
a graph drawing:

• Modify the existing layout of a graph drawing to make room for the placement
of labels.

• Produce a new layout of a graph drawing that integrates the layout and labeling
process.

In [Hu09, KT11] algorithms that modify an existing layout of a graph drawing to make
room for the placement of labels are presented. The algorithm of [KT11] modifies an existing
orthogonal drawing by inserting extra space in order to accommodate the placement of edge
labels that are free of overlaps. First, an edge label assignment is computed, where overlaps
are allowed, by using existing techniques. Then, the drawing is modified by applying a
polynomial time algorithm based on minimum flow techniques to find the extra space needed
to eliminate label overlaps, while preserving the orthogonal representation of the drawing.
In [Hu09] label overlaps are resolved by applying an algorithm based on the techniques
used to produce force-directed layout drawings. It iteratively moves the labels to remove
overlaps, while keeping the relative positions between them as close to those in the original
layout as possible, and edges as straight as possible.

In [BDLN05, DDPP99, KM99] algorithms that combine the layout and labeling process
of orthogonal drawings of graphs are presented. In [KM99] the authors study the problem of
computing a grid drawing of an orthogonal representation of a graph with labeled nodes and
minimum total edge length. They show an integer linear programming (ILP) formulation
of the problem and present a branch-and-cut based algorithm that combines compaction
and labeling techniques. The work in [BDLN05] makes a further step in the direction
defined in [KM99] by integrating the topology-shape-metrics approach with algorithms for
edge labeling. In [DDPP99] an approach to combining the layout and labeling process of
orthogonal drawings is presented. Labels are modeled as dummy nodes and the topology-
shape-metrics approach is applied to compute an orthogonal drawing where the dummy
nodes are constrained to have fixed size.

REFERENCES 513

References

[AF84] J. Ahn and H. Freeman. A program for automatic name placement.
Cartographica, 21(2 & 3):101–109, 1984.

[AH95] D. H. Alexander and C. S. Hantman. Automating Linear Text Placement
Within Dense Feature Networks. In Proc. Auto-Carto 12, pages 311–320.
ACSM/ASPRS, Bethesda, 1995.

[AMO93] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory,
Algorithms, and Applications. Prentice Hall, Englewood Cliffs, NJ, 1993.

[BDLN05] C. Binucci, W. Didimo, G. Liotta, and M. Nonato. Orthogonal Drawings
of Graphs with Vertex and Edge Labels. CGTA, 32(2):71–114, 2005.

[C+99] Bernard Chazelle et al. Application challenges to computational geom-
etry: CG impact task force report. In B. Chazelle, J. E. Goodman,
and R. Pollack, editors, Advances in Discrete and Computational Geom-
etry, volume 223 of Contemporary Mathematics, pages 407–463. American
Mathematical Society, Providence, 1999.

[CMS95] J. Christensen, J. Marks, and S. Shieber. An empirical study of algorithms
for Point Feature Label Placement. ACM Trans. on Graphics, 14(3):203–
232, 1995.

[DDPP99] G. Di Battista, W. Didimo, M. Patrignani, and M. Pizzonia. Orthogonal
and Quasi-upward Drawings with Vertices of Prescribed Size. In J. Kra-
tochvil, editor, Graph Drawing (Proc. GD ’99), volume 1731 of Lecture
Notes in Computer Science, pages 297–310. Springer-Verlag, 1999.

[DETT99] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing.
Prentice Hall, Upper Saddle River, NJ, 1999.

[DF92] J. S. Doerschler and H. Freeman. A rule based system for dense map
name placement. Communications of ACM, 35(1):68–79, 1992.

[DKMT07] U. Doğrusöz, K. G. Kakoulis, B. Madden, and I. G. Tollis. On Labeling
in Graph Visualization. Special Issue on Graph Theory and Applications,
Information Sciences Journal, vol. 177/12, pp. 2459-2472, 2007.

[DMM+97] S. Doddi, M. V. Marathe, A. Mirzaian, B. M. Moret, and B. Zhu. Map
Labeling and Its Generalizations. In Proc. 8th ACM-SIAM Sympos. Dis-
crete Algorithms, pages 148–157, 1997.

[ECMS97] S. Edmondson, J. Christensen, J. Marks, and S. M. Schieber. A General
Cartographic Labeling Algorithm. Cartographica, 33(4):321–342, 1997.

[Ede83a] H. Edelsbrunner. A new approach to rectangle intersections, Part I. In-
ternat. J. Comput. Math., 13:209–219, 1983.

[Ede83b] H. Edelsbrunner. A new approach to rectangle intersections, Part II.
Internat. J. Comput. Math., 13:221–229, 1983.

[EG90] L. R. Ebinger and A. M. Goulete. Noninteractive automated names place-
ment for the 1990 decennial census. Cartography and Geographic Infor-
mation Systems, 17(1):69–78, 1990.

[FA87] H. Freeman and J. Ahn. On the problem of placing names in a geograph-
ical map. Int. J. of Pattern Rec. and Artificial Intelligence, 1(1):121–140,
1987.

[FMC96] H. Freeman, S. Marrinan, and H. Chitalia. Automated Labeling of Soil
Survey Maps. In Proc. 8th Canadian Conference on Computational Ge-

514 CHAPTER 15. LABELING ALGORITHMS

ometry, volume 1 of Proceedings of the ASPRS-ACSM Annual Conven-
tion, pages 51–59, 1996.

[Fre88] H. Freeman. An Expert System for the Automatic Placement of Names
on a Geographic Map. Information Sciences, 45:367–378, 1988.

[Fre91] H. Freeman. Computer name placement. In D. J. Maguire, M. F. Good-
child, and D. W. Rhind, editors, Geographical Information Systems: Prin-
ciples and Applications, pages 445–456. Longman, London, 1991.

[FW91] M. Formann and F. Wagner. A packing problem with applications to
lettering of maps. In Proc. 7th Annu. ACM Sympos. Comput. Geom.,
pages 281–288, 1991.

[GJS96] P. Gupta, R. Janardan, and M. Smid. Efficient Algorithms for Count-
ing and Reporting Pairwise Intersections between Convex Polygons. In
Proc. 8th Canadian Conference on Computational Geometry, pages 8–13.
Carleton University Press, 1996.

[GK95] A. V. Goldberg and R. Kennedy. An Efficient Cost Scaling Algorithm for
the Assignment Problem. Mathematical Programming, 71:153–178, 1995.

[Hir82] S. A. Hirsch. An algorithm for automatic name placement around point
data. The American Cartographer, 9(1):5–17, 1982.

[Hu09] Y. Hu. Visualizing Graphs with Node and Edge Labels. CoRR,
abs/0911.0626, 2009.

[Imh75] E. Imhof. Positioning names on maps. The American Cartographer,
2(2):128–144, 1975.

[KI88] T. Kato and H. Imai. The NP-completeness of the character placement
problem of 2 or 3 degrees of freedom. In Record of Joint Conference of
Electrical and Electronic Engineers in Kyushu, pages 11–18, 1988. In
Japanese.

[KM99] G. W. Klau and P. Mutzel. Combining Graph Labeling and Compaction.
In J. Kratochvil, editor, Graph Drawing (Proc. GD ’99), volume 1731 of
Lecture Notes in Computer Science, pages 27–37. Springer-Verlag, 1999.

[KR92] D. Knuth and A. Raghunathan. The problem of compatible representa-
tives. SIAM J. Disc. Math., 5:36–47, 1992.

[KT98] K. G. Kakoulis and I. G. Tollis. An Algorithm for Labeling Edges of
Hierarchical Drawings. In G. Di Battista, editor, Graph Drawing (Proc.
GD ’97), volume 1353 of Lecture Notes in Computer Science, pages 169–
180. Springer-Verlag, 1998.

[KT01] K. G. Kakoulis and I. G. Tollis. On the Complexity of the Edge Label
Placement Problem. Computational Geometry, 18(1):1–17, 2001.

[KT03] K. G. Kakoulis and I. G. Tollis. A Unified Approach to Automatic La-
bel Placement. International Journal of Computational Geometry and
Applications, 13(1):23–60, 2003.

[KT06] K. G. Kakoulis and I. G. Tollis. Algorithms for the Multiple Label Place-
ment Problem. Computational Geometry, 35(3):143–161, 2006.

[KT11] K. G. Kakoulis and I. G. Tollis. Placing Edge Labels by Modifying an
Orthogonal Graph Drawing. In U. Brandes and S. Cornelsen, editors,
Graph Drawing (Proc. GD 2010), volume 6502 of Lecture Notes in Com-
puter Science, pages 395–396. Springer-Verlag, 2011.

REFERENCES 515

[MS91] J. Marks and S. Shieber. The computational complexity of cartographic
label placement. Technical Report 05-91, Harvard University, 1991.

[PF96] I. Pinto and H. Freeman. The Feedback Approach to Cartographic Area
Text Placement. In P. Perner, P. Wang, and A. Rosenfeld, editors, Ad-
vances in Structural and Syntactical Pattern Recognition, volume 1121
of Lecture Notes in Computer Science, pages 341–350. Springer-Verlag,
1996.

[RMM+95] A. H. Robinson, J. L. Morrison, P. C. Muehrcke, A. J. Kimerling, and
S. C. Guptill. Elements of Cartography. John Wiley & Sons, Inc., 6th
edition, 1995.

[Tar83] R. E. Tarjan. Data Structures and Network Algorithms, volume 44 of
CBMS-NSF Regional Conference Series in Applied Mathematics. Society
for Industrial and Applied Mathematics, Philadelphia, PA, 1983.

[vKSW99] M. van Kreveld, T. Strijk, and A. Wolff. Point Labeling with Sliding
Labels. CGTA, 13:21–47, 1999.

[vR89] J. W. van Roessel. An algorithm for locating candidate labeling boxes
within a polygon. The American Cartographer, 16(3):201–209, 1989.

[WKvK+00] A. Wolff, L. Knipping, M. van Kreveld, T. Strijk, and P. K. Agarwal. A
Simple and Efficient Algorithm for High-Quality Line Labeling. In P. M.
Atkinson and D. J. Martin, editors, Innovations in GIS VII: GeoCompu-
tation, chapter 11, pages 147–159. Taylor and Francis, 2000.

[WMP+05] P. C. Wong, P. Mackey, K. Perrine, J. Eagan, H. Foote, and J. Thomas.
Dynamic Visualization of Graphs with Extended Labels. In Proceedings
of the 2005 IEEE Symposium on Information Visualization, INFOVIS
’05, pages 73–80, 2005.

[WW95] F. Wagner and A. Wolff. Map Labeling Heuristics: Provably Good and
Practically Useful. In Proc. 11th Annu. ACM Sympos. Comput. Geom.,
pages 109–118, 1995.

[Yoe72] P. Yoeli. The logic of automated map lettering. The Cartographic Journal,
9(2):99–108, 12 1972.

[Zor90] S. Zoraster. The solution of large 0-1 integer programming problems
encountered in automated cartography. Operation Research, 38(5):752–
759, September-October 1990.

16
Graph Markup Language (GraphML)

Ulrik Brandes
University of Konstanz

Markus Eiglsperger

Jürgen Lerner
University of Konstanz

Christian Pich
Swiss Re

16.1 Introduction . 517
Related Formats

16.2 Basic Concepts . 518
Header • Topology • Attributes • Parseinfo

16.3 Advanced Concepts . 525
Nested Graphs • Hypergraphs • Ports

16.4 Extending GraphML . 529
Adding XML-Attributes • Adding Structured Content

16.5 Transforming GraphML . 534
Means • Types • Language Binding

16.6 Using GraphML . 539
References . 540

16.1 Introduction

Graph drawing tools, like all other tools dealing with relational data, need to store and
exchange graphs and associated data. Despite several earlier attempts to define a standard,
no agreed-upon format is widely accepted and, indeed, many tools support only a limited
number of custom formats which are typically restricted in their expressibility and specific
to an area of application.

Motivated by the goals of tool interoperability, access to benchmark data sets, and data
exchange over the Web, the Steering Committee of the Graph Drawing Symposium started
a new initiative with an informal workshop held in conjunction with the 8th Symposium
on Graph Drawing (GD 2000) [BMN01]. As a consequence, an informal task group was
formed to propose a modern graph exchange format suitable in particular for data transfer
between graph drawing tools and other applications.

Thanks to its XML syntax, GraphML can be used in combination with other XML based
formats. On the one hand, its own extension mechanism allows to attach <data> labels
with complex content (possibly required to comply with other XML content models) to
GraphML elements. Examples of such complex data labels are Scalable Vector Graph-
ics [W3Ca] describing the appearance of the nodes and edges in a drawing. On the other
hand, GraphML can be integrated into other applications, e.g., in SOAP messages [W3Cb].

A modern graph exchange format cannot be defined in a monolithic way, since graph
drawing services are used as components in larger systems and Web-based services are
emerging. Graph data may need to be exchanged between such services, or stages of a
service, and between graph drawing services and systems specific to areas of applications.

The typical usage scenarios that we envision for the format are centered around systems
designed for arbitrary applications dealing with graphs and other data associated with

517

518 CHAPTER 16. GRAPH MARKUP LANGUAGE (GRAPHML)

them. Such systems will contain or call graph drawing services that add or modify layout
and graphics information. Moreover, such services may compute only partial information
or intermediate representations, for instance because they instantiate only part of a staged
layout approach such as the topology-shape-metrics or Sugiyama frameworks [DBETT99,
STT81]. We hence aimed to satisfy the following key goal.

The graph exchange format should be able to represent arbitrary graphs with
arbitrary additional data, including layout and graphics information. The addi-
tional data should be stored in a format appropriate for the specific application,
but should not complicate or interfere with the representation of data from other
applications.

GraphML is designed with this and the following more pragmatic goals in mind:

• Simplicity : The format should be easy to parse and interpret for both humans
and machines. As a general principle, there should be no ambiguities and thus a
single well-defined interpretation for each valid GraphML document.

• Generality : There should be no limitation with respect to the graph model, i.e.,
hypergraphs, hierarchical graphs, etc. should be expressible within the same basic
format.

• Extensibility : It should be possible to extend the format in a well-defined way to
represent additional data required by arbitrary applications or more sophisticated
use (e.g., sending a layout algorithm together with the graph).

• Robustness: Systems not capable of handling the full range of graph models or
added information should be able to easily recognize and extract the subset they
can handle.

16.1.1 Related Formats

Besides GraphML there is a multitude of file formats for serializing graphs. Among the
simplest ones are direct ASCII-based codings of tables (matrices) or lists, such as tab-
separated value files. Specific instances of these include UCINET’s *.dl files [BEF99] and
Pajek’s *.net files [DMB05]. XML-based formats to represent graphs include GXL [Win02],
and DyNetML [TRC03].

16.2 Basic Concepts

In this section, we describe how graphs and simple graph data are represented in GraphML.
The graph model used in this section is a labeled mixed multigraph, i.e., a tuple

G = (V,E,D),

where V is a set of nodes, E a multi-set containing directed and undirected edges, and D a set
of data labels that are partial functions from {G}∪V ∪E into some specified range of values.
The data labels can encode, e. g., properties of nodes and edges such as graphical variables
or, if nodes correspond to social actors, demographic characteristics such as gender or age.
Thus, our graph model includes graphs that can contain both directed and undirected edges,
loops, and multi-edges. This graph model will be extended in Section 16.3, where advanced
concepts for the graph topology, like nested graphs, hypergraphs, and ports, are introduced.
As an example, consider the document fragment and the graph it describes in Figure 16.1.

16.2. BASIC CONCEPTS 519

<graphml>

<graph edgedefault="directed">

<node id="v1"/>

<node id="v2"/>

<node id="v3"/>

<node id="v4"/>

<edge source="v1" target="v2"/>

<edge source="v1" target="v3"/>

<edge source="v2" target="v4"/>

<edge source="v2" target="v4" directed="false"/>

</graph>

</graphml>

Figure 16.1 A graph and its representation in GraphML.

16.2.1 Header

The document fragment shown in Figure 16.1 is not yet a valid XML document. Valid
XML documents must declare in their header either a DTD (document type definition) or
an XML schema. Both DTDs or schemas define a subset of all XML documents that forms a
certain language. The GraphML language has been defined by a schema. Although a DTD
is provided to support parsers that cannot handle schema definitions, the only normative
specification is the GraphML schema located at

http://graphml.graphdrawing.org/xmlns/1.1/graphml.xsd

The document shown in Figure 16.2 is minimal to be a GraphML document that can be
validated against the above schema. Actually, it defines an empty set of graphs. Areas
starting with <!-- and ending with --> are comments.

<?xml version="1.0" encoding="UTF-8"?>

<graphml xmlns="http://graphml.graphdrawing.org/xmlns"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://graphml.graphdrawing.org/xmlns

http://graphml.graphdrawing.org/xmlns/1.1/graphml.xsd">

<!--Content: List of graphs and data-->

</graphml>

Figure 16.2 A minimal valid GraphML document.

The first line of the GraphML document in Figure 16.2 is an XML process instruction
which defines that the document adheres to the XML 1.0 standard and that the encoding
of the document is UTF-8, the standard encoding for XML documents. Of course other
encodings can be chosen for GraphML documents.

The second line contains the root-elementXS of a GraphML document: the <graphml> el-
ement. The <graphml> element, like all other GraphML elements, belongs to the namespace
http://graphml.graphdrawing.org/xmlns. For this reason we define this namespace as
the default namespace in the document by adding the XML Attribute

xmlns="http://graphml.graphdrawing.org/xmlns"

520 CHAPTER 16. GRAPH MARKUP LANGUAGE (GRAPHML)

to it. The next two XML Attributes declare which XML Schema is used for validation of
this document. The attribute

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

defines xsi as the namespace prefix for the XML Schema namespace. The attribute,

xsi:schemaLocation="http://graphml.graphdrawing.org/xmlns

http://graphml.graphdrawing.org/xmlns/1.1/graphml.xsd"

defines the XML Schema location for the GraphML namespace. It provides the information
that all elements in the GraphML namespace are validated against the file graphml.xsd

located at the given URL. Of course, validation is not necessarily performed using this file.
Local copies of graphml.xsd can also be specified as schema locations. (Generally, the
value of the schemaLocation attribute is a list of pairs, where the first element of each pair
denotes a namespace and the second points to a file where elements of this namespace are
defined.)

The XML Schema reference provides means to validate the document and is therefore
strongly recommended. If validation is not considered necessary, the schema location decla-
ration can be omitted. A minimal GraphML document without Schema reference is shown
in Figure 16.3. Note that this file is not a valid document according to the XML specifica-

<?xml version="1.0" encoding="UTF-8"?>

<graphml xmlns="http://graphml.graphdrawing.org/xmlns" >

<!--Content: List of graphs and data-->

</graphml>

Figure 16.3 A minimal GraphML document without a schema reference.

tion.

16.2.2 Topology

In this section, we describe how the basic graph-topology (nodes and edges) are represented
in GraphML.

Remind the document fragment shown in Figure 16.1. A graph is represented in GraphML
by a <graph> element. The <graphml> element can contain any number of <graph>s. The
nodes of a graph are represented by a list of <node> elements. Each node must have an
id attribute. The edge set is represented by a list of <edge> elements. Edges and nodes
may be ordered arbitrarily and it is not required that all nodes are listed before all edges.
Clearly, the space requirement for storing a graph with n nodes and m edges in GraphML
is in O(n + m).

Edges point to source- and target-nodes by the values of their attributes source and
target, respectively. It is ensured in the GraphML Schema specification that node-ids are
unique within the enclosing <graph> and that the attribute values of the source and target

attributes match the id of some <node> within the enclosing <graph>. The possibility of
enforcing this constraint already in the definition of the GraphML language is one of the
advantages of using XML schema instead of a DTD.

The edgedefault attribute of <graph> declares whether edges are understood as directed
or undirected per default. Individual <edge>s can overwrite this default by setting the value
of their directed attribute to true or false, respectively.

16.2. BASIC CONCEPTS 521

<?xml version="1.0" encoding="UTF-8"?>

<graphml>

<key id="d0" for="node"

attr.name="color" attr.type="string">

<default>yellow</default>

</key>

<key id="d1" for="edge"

attr.name="weight" attr.type="double"/>

<graph id="G" edgedefault="undirected">

<node id="n0">

<data key="d0">green</data>

</node>

<node id="n1"/>

<node id="n2">

<data key="d0">blue</data>

</node>

<node id="n3">

<data key="d0">red</data>

</node>

<node id="n4"/>

<node id="n5">

<data key="d0">turquoise</data>

</node>

<edge id="e0" source="n0" target="n2">

<data key="d1">1.0</data>

</edge>

<edge id="e1" source="n0" target="n1">

<data key="d1">1.0</data>

</edge>

<edge id="e2" source="n1" target="n3">

<data key="d1">2.0</data>

</edge>

<edge id="e3" source="n3" target="n2"/>

<edge id="e4" source="n2" target="n4"/>

<edge id="e5" source="n3" target="n5"/>

<edge id="e6" source="n5" target="n4">

<data key="d1">1.1</data>

</edge>

</graph>

</graphml>

Figure 16.4 Graph with attributes. Edges have weights and nodes have colors. (For
readability, the namespace declarations and schema location information has been left out.)

522 CHAPTER 16. GRAPH MARKUP LANGUAGE (GRAPHML)

16.2.3 Attributes

In the previous section we discussed how to describe the topology of a graph in GraphML.
While pure topological information may be sufficient for some applications of GraphML,
for most of the time additional information is needed. With the help of the extension
GraphML-Attributes one can specify additional information of simple type for the elements
of the graph. Simple type means that the information is restricted to scalar values, e.g.,
numerical values and strings. The GraphML-Attributes extension is already included in the
file

http://graphml.graphdrawing.org/xmlns/1.1/graphml.xsd

thus the header of the following example file may look like the one in Section 16.2.1.
GraphML-Attributes must not be confused with XML-attributes which are a different con-
cept (putting it in a simple way, GraphML-Attributes add information to graphs, sets of
graphs, or parts of graphs and XML-attributes add information to XML elements).

In most cases, additional information can and should be attached to GraphML elements
by usage of GraphML-Attributes as described in this section. This ensures readability for
other GraphML parsers. If a custom data-format is necessary, then the GraphML language
can be extended to include arbitrary data in well-defined places. How extensions can be
defined is described in Section 16.4.

GraphML-Attributes are considered to be partial functions that assign values to elements
of the graph (which often but not necessarily have the same type). For example edges
weights can be viewed as a function from the set of edges E to the real numbers.

weight:E → R.

As a different example, node colors can be represented by a function from the set of nodes
V to strings over a certain alphabet Σ.

color:V → Σ∗.

To add data functions to graph elements, the GraphML key/data mechanism has to be
used. A <key> element, at the beginning of the document, declares a new data function;
more precisely, the <key> element specifies the function’s id, name, domain, and range of
values. The values of the function are defined by <data> elements.

The declaration of all data functions right at the beginning of the document has the
benefit that parsers can build up appropriate data structures at the beginning of the parsing
process. Likewise, parsers can recognize if some required data is missing. The GraphML
document shown in Figure 16.4 is an example illustrating the key/data mechanism. The
weight function is declared in the line

<key id="d1" for="edge" attr.name="weight" attr.type="double"/>

A <key> has an XML attribute called for that specifies the domain of the data function.
The attribute for may assume values like graph, node, edge, graphml and names of other
graph element types introduced later in Section 16.3. The XML attribute for may also
assume the value all having the meaning that these data labels can be attached to all
graph elements. The attribute for as well as a unique id are mandatory for <key> elements.
The GraphML-Attributes extension provides two more attributes for <key>: the attribute
attr.name, which defines the name of the data function and is used by parsers to recognize
“their” data, and the attribute attr.type, which specifies the range of the data values.

16.2. BASIC CONCEPTS 523

Possible values for attr.type are boolean, int, long, float, double, and string having
the obvious meaning.

A parser that handles edge weights will typically, after parsing the above line, initialize
some internal data structure that stores doubles for each edge. Conversely, a parser that
does not know or does not need a function for edges with the name “weight” will simply
ignore the associated <data> elements. Values for the data functions are defined in <data>

elements. For example, the code fragment

<edge id="e0" source="n0" target="n2">

<data key="d1">1.0</data>

</edge>

defines a value of 1.0 as weight for the enclosing <edge>. The <data> elements point to
<key>s by their key attribute. It is ensured in the GraphML schema that the value of the
key attribute must match the id of some <key> element within the same document.

Since in general data labels are only partial functions, <data> elements need not be
present for all edges. For example the edge

<edge id="e3" source="n3" target="n2"/>

does not define a value for the weight function. However, <key>s can define default values
for the associated data function. For example

<key id="d0" for="node" attr.name="color" attr.type="string">

<default>yellow</default>

</key>

declares a function named color on the set of nodes and defines yellow as the default node
color. Thus, the node

<node id="n4"/>

is understood as being colored yellow. Nodes can overwrite the default by their <data>

element. For instance, the node

<node id="n0">

<data key="d0">green</data>

</node>

is colored green. The default mechanism serves to save space if many elements assume the
same value.

16.2.4 Parseinfo

There is one more extension, called GraphML-Parseinfo, to the core structural part of
GraphML. GraphML-Parseinfo makes it possible to write simple parsers that rely on ad-
ditional information in the GraphML files. The GraphML-Parseinfo extension is already
included in the file

http://graphml.graphdrawing.org/xmlns/1.1/graphml.xsd

thus the header of the example file in Figure 16.5 may look like the one in Section 16.2.1.

524 CHAPTER 16. GRAPH MARKUP LANGUAGE (GRAPHML)

<?xml version="1.0" encoding="UTF-8"?>

<graphml>

<graph id="G" edgedefault="directed"

parse.nodes="11" parse.edges="12"

parse.maxindegree="2"

parse.maxoutdegree="3"

parse.nodeids="canonical"

parse.edgeids="free"

parse.order="nodesfirst">

<node id="n0" parse.indegree="0" parse.outdegree="1"/>

<node id="n1" parse.indegree="0" parse.outdegree="1"/>

<node id="n2" parse.indegree="2" parse.outdegree="1"/>

<node id="n3" parse.indegree="1" parse.outdegree="2"/>

<node id="n4" parse.indegree="1" parse.outdegree="1"/>

<node id="n5" parse.indegree="2" parse.outdegree="1"/>

<node id="n6" parse.indegree="1" parse.outdegree="2"/>

<node id="n7" parse.indegree="2" parse.outdegree="0"/>

<node id="n8" parse.indegree="1" parse.outdegree="3"/>

<node id="n9" parse.indegree="1" parse.outdegree="0"/>

<node id="n10" parse.indegree="1" parse.outdegree="0"/>

<edge id="edge0001" source="n0" target="n2"/>

<edge id="edge0002" source="n1" target="n2"/>

<edge id="edge0003" source="n2" target="n3"/>

<edge id="edge0004" source="n3" target="n5"/>

<edge id="edge0005" source="n3" target="n4"/>

<edge id="edge0006" source="n4" target="n6"/>

<edge id="edge0007" source="n6" target="n5"/>

<edge id="edge0008" source="n5" target="n7"/>

<edge id="edge0009" source="n6" target="n8"/>

<edge id="edge0010" source="n8" target="n7"/>

<edge id="edge0011" source="n8" target="n9"/>

<edge id="edge0012" source="n8" target="n10"/>

</graph>

</graphml>

Figure 16.5 Example demonstrating the use of GraphML-Parseinfo meta data.

16.3. ADVANCED CONCEPTS 525

To make it possible to implement optimized parsers for GraphML documents, meta-data
can be attached as XML-attributes to some GraphML elements. There are two kinds of
meta-data intended for parsers: information about the number of elements and information
about how specific data is encoded in the document. For instance, a parser that stores
nodes and incident edges in (non-extensible) arrays can profit from information about the
number of nodes in the graph and the nodes’ degrees, respectively. All XML-attributes
denoting meta-data for parsers are prefixed with parse.

For the first kind, information about the number of elements, the following XML-attributes
for the <graph> element are defined. The value of the attribute parse.nodes gives the
number of <node>s in the <graph>. Likewise, the value of parse.edges gives the num-
ber of <edge>s, parse.maxindegree is for the maximum indegree of the all <node>s in
the <graph>, and parse.maxoutdegree for the maximum outdegree. For <node> elements
the value of the attribute parse.indegree gives the indegree and parse.outdegree the
outdegree of <node>s, respectively.

For the second kind, information about element encoding, the following XML-attributes
for the <graph> element are defined. If the attribute parse.nodeids has the value canonical,
all <node>s have identifiers following the pattern nX, where X denotes the number of occur-
rences of <node> elements before the current element. Otherwise the value of parse.nodeids
equals free. The same holds for <edge>s for which the corresponding XML-attribute
parse.edgeids is defined, with the only difference that the identifiers of <edge>s follow
the pattern eX. The XML-attribute parse.order of <graph> gives information about the
order in which <node> and <edge> elements occur in the <graph>. If parse.order as-
sumes the value nodesfirst, all <node> elements appear the first occurrence of an <edge>.
If parse.order assumes the value adjacencylist, the declaration of a <node> is followed
by the declaration of its adjacent <edge>s. If parse.order assumes the value free, no order
is imposed. The example in Figure 16.5 demonstrates the use of parse info meta-data.

16.3 Advanced Concepts

In this section we discuss advanced topological features for graphs. The graph model from
Section 16.2 is extended to include a nesting hierarchy, hyperedges and ports. Since many
graph applications do not support these extended graph models, we describe at the end of
each subsection the specified fall-back behavior.

The GraphML elements that are introduced in this section can be specified as the domain
of data-functions, i.e., as the value of the for attributes of <key>s (compare Section 16.2.3).

16.3.1 Nested Graphs

GraphML supports nested graphs, i.e., graphs in which the nodes are hierarchically ordered.
The hierarchy tree is encoded in the GraphML document tree. A <node> in a GraphML
document may contain a <graph> element which itself contains the <node>s which are in
the hierarchy below this <node>.

Figure 16.6 is an example of a document describing a nested graph. Note that in the
drawing of the graph the hierarchy is expressed by containment, i.e., a node u is below a
node v in the hierarchy if and only if the graphical representation of u is entirely inside the
graphical representation of v.

The edges between two nodes in a nested graph have to be declared in a graph that is an
ancestor of both nodes in the hierarchy. Note that this is true for our example. Declaring
the edge between node n3 and node n2 inside graph G1 would be wrong while declaring it

526 CHAPTER 16. GRAPH MARKUP LANGUAGE (GRAPHML)

<graphml>

<graph id="G0" edgedefault="undirected">

<node id="n1">

<graph id="G1" edgedefault="undirected">

<node id="n3"/>

<node id="n4"/>

<node id="n5"/>

<edge source="n3" target="n4"/>

<edge source="n4" target="n5"/>

</graph>

</node>

<node id="n2">

<graph id="G2" edgedefault="undirected">

<node id="n6"/>

</graph>

</node>

<edge source="n1" target="n2"/>

<edge source="n3" target="n2"/>

<edge source="n3" target="n6"/>

</graph>

</graphml>

Figure 16.6 A nested graph.

in graph G0 is correct. A good policy is to place the edges at the least common ancestor of
the nodes in the hierarchy.

The GraphML language includes an element called <locator> which makes it possible
to define some of the document content in another file. More specifically, the elements
<graph> and <node> can contain a <locator> element whose attribute xlink:href points
to a file in which the content of this <graph>, respectively <node> is defined. If a particular
<graph> or <node> element contains a <locator>, then this <graph>, respectively <node>

does not contain any other element. For instance, the document fragment

<graph id="G0" edgedefault="undirected">

<node id="n1">

<graph id="G1" edgedefault="undirected">

<locator xlink:href="content_of_G1.graphml"/>

</graph>

</node>

...

</graph>

(which is a modified version of the document in Figure 16.6) tells the parser that the content
of the <graph> with id="G1" is defined in the file content of G1.graphml. Likewise, the
content of <node>s can be outsourced to another file with the help of <locator> elements.

For applications that cannot handle nested graphs, the fall-back behavior is to ignore
nodes that are not contained in the top-level graph and to ignore edges that do not have
both endpoints in the top-level graph.

16.3. ADVANCED CONCEPTS 527

16.3.2 Hypergraphs

Hyperedges are a generalization of edges in the sense that they do not only relate two
endpoints to each other but rather express a relation between an arbitrary number of
endpoints. Hyperedges are declared by a <hyperedge> element in GraphML. For each
endpoint of the hyperedge, this <hyperedge> element contains an <endpoint> element.
The <endpoint> element must have an XML-attribute node, which contains the id of a
<node> in the document. The example in Figure 16.7 contains two hyperedges and two
edges. The hyperedges are illustrated by joining arcs, the edges by straight lines.

<?xml version="1.0" encoding="UTF-8"?>

<graphml>

<graph id="G" edgedefault="undirected">

<node id="n0"/>

<node id="n1"/>

<node id="n2"/>

<node id="n3"/>

<node id="n4"/>

<node id="n5"/>

<node id="n6"/>

<hyperedge>

<endpoint node="n0"/>

<endpoint node="n1"/>

<endpoint node="n2"/>

</hyperedge>

<hyperedge>

<endpoint node="n3"/>

<endpoint node="n4"/>

<endpoint node="n5"/>

<endpoint node="n6"/>

</hyperedge>

<hyperedge>

<endpoint node="n1"/>

<endpoint node="n3"/>

</hyperedge>

<edge source="n0" target="n4"/>

</graph>

</graphml>

Figure 16.7 A hypergraph.

Note that edges can be either specified by an <edge> element or by a <hyperedge>

element containing exactly two <endpoint> elements. Obviously, the latter option is only
recommendable for applications that can handle hyperedges. The <endpoint> elements
have an optional attribute called type which may assume the values in, out, and undir

and is set to undir by default. The fall-back behavior for applications that cannot handle
hyperedges is simply to ignore them.

528 CHAPTER 16. GRAPH MARKUP LANGUAGE (GRAPHML)

16.3.3 Ports

A node may specify different logical locations for edges and hyperedges to connect. The
logical locations are called ports. As an analogy, think of the graph as a motherboard,
the nodes as integrated circuits and the edges as connecting wires. Then the pins on the
integrated circuits correspond to ports of a node.

The ports of a node are declared by <port> elements as children of the corresponding
<node> element. <port> elements may be nested, i.e., they may contain <port> elements
themselves. Each <port> element must have an XML-attribute name, which is an identifier
for this port. Port names are unique only within the enclosing <node> (see the exam-
ple in Figure 16.8). The <edge> element has optional XML-attributes sourceport and
targetport with which an edge may specify the port on the source, resp. target, node.
Correspondingly, the <endpoint> element has an optional XML-attribute port. An exam-
ple of a GraphML document with ports is shown in Figure 16.8. The fall-back behavior for
applications that can not handle ports is simply to ignore them.

<?xml version="1.0" encoding="UTF-8"?>

<graphml>

<graph id="G" edgedefault="directed">

<node id="n0">

<port name="North"/>

<port name="South"/>

<port name="East"/>

<port name="West"/>

</node>

<node id="n1">

<port name="North"/>

<port name="South"/>

<port name="East"/>

<port name="West"/>

</node>

<node id="n2">

<port name="NorthWest"/>

<port name="SouthEast"/>

</node>

<node id="n3">

<port name="NorthEast"/>

<port name="SouthWest"/>

</node>

<edge source="n0" target="n3"

sourceport="North" targetport="NorthEast"/>

<hyperedge>

<endpoint node="n0" port="North"/>

<endpoint node="n1" port="East"/>

<endpoint node="n2" port="SouthEast"/>

</hyperedge>

</graph>

</graphml>

Figure 16.8 Document of a graph with ports.

16.4. EXTENDING GRAPHML 529

16.4 Extending GraphML

GraphML is designed to be easily extensible. With GraphML the topology of a graph
and simple attributes of graph elements (see Section 16.2.3) can be serialized. To store
more complex application data one has to extend GraphML which will be discussed in this
section.

GraphML can be extended in two different ways: adding additional attributes to GraphML
elements (discussed in Section 16.4.1) and extending the content of the <data> elements by
allowing them to contain elements from other XML languages (discussed in Section 16.4.2).

Extensions of GraphML should be defined by an XML Schema (the other possibility,
extending the DTD, is not described here). The Schema which defines the extension can
be derived from the GraphML Schema documents by using a standard mechanism similar
to the one used by XHTML.

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema

targetNamespace="http://graphml.graphdrawing.org/xmlns"

xmlns="http://graphml.graphdrawing.org/xmlns"

xmlns:xlink="http://www.w3.org/1999/xlink"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified"

attributeFormDefault="unqualified">

<xs:import namespace="http://www.w3.org/1999/xlink"

schemaLocation="xlink.xsd"/>

<xs:redefine

schemaLocation="http://graphml.graphdrawing.org/xmlns/1.1/graphml.xsd">

<xs:attributeGroup name="node.extra.attrib">

<xs:attributeGroup ref="node.extra.attrib"/>

<xs:attribute ref="xlink:href" use="optional"/>

</xs:attributeGroup>

</xs:redefine>

</xs:schema>

Figure 16.9 File graphml+xlink.xsd : an XML Schema Definition that extends the
GraphML language by adding attribute xlink:href to element <node>.

16.4.1 Adding XML-Attributes

In most cases, additional information can and should be attached to GraphML elements
by usage of GraphML-Attributes (see Section 16.2.3). This assures readability for other
GraphML parsers. However, sometimes it might be more convenient to use specific XML
attributes. Suppose a graph whose nodes model WWW pages should be stored in GraphML.
A node could then point to the associated page by storing the URL in an xlink:href

attribute within the <node> element:

530 CHAPTER 16. GRAPH MARKUP LANGUAGE (GRAPHML)

<node id="n0" xlink:href="http://graphml.graphdrawing.org"/>

The string http://graphml.graphdrawing.org could as well be stored within a <data>

element contained in the node n0. However, when storing this string as the value of the
xlink:href attribute, then its semantic (being a URL) becomes more obvious.

The element <node> as written above would not be valid for the core GraphML, since
there is no xlink:href attribute defined for <node>. To add XML attributes to GraphML
elements one has to extend GraphML. This extension can be defined by an XML Schema.
The document in Figure 16.9 is an XML Schema Definition that extends the GraphML
language by adding the xlink:href attribute to <node>.

The document in Figure 16.9 has a <schema> element as its root element (every XML
Schema Definition does so). The element <schema> has a couple of attributes:

targetNamespace="http://graphml.graphdrawing.org/xmlns"

specifies that the language defined by this document is GraphML. The next three lines spec-
ify the default namespace (identified by the GraphML URL) and the namespace prefixes for
XLink and XMLSchema. The attributes elementFormDefault and attributeFormDefault

are of no importance for this example.
The import instruction

<xs:import namespace="http://www.w3.org/1999/xlink"

schemaLocation="xlink.xsd"/>

gives access to the XLink namespace (assumed that the Schema Definition for XLink is
located at the file xlink.xsd).

The extension is done in the <redefine> element. The attribute

schemaLocation="http://graphml.graphdrawing.org/xmlns/1.1/graphml.xsd"

of <redefine> specifies the file (part of) which is being redefined. The document fragment

<xs:attributeGroup name="node.extra.attrib">

<xs:attributeGroup ref="node.extra.attrib"/>

<xs:attribute ref="xlink:href" use="optional"/>

</xs:attributeGroup>

extends the attribute group called node.extra.attrib which (by the core GraphML spec-
ification) is an empty set, but included in the attribute-list of the element <node>. Af-
ter redefinition, this attribute group has its old content plus one more attribute, namely
xlink:href. This attribute is declared as being optional for <node>. It is a good policy to
always add the old content to the newly defined attribute groups, as there might be more
than one Schema definitions extending the same attribute group.

As there is the attribute group node.extra.attrib for the element <node>, there are
corresponding attribute groups for all GraphML elements. These attribute groups are empty
in the core GraphML definition but can be extended as illustrated above.

The schema graphml+xlink.xsd can be used to validate the document shown in Fig-
ure 16.10.

Storing additional information directly in the attributes of GraphML elements, as illus-
trated in this section, may seem to be preferable to storing them within a <data> element,
as explained in Section 16.2.3 (at least it can be observed that less characters are neces-
sary). However, such a user-specified extension comes at a price: since these non-standard
attributes are not declared by <key> elements, GraphML parsers might not be able to
handle them.

16.4. EXTENDING GRAPHML 531

<?xml version="1.0" encoding="UTF-8"?>

<graphml xmlns="http://graphml.graphdrawing.org/xmlns"

xmlns:xlink="http://www.w3.org/1999/xlink"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://graphml.graphdrawing.org/xmlns

graphml+xlink.xsd">

<graph edgedefault="directed">

<node id="n0" xlink:href="http://graphml.graphdrawing.org"/>

<node id="n1" />

<edge source="n0" target="n1"/>

</graph>

</graphml>

Figure 16.10 A document that can be validated with the XSD shown in Figure 16.9. Note
that the schemaLocation attribute of <graphml> points to the file graphml+xlink.xsd.

16.4.2 Adding Structured Content

In some cases it might be convenient to use other XML languages to represent data in
GraphML. For example a user wants to store images for nodes, written in SVG, as in the
following document fragment.

...

xmlns:svg="http://www.w3.org/2000/svg"

...

<node id="n0" >

<data key="k0">

<svg:svg width="4cm" height="8cm" version="1.1">

<svg:ellipse cx="2cm" cy="4cm" rx="2cm" ry="1cm" />

</svg:svg>

</data>

</node>

...

The attributes of <svg> and <ellipse> could also be stored in data functions as described
in Section 16.2.3. However, the representation above is much more convenient, since appli-
cations can use existing parsers or viewers for SVG images.

GraphML can be extended to validate such a document. Arbitrary elements can be
added to the content of <data>—but only to <data>—while the core GraphML cannot be
changed. This decision has been made to ensure that parsers can understand at least the
structural part and ignore possibly unknown content of <data>.

Figure 16.11 shows the XML Schema Definition that adds SVG elements to the content
of <data>.

The schema in Figure 16.11 is similar to the one in Figure 16.9. First the namespace dec-
larations are made. Then the SVG namespace is imported. As before, the extension is done
in the <redefine> element. Within this element the complex type data-extension.type

is extended by the SVG element <svg>. data-extension.type is the base-type for the
content of the elements <data> and <default>. This type has empty content in the core
GraphML definition, but can be extended by arbitrary XML elements.

Documents that are validated against the Schema in Figure 16.11 can thus have <data>

elements that contain <svg>. An example is shown in Figure 16.12. The node with id

532 CHAPTER 16. GRAPH MARKUP LANGUAGE (GRAPHML)

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema

targetNamespace="http://graphml.graphdrawing.org/xmlns"

xmlns="http://graphml.graphdrawing.org/xmlns"

xmlns:svg="http://www.w3.org/2000/svg"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified"

attributeFormDefault="unqualified"

>

<xs:import namespace="http://www.w3.org/2000/svg"

schemaLocation="svg.xsd"/>

<xs:redefine

schemaLocation="http://graphml.graphdrawing.org/xmlns/1.1/graphml.xsd">

<xs:complexType name="data-extension.type">

<xs:complexContent>

<xs:extension base="data-extension.type">

<xs:sequence>

<xs:element ref="svg:svg"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

</xs:redefine>

</xs:schema>

Figure 16.11 File graphml+svg.xsd : an XML Schema Definition that extends the
GraphML language by adding element <svg:svg> to the content of <data>.

16.4. EXTENDING GRAPHML 533

<?xml version="1.0" encoding="UTF-8"?>

<graphml xmlns="http://graphml.graphdrawing.org/xmlns"

xmlns:svg="http://www.w3.org/2000/svg"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://graphml.graphdrawing.org/xmlns

graphml+svg.xsd">

<key id="k0" for="node">

<default>

<svg:svg width="5cm" height="4cm" version="1.1">

<svg:desc>Default graphical representation for nodes

</svg:desc>

<svg:rect x="0.5cm" y="0.5cm" width="2cm" height="1cm"/>

</svg:svg>

</default>

</key>

<key id="k1" for="edge">

<desc>Graphical representation for edges

</desc>

</key>

<graph edgedefault="directed">

<node id="n0">

<data key="k0">

<svg:svg width="4cm" height="8cm" version="1.1">

<svg:ellipse cx="2cm" cy="4cm" rx="2cm" ry="1cm" />

</svg:svg>

</data>

</node>

<node id="n1" />

<edge source="n0" target="n1">

<data key="k1">

<svg:svg width="12cm" height="4cm" viewBox="0 0 1200 400">

<svg:line x1="100" y1="300" x2="300" y2="100"

stroke-width="5" />

</svg:svg>

</data>

</edge>

</graph>

</graphml>

Figure 16.12 A document that can be validated with the XSD shown in Figure 16.11.
Note that the schemaLocation attribute of <graphml> points to graphml+svg.xsd.

534 CHAPTER 16. GRAPH MARKUP LANGUAGE (GRAPHML)

n1 admits the default graphical representation given within key k0. The above example
shows also the usefulness of XML Namespaces. There are two different <desc> elements,
one in the GraphML namespace and one in the SVG namespace. Possible conflicts, due to
elements from different XML languages that happen to have identical names, are resolved
by different namespaces.

We note that it is not only possible to use other XML languages (like SVG) within
GraphML. GraphML can also be used to represent graph data within extensible XML
languages like SVG or XHTML. The possibility to combine modularly built XML languages
ensures the reusability of parsers and other software. For example, SVG viewers could call
graphdrawing software to layout graphs that are stored in GraphML within an SVG file.

16.5 Transforming GraphML

It is straightforward to provide access to graphs represented in GraphML by adding input
and output filters to an existing software application. However, we find that Extensible
Stylesheet Language Transformations (XSLT) [W3Cc] offer a more natural way of exploiting
XML data, in particular when the resulting format of a computation is again based on XML.
The mappings that transform input GraphML documents to output documents are defined
in XSLT style sheets and can be used stand-alone, as components of larger systems, or in,
say, web services [BP04].

Basically, the transformations are defined in style sheets (sometimes also called transfor-
mation sheets), which specify how an input XML document gets transformed into an output
XML document in a recursive pattern matching process. The underlying data model for
XML documents is the Document Object Model (DOM), a tree of DOM nodes representing
the elements, attributes, text etc., which is held completely in memory. Figure 16.13 shows
the basic workflow of a transformation.

Figure 16.13 Workflow of an XSLT transformation. First, XML data is converted to a
tree representation, which is then used to build the result tree as specified in the style sheet.
Eventually, the result tree is serialized as XML. Taken from [BP04].

DOM trees can be navigated with the XPath language, a sublanguage of XSLT: It ex-
presses paths in the document tree seen from a particular context node (similar to a directory

16.5. TRANSFORMING GRAPHML 535

tree of a file system) and serves to address sets of its nodes that satisfy given conditions.
For example, if the context node is a <graph> element, all node identifiers can be addressed
by child::node/attribute::id, or node/@id as shorthand. Predicates can be used to
specify more precisely which parts of the DOM tree to select; for example, the XPath ex-
pression edge[@source=’n0’]/data selects only those <data> children of <edge>s starting
from the <node> with the given identifier.

The transformation process can be roughly described as follows: A style sheet consists of
a list of templates, each having an associated pattern and a template body containing the
actions to be executed and the content to be written to the output. Beginning with the root,
the processor performs a depth-first traversal (in document order) through the DOM tree.
For each DOM node it encounters, it checks whether there is a template whose pattern it
satisfies; if so, it selects one of the templates and executes the actions given in that template
body (potentially with further recursive pattern matching for the subtrees), and does not
do any further depth-first traversal for the DOM subtree rooted at that DOM node; else,
it automatically continues the depth-first traversal recursively at each of its children. See
Figure 16.14 for an example of an XSLT transformation sheet.

16.5.1 Means of Transformation

The expressivity and usefulness of XSLT transformations goes beyond their original pur-
pose of adding some style to the input. The following is an overview of some important
basic concepts of XSLT and how these concepts can particularly be employed in order to
formulate advanced GraphML transformations that also take into account the underlying
combinatorial structure of the graph instead of only the DOM tree.

16.5.2 Transformation Types

Since GraphML is designed as a general format not bound to a particular area of application,
an abundance of XSLT use cases exist. However, we found that transformations can be filed
into three major categories, depending on the actual purpose of transformation. Note that
there may of course be transformations that belong to more than one of these categories.

Internal While one of GraphML’s design goals is to require a well-defined inter-
pretation for all GraphML files, there is no uniqueness the other way round, i.e., there
are various GraphML representations for a graph; for example, its <node>s and <edge>s
may appear in arbitrary order. However, applications may require their GraphML input to
satisfy certain preconditions, such as the appearance of all <node>s before any <edge> in
order to set up a graph in memory on-the-fly while reading the input stream.

Generally, some frequently arising transformations include

• pre- and postprocessing the GraphML file to make it satisfy given conditions,
such as rearranging the markup elements or generating unique identifiers,

• inserting default values where there is no explicit entry, e.g., edge directions or
default values for <data> tags,

• resolving XLink references in distributed graphs,

• filtering out unneeded <data> tags that are not relevant for further processing
and can be dropped to reduce communication or memory cost, and

• converting between graph classes, for example eliminating hyperedges, expanding
nested graphs, or removing multiedges.

536 CHAPTER 16. GRAPH MARKUP LANGUAGE (GRAPHML)

<xsl:stylesheet version="2.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="xml" indent="yes" encoding="iso-8859-1"/>

<xsl:template match="data|desc|key|default"/> <!-- empty template-->

<xsl:template match="/graphml">

<graphml>

<xsl:copy-of select="key|desc|@*"/>

<xsl:apply-templates match="graph"/> <!-- process graph(s) -->

</graphml>

</xsl:template>

<xsl:template match="graph"> <!-- override template -->

<graph>

<xsl:copy-of select="key|desc|@*"/>

<xsl:copy-of select="node"/> <!-- nodes first -->

<xsl:copy-of select="edge"/> <!-- then edges -->

</graph>

</xsl:template>

</xsl:stylesheet>

Figure 16.14 Example of an XSLT transformation sheet removing the elements <data>,
<desc>, <key>, and <default> from the document and reorders nodes and edges such that
all <node> elements appear before any <edge> element.

Format Conversion Although in recent years, GraphML and similar formats like
GXL [Win02] and GML [GML] have become increasingly used in various areas of interest,
there are still many applications and services not (yet) capable of processing them. To be
compatible, formats need to be translatable to each other, preserving as much information
as possible.

In doing so, it is essential to take into account possible structural mismatch in terms of
both the graph models and concepts that can be expressed by the involved formats, and
their support for additional data. Of course, the closer the conceptual relatedness between
source and target format is, the simpler the style sheets typically are.

While conversion will be necessary in various settings, two use cases appear to be of
particular importance:

• Conversion into another graph format: We expect GraphML to be used in many
applications to archive attributed graph data and in Web services to transmit
aspects of a graph. While it is easy to output GraphML, style sheets can be used
to convert GraphML into other graph formats [BLP05] and can thus be used in
translation services like GraphEx [Bri04].

• Export to some graphics format: Of course, graph-based tools in general and
graph drawing tools in particular will have to export graphs in graphics formats
for visualization purposes.

The transformation need not be applied to a filed document, but can also be carried out in
memory by applications that ought to be able to export in some target format. Note that,

16.5. TRANSFORMING GRAPHML 537

even though XSLT is typically used for mapping between XML documents, it can also be
utilized to generate non-XML output.

Algorithmic Algorithmic style sheets appear in transformations which create
fragments in the output document that do not directly correspond to fragments in the
input document, i.e., when there is structure in the source document that is not explicit in
the markup. This is typical for GraphML data: For example, it is not possible to determine
whether a given <graph> contains cycles by just looking at the markup; some algorithm
has to be applied to the represented graph.

To get a feel for the potential of algorithmic style sheets, we implemented some basic
graph algorithms using XSLT, and with recursive templates, it proved powerful enough
to formulate even more advanced algorithms. For example, a style sheet can be used to
compute the distances from a single source to all other nodes or execute a layout algorithm,
and then attach the results to <node>s in <data> labels.

16.5.3 Language Binding

We found that pure XSLT functionality is expressive enough to solve even more advanced
GraphML related problems. However, it suffers from some general drawbacks:

• With growing problem complexity, the style sheets tend to become dispropor-
tionately verbose.

• Algorithms must be reformulated in terms of recursive templates, and there is
no way to use existing implementations.

• Computations may perform poorly, especially for large input. This is often due to
excessive DOM tree traversal and overhead generated by template instantiation
internal to the XSLT processor.

• There is no direct way of accessing system services, such as date functions or
database connectivity.

Therefore, most XSLT processors allow the integration of extension functions implemented
in XSLT or some other programming language. Usually, they support at least their native
language. For example, Saxon [Sax] can access and use external Java classes since itself
is written entirely in Java. In this case, extension functions are methods of Java classes
available on the class path when the transformation is being executed, and get invoked
within XPath expressions. Usually, they are static methods, thus staying compliant with
XSLT’s design idea of declarative style and freeness of side effects. However, XSLT allows
to create objects and to call their instance-level methods by binding the created objects to
XPath variables.

The architecture shown in Figure 16.15 consists of three layers:

• The style sheet that instantiates the wrapper and communicates with it

• A wrapper class (the actual XSLT extension) that converts GraphML markup to
a wrapped graph object, and provides computation results

• Java classes for graph data structures and algorithms

Thus, the wrapper acts as a mediator between the graph object and the style sheet. The
wrapper instantiates a graph object corresponding to the GraphML markup, and, for in-
stance, applies a graph drawing algorithm to it. In turn, it provides the resulting coordi-
nates and other layout data in order for the style sheet to insert it into the XML (probably
GraphML) result of the transformation, or to do further computations.

538 CHAPTER 16. GRAPH MARKUP LANGUAGE (GRAPHML)

Figure 16.15 Using extension functions in XSLT. Taken from [BP04].

The approach presented here is only one of many ways of mapping an external graph de-
scription file to an internal graph representation. A stand-alone application could integrate
a GraphML parser, build up its graph representation in memory apart from XSLT, execute
a transformation, and serialize the result as GraphML output. However, the intrinsic ad-
vantage of using XSLT is that it generates output in a natural and embedded way, and that
the output generation process can be customized easily.

XSL transformations are a simple, lightweight approach to processing graphs represented
in GraphML. They have proven to be useful in various areas of application, when the target
format of a transformation is GraphML again, or another format with a similar purpose,
and the output structure does not vary too much from input.

They are even powerful enough to specify advanced transformations that go beyond map-
ping XML elements directly to other XML elements or other simple text units. However,
advanced transformations may result in long-winded style sheets that are intricate to main-
tain, and most likely to be inefficient. Extension functions appear to be the natural way
out of such difficulties.

We found that, as rule-of-thumb, XSLT should be used primarily to do the structural
parts of a transformation, such as creating new elements or attributes, whereas specialized
extensions are better for complex computations that are difficult to express or inefficient to
run using pure XSLT.

16.6. USING GRAPHML 539

16.6 Using GraphML

The easiest way to read and write GraphML files is to use a graph-processing software that
can handle this format. GraphML is the principal I/O format of visone [BBB+02] and of the
graph editor yEd from yWorks.1 Besides these there are several software tools or libraries
that can either import or export (or both) GraphML, including Pajek [DMB05], ORA
[CR04], and JUNG [OFS+05]. If a customary GraphML reader has to be implemented it is
convenient to make use of one of many available XML parsers and adapt it to the purpose
at hand.

1http://www.yworks.com/

540 CHAPTER 16. GRAPH MARKUP LANGUAGE (GRAPHML)

References

[BBB+02] Michael Baur, Marc Benkert, Ulrik Brandes, Sabine Cornelsen, Marco
Gaertler, Boris Köpf, Jürgen Lerner, and Dorothea Wagner. visone –
software for visual social network analysis. In Proc. 9th Intl. Symp. Graph
Drawing (GD ’01), pages 463–464, 2002.

[BEF99] Stephen P. Borgatti, Martin G. Everett, and Linton C. Freeman. UCINET
6.0. Analytic Technologies, 1999.

[BLP05] Ulrik Brandes, Jürgen Lerner, and Christian Pich. GXL to GraphML and
vice versa with XSLT. Electronic Notes in Theoretical Computer Science,
127(1):113–125, 2005.

[BMN01] Ulrik Brandes, M. Scott Marshall, and Stephen C. North. Graph data
format workshop report. In Joe Marks, editor, Proceedings of the 8th
International Symposium on Graph Drawing (GD 2000), volume 1984 of
Lecture Notes in Computer Science, pages 410–418. Springer, 2001.

[BP04] Ulrik Brandes and Christian Pich. GraphML transformation. In János
Pach, editor, Proceedings of the 11th International Symposium on Graph
Drawing (GD ’04), volume 3383 of Lecture Notes in Computer Science,
pages 89–99. Springer, 2004.

[Bri04] Stina Bridgeman. GraphEx: An improved graph translation service. In
Giuseppe Liotta, editor, Proceedings of the 11th International Symposium
on Graph Drawing (GD ’03), volume 2912 of Lecture Notes in Computer
Science, pages 307–313. Springer, 2004.

[CR04] Kathleen Carley and Jeffrey Reminga. ORA: Organization risk analyzer.
Technical Report CMU-ISRI-04-106, Carnegie Mellon University, 2004.

[DBETT99] Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G.
Tollis. Graph Drawing: Algorithms for the Visualization of Graphs. Pren-
tice Hall, 1999.

[DMB05] Wouter De Nooy, Andrej Mrvar, and Vladimir Batagelj. Exploratory
social network analysis with Pajek. Cambridge University Press, 2005.

[GML] GML. The Graph Modeling Language File Format.
http://www.infosun.fmi.uni-passau.de/Graphlet/GML/.

[OFS+05] Joshua O’Madadhain, Danyel Fisher, Padhraic Smyth, Scott White, and
Yan-Biao Boey. Analysis and visualization of network data using JUNG.
Journal of Statistical Software, 2005.

[Sax] Saxon Open Source Project. Saxon home page.
http://saxon.sourceforge.net/.

[STT81] Kozo Sugiyama, Shojiro Tagawa, and Mitsuhiko Toda. Methods for visual
understanding of hierarchical system structures. IEEE Transactions on
Systems, Man and Cybernetics, 11(2):109–125, February 1981.

[TRC03] Max Tsvetovat, Jeffrey Reminga, and Kathleen Carley. DyNetML: In-
terchange format for rich social network data. In NAACSOS Conference,
Pittsburgh, PA, 2003.

[W3Ca] W3C. Scalable Vector Graphics. http://www.w3.org/TR/SVG/.

[W3Cb] W3C. SOAP. http://www.w3.org/TR/soap12-part0/.

[W3Cc] W3C. XSL Transformations. http://www.w3.org/TR/xslt/.

REFERENCES 541

[Win02] Andreas Winter. Exchanging graphs with GXL. In Petra Mutzel, Michael
Jünger, and Sebastian Leipert, editors, Proceedings of the 9th Interna-
tional Symposium on Graph Drawing (GD ’01), volume 2265 of Lecture
Notes in Computer Science, pages 485–500. Springer, 2002.

17
The Open Graph Drawing

Framework (OGDF)

Markus Chimani
Friedrich-Schiller-Universität

Jena

Carsten Gutwenger
TU Dortmund

Michael Jünger
University of Cologne

Gunnar W. Klau
Centrum Wiskunde &

Informatica

Karsten Klein
TU Dortmund

Petra Mutzel
TU Dortmund

17.1 Introduction . 543
The History of the OGDF • Outline

17.2 Major Design Concepts . 544
Modularization • Self-Contained and Portable Source Code

17.3 General Algorithms and Data Structures 546
Augmentation and Subgraph Algorithms • Graph
Decomposition • Planarity and Planarization

17.4 Graph Drawing Algorithms . 550
Planar Drawing Algorithms • Hierarchical Drawing
Algorithms • Energy-Based Drawing Algorithms • Drawing
Clustered Graphs

17.5 Success Stories . 562
SPQR-Trees • Exact Crossing Minimization • Upward Graph
Drawing

Acknowledgments . 564
References . 565

17.1 Introduction

We present the Open Graph Drawing Framework (OGDF), a C++ library of algorithms
and data structures for graph drawing. The ultimate goal of the OGDF is to help bridge
the gap between theory and practice in the field of automatic graph drawing. The library
offers a wide variety of algorithms and data structures, some of them requiring complex
and involved implementations, e.g., algorithms for planarity testing and planarization, or
data structures for graph decomposition. A substantial part of these algorithms and data
structures are building blocks of graph drawing algorithms, and the OGDF aims at pro-
viding such functionality in a reusable form, thus also providing a powerful platform for
implementing new algorithms.

The OGDF can be obtained from its website at:

http://www.ogdf.net

This website also provides further information like tutorials, examples, contact information,
and links to related projects. The source code is available under the GNU General Public
License (GPL v2 and v3).

543

544 CHAPTER 17. THE OPEN GRAPH DRAWING FRAMEWORK (OGDF)

17.1.1 The History of the OGDF

Back in 1996, the development of the AGD library [AGMN97] (Algorithms for Graph Draw-
ing) started at the Max-Planck Institute for Computer Science in Saarbrücken, Germany,
originating from the DFG-funded project Design, Analysis, Implementation, and Evaluation
of Graph Drawing Algorithms. The project later moved to Vienna University of Technology.
AGD was designed as a C++ library of algorithms for graph drawing, based on the LEDA
library [MN99] of efficient data structures and algorithms.

In 1999, a new branch of the library was developed as an internal project at the oreas
GmbH and the research center caesar. The main goal was to have a code basis that could
be built independently of any other libraries. This resulted in a new design and complete
rewrite by starting from scratch, thereby concentrating on the strengths of the library,
i.e., planarity and orthogonal layout, and implementing a wealth of required basic data
structures and algorithms.

Later on, this internal project was renamed to OGDF and made open source under
the GPL. The OGDF is currently maintained and further developed by researchers at the
Universities of Dortmund, Cologne, and Jena.

17.1.2 Outline

After introducing the major design concepts and goals in Section 17.2, we dedicate two sec-
tions to the algorithms and data structures contained in the library. Section 17.3 introduces
general graph algorithms and related data structures, and Section 17.4 focuses on drawing
algorithms and layout styles. Finally, we conclude this chapter with selected success stories
in Section 17.5.

17.2 Major Design Concepts

Many sophisticated graph drawing algorithms build upon complex data structures and algo-
rithms, thus making new implementations from scratch cumbersome and time-consuming.
Obviously, graph drawing libraries can ease the implementation of new algorithms a lot.
E.g., the AGD library was very popular in the past, since it covered a wide range of graph
drawing algorithms and—together with the LEDA library—data structures. However, the
lack of publicly available source-code restricted the portability and extendability, not to
mention the understanding of the particular implementations. Other currently available
graph drawing libraries suffer from similar problems, or are even only commercially avail-
able or limited to some particular graph layout methods.

Our goals for the OGDF were to transfer essential design concepts of AGD and to over-
come AGD’s main deficiencies for use in academic research. Our main design concepts and
goals are the following:

• Provide a wide range of graph drawing algorithms that allow a user to reuse and
replace particular algorithm phases by using a dedicated module mechanism.

• Include sophisticated data structures that are commonly used in graph drawing,
equipped with rich public interfaces.

• A self-contained source code that does not require additional libraries (except
for some optional LP-/ILP-based algorithms).

• Portable C++-code that supports the most important compilers for the major
operating systems (Linux, MacOS, and Windows) and that is available under an
open source license (GPL).

17.2. MAJOR DESIGN CONCEPTS 545

17.2.1 Modularization

In the OGDF, an algorithm (e.g., a graph drawing algorithm or an algorithm that can be
used as building block for graph drawing algorithms) is represented as a class derived from a
base class defining its interface. Such algorithm classes are also called modules and their base
classes module types. E.g., general graph layout algorithms are derived from the module type
LayoutModule, which defines as interface a call method whose parameters provide all the
relevant information for the layout algorithm: the graph structure (Graph) and its graphical
representation like node sizes and coordinates (GraphAttributes).1 The algorithm then
obtains this information and stores the computed layout in the GraphAttributes.

Using common interface classes for algorithms allows us to make algorithms exchangeable.
We can write an implementation that utilizes several modules, but each module is used only
through the interface defined by its module type. Then, we can exchange a module by a
different module implementing the same module type. The OGDF provides a mechanism
called module options that even makes it possible to exchange modules at runtime. Suppose
an algorithm A defines a module option M of a certain type T representing a particular
phase of the algorithm, and adds a set-method for this option. A module option is simply
a pointer to an instance of type T , which is set to a useful default value in A’s constructor
and called for executing this particular phase of the algorithm. Using the set-method, this
implementation can be changed to any implementation implementing the module type T ,
even new implementations not contained in the OGDF itself.

Module options are the key concept for modularizing algorithm frameworks, thus allowing
users to experiment with different implementations for particular phases of the algorithm,
or to evaluate new implementations for phases without having to implement the whole
framework from scratch. Figure 17.1 shows how module options are used in Sugiyama-

Layout. In this case, SugiyamaLayout is a framework with three customizable phases
(ranking, 2-layer crossing minimization, and layout), and the constructor takes care of
setting useful initial implementations for each phase. Using a different implementation of,
e.g., the crossing minimization step is simple:

SugiyamaLayout sugi;

sugi.setCrossMin(new MedianHeuristic);

In Section 17.4, we will illustrate the main drawing frameworks available in the OGDF
using class diagrams, thereby showing the interconnections between the various classes in
the OGDF.

17.2.2 Self-Contained and Portable Source Code

It was important for us to create a library that runs on all important systems, and whose core
part can be built without installing any further libraries. Therefore, all required basic data
structures are contained in the library, and only a few modules based on linear programming
require additional libraries: COIN-OR [Mar10] as LP-solver and ABACUS [JT00] as branch-
and-cut framework.

For reasons of portability and generality, the library provides only the drawing algorithms
themselves and not any graphical display elements. Such graphical display would force us

1More precisely, the call method has only one parameter, the GraphAttributes, which allows us to get
a reference to the Graph itself.

546 CHAPTER 17. THE OPEN GRAPH DRAWING FRAMEWORK (OGDF)

class SugiyamaLayout : public LayoutModule

{

protected:

ModuleOption<RankingModule> m_ranking;

ModuleOption<TwoLayerCrossMin> m_crossMin;

ModuleOption<HierarchyLayoutModule> m_layout;

...

public:

SugiyamaLayout() {

m_ranking .set(new LongestPathRanking);

m_crossMin.set(new BarycenterHeuristic);

m_layout .set(new FastHierarchyLayout);

...

}

void setRanking(RankingModule *pRanking) { m_ranking.set(pRanking); }

void setCrossMin(TwoLayerCrossMin *pCrossMin) { m_crossMin.set(pCrossMin); }

void setLayout(HierarchyLayoutModule *pLayout) { m_layout.set(pLayout); }

...

};

Figure 17.1 Excerpt from the declaration of SugiyamaLayout demonstrating the use of
module options.

to use very system-dependent GUI or drawing frameworks, or to have the whole library
based on some cross-platform toolkit. Instead of this, the OGDF simply computes basic
layout information like coordinates of nodes or bend points, and an application that uses
the OGDF can create the required graphical display by using the GUI framework of its
choice.

For creating graphics in common image formats, the OGDF project provides the com-
mand line utility gml2pic.2 This utility converts graph layouts stored in GML or OGML file
formats into images in PNG, JPEG, TIFF, SVG, EPS, or PDF format. We recommend to
use the new OGML (Open Graph Markup Language) file format, since it offers a wide range
of clearly specified formatting options. Hence, it is easy to save graph layouts in OGML
format using the OGDF, and then apply gml2pic for creating high-quality graphics. All
graph layouts in this chapter have been created with gml2pic. Figures 17.9 and 17.11, e.g.,
demonstrate the automatic creation of Bézier curves from ordinary polylines.

17.3 General Algorithms and Data Structures

The OGDF contains many basic data structures like arrays, lists, hashing tables, and prior-
ity queues, as well as fundamental data structures for the representation of graphs (Graph,
ClusterGraph, and associative arrays for nodes, edges, etc.). Many basic graph algorithms
can be found in basic/simple graph alg.h, e.g., functions dealing with parallel edges, con-
nectivity, biconnectivity, and acyclicity. In this section, we focus on the more sophisticated
algorithms and data structures in the OGDF.

2available at http://www.ogdf.net/doku.php/project:gml2pic

17.3. GENERAL ALGORITHMS AND DATA STRUCTURES 547

17.3.1 Augmentation and Subgraph Algorithms

Augmentation Algorithms. Several augmentation modules are currently available in
the library for adding edges to a graph to achieve biconnectivity. This can be done either
by disregarding the planarity of the graph or by taking care not to introduce non-planar
subgraphs.

Augmenting a planar graph to a planar biconnected graph by adding the minimum num-
ber of edges is an NP-hard optimization problem. It has been introduced by Kant and Bod-
laender [KB91], who also presented a simple 2-approximation algorithm for the problem.
They also claimed to have a 3/2-approximation algorithm, but Fialko and Mutzel [FM98]
have shown that this algorithm is erroneous and cannot be corrected. However, their sug-
gested 5/3-approximation algorithm was shown to approximate the optimal solution by
a factor of 2, only (see [GMZ09a]). Experiments show that the Fialko-Mutzel algorithm
performs very good in practice. The module PlanarAugmentation implements the Fialko-
Mutzel algorithm, which proceeds roughly as follows. The biconnected components of a
graph induce a so-called block tree whose nodes are the cut vertices and blocks of the graph.
The algorithm first constructs a block tree T from the given graph and then iteratively adds
edges between blocks of degree one in T . Experiments on a set of benchmark graphs have
shown that in about 96% of all the cases the approximation algorithm finds the optimal
solution to the planar augmentation problem [FM98].

In addition, the OGDF contains the module DfsMakeBiconnected. The underlying algo-
rithm uses depth-first search and adds a new edge whenever a cut vertex is discovered. If
the input graph is planar, the augmented graph also remains planar. However, in general,
this approach adds a significantly higher number of edges than the PlanarAugmentation

module.

A special variant of the planar augmentation problem is solved by the PlanarAugmen-

tationFix module. Here, a planar graph with a fixed planar embedding is given, and
this embedding shall be extended such that the graph becomes biconnected. PlanarAug-

mentationFix implements the optimal, linear-time algorithm by Gutwenger, Mutzel, and
Zey [GMZ09b].

Acyclic Subgraphs. Two modules are available to compute acyclic subgraphs of a di-
graph G = (V,A). These modules determine a feedback arc set F ⊂ A of G, i.e., if
G contains no self-loops, an acyclic digraph is obtained by reversing all the arcs in F .
DfsAcyclicSubgraph computes an acyclic subgraph in linear time by removing all back
arcs in a depth-first-search tree of G. On the other hand, GreedyCycleRemoval imple-
ments the linear-time greedy algorithm by Eades and Lin [EL95]. If G is connected and has
no two-cycles, the algorithm guarantees that the number of non-feedback arcs is at least
|A|/2− |V |/6.

The OGDF provides further modules for the computation of planar subgraphs. These
are covered in the context of graph planarization; see Section 17.3.3.

17.3.2 Graph Decomposition

Besides the basic algorithm for computing the biconnected components of a graph [Tar72,
HT73b] (function biconnectedComponents in basic/simple gaph alg.h), the OGDF pro-
vides further powerful data structures for graph decomposition. BCTree represents the de-
composition of a graph into its biconnected components as a BC-tree and StaticSPQRTree

represents the decomposition of a biconnected graph into its triconnected components as
an SPQR-tree [DT89, DT96]. An SPQR-tree is a tree whose nodes are associated with

548 CHAPTER 17. THE OPEN GRAPH DRAWING FRAMEWORK (OGDF)

the triconnected components (called the skeletons of the tree nodes) of the graph: S-nodes
correspond to serial structures, P-nodes to parallel structures, and R-nodes to simple, tri-
connected structures; Q-nodes simply correspond to the edges in the graph and are hence
not required by an implementation. Both data structures can be build in linear time; the
latter constructs the SPQR-tree by applying the corrected version [GM01] of Hopcroft and
Tarjan’s algorithm [HT73a] for decomposing a graph into its triconnected components. The
OGDF is one of the few places where one can find a correct implementation of this complex
and involved algorithm (to the best of our knowledge, AGD was the first library providing
such an implementation).

BC- and SPQR-trees are important data structures for many graph algorithms dealing
with planar graphs, since they efficiently encode all planar embeddings of a planar graph.
Notice that a planar graph might have exponentially many planar embeddings. The em-
beddings of the skeleton graphs of an SPQR-tree induce a unique embedding of the original
graph. StaticPlanarSPQRTree is a specialized version of StaticSPQRTree with additional
support for planar graphs. It provides basic operations for changing the currently repre-
sented embedding of the graph, like flipping the skeleton of an R-node and permuting the
order of the edges in the skeleton of a P-node, and a method for embedding the graph
according to the embeddings of the skeletons.

In addition to the static versions of BC- and SPQR-trees, the OGDF also contains effi-
cient implementations of dynamic BC- and SPQR-trees. The supported update operations
are insertion of nodes and edges. DynamicBCTree implements the update operations as
described by Westbrook and Tarjan [WT92], and DynamicSPQRTree as described by Di
Battista and Tamassia [DT96].

17.3.3 Planarity and Planarization

The OGDF provides a unique collection of algorithms for planar graphs, including algo-
rithms for planarity testing and planar embedding, computation of planar subgraphs, and
edge reinsertion. These algorithms can be combined using the planarization approach,
yielding excellent crossing minimization heuristics. The planarization approach for crossing
minimization is realized by the module SubgraphPlanarizer, and the two layout algorithms
PlanarizationLayout and PlanarizationGridLayout implement a complete framework
for planarization and layout. Figure 17.2 gives an overview of the OGDF’s planarization
framework for graph layout, illustrating the interconnection between the modules involved;
the various implementations for EmbedderModule are shown in Figure 17.3. An in-depth
description of this framework can be found in [Gut10].

Planarity Testing and Embedding. The OGDF provides two algorithms for planarity
testing. PlanarModule implements the node-addition algorithm [LEC67, BL76, CNAO85])
based on PQ-trees, and BoyerMyrvold implements the edge-addition algorithm by Boyer
and Myrvold [BM04] which is based on depth-first search. Both modules can also compute
a planar embedding of the graph.

However, for many graphs it is highly beneficial for a graph layout algorithm not to use
just any embedding but an embedding that optimizes certain criteria. The OGDF contains
such embedding algorithms which optimize criteria like a large external face or a small
block-nesting depth (which is a measure for the topological nesting of the biconnected com-
ponents in the embedding). EmbedderMinDepthPiTa implements the algorithm by Pizzonia
and Tamassia [PT00], which minimizes the block-nesting depth for fixed embeddings of the
blocks. On the other hand, EmbedderMinDepth minimizes the block-nesting depth with-
out any restrictions, and EmbedderMaxFace maximizes the size of the external face; these

17.3. GENERAL ALGORITHMS AND DATA STRUCTURES 549

LayoutModule

PlanarGridLayoutModule

GridLayoutPlanRepModule

<no_crossings>
MixedModelLayout

augmenter

shellingOrder

embedder

crossingsBeau fier

EmbedderModule

MixedModelCrossingsBeau fierModule

MMCBBase

MMDummyCrossingsBeau fier

MMCBDoubleGrid

MMCBLocalStretch

<no_crossings>
Planariza onGridLayout

subgraph

inserter

planarLayouter

packer
<no_crossings>

Planariza onLayout

subgraph

inserter

planarLayouter

embedder

packer

TileToRowsCCPacker

CCLayoutPackModule

GridLayoutModule

MaximalPlanarSubgraph

FastPlanarSubgraph

SubgraphModule

VariableEmbeddingInserter

FixedEmbeddingInserter

EdgeInser onModule

OrthoLayout

KandinskyLayout

LayoutPlanRepModule

Figure 17.2 The Planarization framework for graph layout in the OGDF library.

two modules implement algorithms presented by Gutwenger and Mutzel [GM03]. Notice
that just maximizing the external face still leaves a lot of freedom for embedding inner
faces. Therefore, Kerkhof [Ker07] developed an extension of EmbedderMaxFace, realized
by EmbedderMaxFaceLayers, which considers the layers of the embedding and the sizes of
their boundaries. Here, layer i is formed by the faces with distance i to the external face
in the dual graph, and the boundary Bi of layer i is roughly given by the edges shared by
layers i and i + 1. Then, the algorithm computes an embedding such that |B0|, |B1|, . . .
is lexicographically maximal. There are also combinations of these algorithms, realized by
EmbedderMinDepthMaxFace and EmbedderMinDepthMaxFaceLayers.

Upward Planarity Testing. Although the general upward planarity testing problem is
NP-complete [GT01], the problem can be solved efficiently for digraphs with only a single
source, also called sT -digraphs. The OGDF provides a linear-time implementation of the
sophisticated algorithm by Bertolazzi et al. [BDMT98], which is based on decomposing the
underlying undirected graph using SPQR-trees.

Planar Subgraphs. The module FastPlanarSubgraph computes a planar subgraph of
an input graph G by deleting a set of edges using the PQ-tree data structure [JLM98].
The algorithm is similar to the one by Jayakumar et al. [JTS89] and is one of the best
heuristics for the NP-hard maximum planar subgraph problem that asks for the smallest
set of edges whose removal leads to a planar graph. The heuristic proceeds in a similar
manner as PQ-tree-based planarity testing: First, it constructs an s-t-numbering and then

550 CHAPTER 17. THE OPEN GRAPH DRAWING FRAMEWORK (OGDF)

adds nodes subsequently to the empty graph in this order while maintaining the PQ-tree
data structure. The implementation also provides an option runs which runs the algorithm
multiple times with randomly chosen (s, t)-edges and then takes the best result. The module
MaximumPlanarSubgraph solves the maximum planar subgraph problem exactly by applying
a branch-and-cut approach.

Edge Reinsertion. Reinserting edges into a planar auxiliary graph such as to introduce
as few crossings as possible is an important phase within the planarization approach. The
OGDF offers two modules for this task: FixedEmbeddingInserter is the standard ap-
proach, which reinserts edges iteratively by looking for shortest paths in the dual graph; on
the other hand, VariableEmbeddingInserter proceeds similarly but solves the subproblem
of inserting one edge with the minimum number of crossings under a variable embedding
setting to optimality [GMW05]. To achieve this, it applies BC- and SPQR-trees which can
encode all planar embeddings of a graph.

17.4 Graph Drawing Algorithms

Graph drawing algorithms form the heart of the library. Traditionally, the focus of the
OGDF is on planar drawing algorithms and the planarization approach. However, a large
number of drawing algorithms like energy-based layout algorithms or hierarchical drawing
methods have been added. Today, the OGDF provides flexible frameworks with inter-
changeable modules for various drawing paradigms, including the planarization approach
for drawing general, non-planar graphs, the Sugiyama framework for drawing hierarchical
graphs, and the multilevel-mixer, which is a general framework for multilevel, energy-based
graph layout.

17.4.1 Planar Drawing Algorithms

The planar layout algorithms can be divided into those that compute straight-line layouts
and those that produce drawings with bends along the edges, in particular orthogonal
layouts. Figure 17.3 gives an overview of the available layout algorithms and their module
options; the orthogonal layouts (OrthoLayout and KandinskyLayout) are not covered in
this figure, since they are only used within the planarization framework (see Figure 17.2).

Straight-Line Layouts. The class PlanarStraightLayout implements planar straight-
line drawing algorithms based on a shelling (or canonical) order of the nodes. This order
determines the order in which the nodes are placed by the algorithm. PlanarStraight-

Layout provides a module option shellingOrder for selecting the shelling order used by
the algorithm. There are two implementations in the OGDF: Using the Triconnected-

ShellingOrder realizes the algorithm by Kant [Kan96], which draws triconnected pla-
nar graphs such that all internal faces are represented as convex polygons; using the Bi-

connectedShellingOrder realizes the relaxed variant by Gutwenger and Mutzel [GM97]
for biconnected graphs. To make the drawing algorithm more generally applicable, it pro-
vides the additional module option augmenter for setting an augmentation module that is
called as a preprocessing step. This augmentation module must ensure that the graph has
the required connectivity when computing the shelling order. In all cases, the algorithm
guarantees to produce a drawing on a (2n − 4) × (n − 2) grid, where n ≥ 3 is the number
of nodes in the graph.

An improved version of PlanarStraightLayout is PlanarDrawLayout. It provides the
same module options but implements a slightly modified drawing algorithm, which guaran-

17.4. GRAPH DRAWING ALGORITHMS 551

LayoutModule

PlanarGridLayoutModule

ShellingOrderModule

<no_crossings>

DfsMakeBiconnected

PlanarAugmenta on

Augmenta onModule

GridLayoutModule

TriconnectedShellingOrder

BiconnectedShellingOrder

PlanarStraightLayout

augmenter

shellingOrder

PlanarDrawLayout

augmenter

shellingOrder

GridLayoutPlanRepModule

<no_crossings>
MixedModelLayout

augmenter

shellingOrder

crossingsBeau fier

embedder EmbedderModule

MixedModelCrossingsBeau fierModule

MMCBBase

MMDummyCrossingsBeau fier

MMCBDoubleGrid

MMCBLocalStretch

SimpleEmbedder

EmbedderMinDepthPiTa

EmbedderMinDepth

EmbedderMaxFace

EmbedderMinDepthMaxFace

EmbedderMaxFaceLayers

EmbedderMinDepthMaxFaceLayers

Figure 17.3 Planar graph drawing in the OGDF library.

tees a smaller grid size of (n−2)×(n−2). Some sample drawings of a tri- and a biconnected
graph are shown in Figures 17.4 and 17.5.

Mixed-Model Layouts. In mixed-model layouts, each edge is drawn in an orthogonal
fashion, except for a small area around its endpoints. The class MixedModelLayout repre-
sents the layout algorithm by Gutwenger and Mutzel [GM97], which is based upon ideas by
Kant [Kan96]. In particular, Kant’s algorithm has been changed concerning the placement
phase and the node boxes, which determine the routing of the incident edges around a node.
It has also been generalized to work for connected planar graphs.

This algorithm draws a d-planar graph G on a grid such that every edge has at most
three bends and the minimum angle between two edges is at least 2

d radians. The grid size
is at most (2n − 6) × (3

2n −
7
2) , the number of bends is at most 5n − 15, and every edge

has length O(n) if G has n nodes.

Similar to the planar straight-line drawing algorithms, MixedModelLayout is based on
a shelling order (shellingOrder module option) and an augmentation module is used to
ensure the required connectivity. It also performs an enhancement for the placement of
degree-one nodes, which are temporarily removed in a preprocessing step and later consid-
ered again when computing the node boxes. A further enhancement improves the draw-
ing of edge crossings when using MixedModelLayout within the planarization approach
(PlanarizationGridLayout). In this case, nodes representing crossings are drawn with
four 90◦ angles, which is not the case for the original version. Figures 17.4 and 17.5 also
show the corresponding mixed-model drawings of the graphs drawn with the planar straight-
line methods.

552 CHAPTER 17. THE OPEN GRAPH DRAWING FRAMEWORK (OGDF)

Figure 17.4 A triconnected planar graph drawn with PlanarStraightLayout, Planar-
DrawLayout, and MixedModelLayout (from left to right).

Figure 17.5 A biconnected planar graph drawn with PlanarStraightLayout, Planar-
DrawLayout, and MixedModelLayout (from left to right).

Orthogonal Layouts. Orthogonal drawings represent edges as sequences of horizontal
and vertical line segments. Bends occur where these segments change directions. The
OGDF provides orthogonal layout algorithms for graphs without degree restrictions; these
are embedded in the planarization approach realized by PlanarizationLayout. Thereby,
the orthogonal layout algorithm receives as input a planarized representation of the possibly
non-planar input graph, i.e., a planar graph in which some nodes represent edge crossings.

By default, PlanarizationLayout uses OrthoLayout as layout algorithm. This is a vari-
ation of Tamassia’s bend minimizing algorithm [Tam87], generalized to work with graphs
of arbitrary node degrees. Tamassia’s algorithm requires a planar graph G of maximal
node degree four and a planar embedding Γ of G. Notice that pure orthogonal drawings
in which the nodes are mapped to points in the grid are only admissible for this class of
planar graphs. The computation of the layout follows the so-called topology-shape-metrics
approach, see, e.g., [DETT99]. According to the given planar embedding Γ the algorithm
constructs a network in which a minimum-cost flow determines a bend-minimal represen-
tation of the orthogonal shape of G. In a last phase, a compaction module assigns lengths
to this representation and thus fixes the coordinates of the drawing.

The OGDF contains two implementations for orthogonal compaction. LongestPathCom-
paction relies on computing longest paths in the so-called constraint graphs, an underlying
pair of directed acyclic graphs that code placement relationships. FlowCompaction com-
putes a minimum-cost flow in a pair of dual graphs and results in shorter edge lengths.
Both algorithms rely on a dissection of the original face structures into rectangular faces.
In addition, a branch-and-cut approach that produces provably optimal solutions for the
two-dimensional compaction problem [KM99, Kla01] is in preparation.

In order to extend Tamassia’s algorithm to graphs of arbitrary node degree, OrthoLayout
uses ideas from quasi-orthogonal drawings [KM98] and Giotto layout [TDB88], combined

17.4. GRAPH DRAWING ALGORITHMS 553

Project Protocol

Project Hybridization

Project Array Type

Protocols Parameters

Protocol Values

Protocol

Probe Seq

Probe

Probe Array Type

Array Type

Map

Probe DB

Rearray

Annotation Probe Seq

Probe Annotation EvidenceAnnotation

Url

Spot

Experiment Hybridization

Sample Attribute

Sample Attribute Sample Modifier Sample ModifierSample Value

Sample

Hybridization

Labled RNA

Experiment

Project User

User

Project

Logins

Project Sample

Pipe Log

Project Experiment

Analysis

Results

Data Analysis Data Hybridization Data

Results Data

Data ValuesData Parameters

Figure 17.6 An entity-relationship diagram drawn with the planarization approach and
OrthoLayout.

with a local orthogonal edge routing algorithm. The common idea is to replace high-degree
nodes by artificial faces which will be drawn as larger boxes in an intermediate drawing.
The node is then placed within this boxes and its incident edges are routed orthogonally
to the corresponding connection points on the surrounding box. An ER-diagram drawn by
using OrthoLayout with PlanarizationLayout is shown in Figure 17.6.

An alternative to OrthoLayout is KandinskyLayout which extends the basic approach
to graphs of arbitrary degree by allowing 0◦ angles between two successive edges adjacent
to a node. Nodes in a graph are modeled as square boxes of unified size placed on a coarse
grid, whereas edges are routed on a finer grid. Feasibility is achieved by maintaining the
so-called bend-or-end property: Let e1 and e2 be the two edges incident to the same side
of a node v in a Kandinsky drawing, e1 following e2 in the given embedding, and let f be
the face to which e1 and e2 are adjacent. Then either e1 must have a last bend with a 270◦

angle in f or e2 must have a first bend with 270◦ angle in f . See [FK96] for a detailed
description of the Kandinsky drawing model. The KandinskyLayout implementation does
not use an extension of the original bend-minimization flow network as described in [FK96]
to compute a shape for the input graph since this network has a flaw that may lead to
suboptimal solutions or not a feasible solution at all [Eig03]. Instead, an ILP formulation
is used, and hence KandinskyLayout requires COIN-OR.

554 CHAPTER 17. THE OPEN GRAPH DRAWING FRAMEWORK (OGDF)

17.4.2 Hierarchical Drawing Algorithms

Rooted Trees. The TreeLayout algorithm draws general trees in linear time. It is based
on an efficient implementation [BJL06] of Walker’s algorithm [RT81, Wal90] for drawing
trees. In the resulting straight-line drawing nodes on the same level lie on a horizontal line.
The algorithm works recursively starting on the lowest level of the tree. In each step, the
subtrees of a tree node (that have been laid out already) are placed as closely to each other
as possible, resulting in a small size of the layout. TreeLayout also provides options for
choosing between orthogonal or straight-line edge routing style, for the orientation of the
layout (e.g., top to bottom or left to right), and for the selection of the root. Figure 17.7
shows an example drawing.

Figure 17.7 A tree drawn with TreeLayout.

Sugiyama Framework. The OGDF provides a flexible implementation of Sugiyama’s
framework [STT81] for drawing directed graphs in a hierarchical fashion. This frame-
work basically consists of three phases, and for each phase various methods and varia-
tions have been proposed in the literature. The corresponding OGDF implementation
SugiyamaLayout provides a module option for each of the three phases; optionally, a pack-
ing module can be used to pack multiple connected components of the graph. The available
OGDF modules and their dependencies are shown in Figure 17.8.

The three phases in Sugiyama’s framework and their implementations are:

1. Rank assignment: In the first phase (realized by a RankingModule), the nodes of
the input digraph G are assigned to layers. If G is not acyclic, then we compute a
preferably large acyclic subgraph and reverse the edges not contained in the sub-
graph by one of the modules described in Section 17.3.1. Currently, the OGDF
contains three algorithms for computing a layer assignment for an acyclic digraph
in which the edges are directed from nodes on a lower level to nodes on a higher
level. LongestPathRanking is based on the computation of longest paths and
minimizes the number of layers (height of the drawing), OptNodeRanking mini-
mizes the total edge length [GKNV93] (here the length of an edge is the number of
layers it spans), and CoffmanGrahamRanking computes a layer assignment with a
predefined maximum number of nodes on a layer (width of the drawing) [CG72].
If edges span several layers, they are split by inserting additional artificial nodes
such that edges connect only nodes on neighboring layers.

17.4. GRAPH DRAWING ALGORITHMS 555

LayoutModule

TileToRowsCCPacker

AcyclicSubgraphModule

RankingModule

CCLayoutPackModule

GreedyCycleRemoval

DfsAcyclicSubgraph

<no_crossings>
SugiyamaLayout

ranking

crossMin

layout

packer

runs

transpose

TwoLayerCrossMin

BarycenterHeuris c

MedianHeuris c

Si!ingHeuris c

LongestPathRanking
subgraph

HierarchyLayoutModule

FastHierarchyLayout

Op malHierarchyLayout

Op malRanking
subgraph

CoffmanGrahamRanking
subgraph

SplitHeuris c

GreedyInsertHeuris c

GreedySwitchHeuris c

Figure 17.8 Sugiyama’s framework for hierarchical graph layout in the OGDF.

2. k-layer crossing minimization: The second phase determines permutations of the
nodes on each layer such that the number of edge crossings is small. The corre-
sponding optimization problem is NP-hard. A reasonable method consists of vis-
iting the layers from top to bottom, fixing the order of the nodes on the layer and
trying to find a permutation of the nodes on the lower next layer that minimizes
the number of crossings between edges connecting the two adjacent layers, also
referred to as two-layer crossing minimization (realized by a TwoLayerCrossMin

module). Then, the algorithm proceeds from bottom to top and so on until the
total number of crossings does not decrease anymore. SugiyamaLayout contains
a sophisticated implementation that uses further improvements like calling the
crossing minimization several times (controlled by parameter runs) with different
starting permutations, or applying the transpose heuristic [GKNV93].
Several heuristics for two-layer crossing minimization have been proposed. The
library offers the choice between the barycenter heuristic [STT81], the weighted
median heuristic [GKNV93], the sifting heuristic [MSM00], as well as the split,
the greedy insert, and the greedy switch heuristics presented in [EK86].

3. Coordinates assignment: The third phase (realized by a HierarchyLayout-

Module) computes the final coordinates of the nodes and bend points of the
edges, respecting the layer assignment and ordering of the nodes on each layer.
The OGDF contains two implementations for the final coordinate assignment
phase. The first, OptimalHierarchyLayout, tries to let edges run as vertical as
possible by solving a linear program; the second, FastHierarchyLayout, pro-
posed by Buchheim, Jünger, and Leipert [BJL00] guarantees at most two bends
per edge and draws the whole part between these bends vertically.

Figure 17.9 shows a layered drawing produced by SugiyamaLayout using the LP-based
coordinate assignment method. The digraph displays the history of the UNIX operating
system and the layers correspond to the time line depicted on the right side.

556 CHAPTER 17. THE OPEN GRAPH DRAWING FRAMEWORK (OGDF)

1993

1994

1995

1996

1998

2000

2004

2005

2006

UNIX32V 2BSD

3BSD 2.79BSD

4.1BSD

Unix System III Sun OS 1.0

4.1cBSD

Unix System V GNU

Unix Time-Sharing System 8

4.3BSD

Unix Time-Sharing System 9

SunOS 3.2 Minix 1.1

UNIX System V Release 4 4.3BSD Tahoe

Unix Time-Sharing System 10

4.3BSD Reno

Solaris 2 BSD Net/2 Linux 0.0.1

UnixWare 1.0 BSD/386 0.3.1 386BSD 0.0 GNU/Linux

386BSD 0.1

NetBSD 0.8

FreeBSD 1.0

SunOS 4.1.4 386BSD 1.0 4.4BSD-Lite

NetBSD 1.0

NetBSD 1.1 FreeBSD 2.04.4BSD-Lite Release 2

OpenBSD 2.0 2.11 BSD Patch 335

NetBSD 1.3 FreeBSD 3.0OpenBSD 2.3

2.11 BSD Patch 431

UnixWare 7.1.4 4.3 BSD-Quasijarus 0c

Solaris 10 NetBSD 3.0

FreeBSD 6.1OpenBSD 3.9 Minix 3.1.2GNU/Linux 2.6.16

1969

1971

1972

1973

1974

1975

1978

1979

1980

1981

UNIX-PDP7

Unix Time Sharing System 1

Unix Time Sharing System 2

Unix Time Sharing System 3

Unix Time Sharing System 4

PWB/UNIX Unix Time Sharing System 5

1982

Unix Time Sharing System 6

1983

1BSD

1985

Unix Time Sharing System 7

1986

1987

1988

1989

1990

1991

1992

Figure 17.9 A layered digraph illustrating the history of UNIX; each layer repre-
sents a point in time. Drawn by applying Sugiyama layout and the LP-based co-
ordinate assignment with angle optimization and special node balancing. Source:
http://en.wikipedia.org/wiki/File:Unix history-simple.svg.

17.4. GRAPH DRAWING ALGORITHMS 557

Upward Planarization. Though the commonly applied approach for hierarchical graph
drawing is based on the Sugiyama framework, there is a much better alternative that pro-
duces substantially less edge crossings. This alternative adapts the crossing minimization
procedure known from the planarization approach and is thus called upward planariza-
tion [CGMW10]. Like the traditional planarization approach for undirected graphs, the
algorithm consists of two steps: In the first step, a feasible upward planar subgraph U is
constructed; in the second step, the arcs not yet contained in U are inserted one-by-one so
that few crossings arise. These crossings are replaced by dummy nodes so that the digraph
in which arcs are inserted can always be considered upward planar. The final outcome of
this crossing minimization procedure is an upward planar representation; it can be turned
into a drawing of the original digraph by replacing the dummy nodes with arc crossings.

The upward planarization framework in the OGDF follows the presentations in [CGMW09]
and [CGMW10]; see Figure 17.10. The class UpwardPlanarizationLayout represents the
layout algorithm, which is implemented in two phases: The first phase realizes the upward
crossing minimization procedure and computes an upward planarized representation of the
input digraph; the second phase is realized by a UPRLayoutModule and computes the fi-
nal layout. Currently, the layout computation is implemented by reusing modules from
Sugiyama’s framework, namely the rank assignment and hierarchy layout modules.

LayoutModule

FUPSSimple

AcyclicSubgraphModule

UpwardPlanarizerModule

FUPSModule

<no_crossings>
UpwardPlanariza onLayout

upwardPlanarizer

UPRLayout

UPRLayoutModule

SubgraphUpwardPlanarizer

subgraph

inserter

acyclicSubgraph

HierarchyLayoutModule

LayerBasedUPRLayout
ranking

layout

RankingModule

FixedEmbeddingUpwardEdgeInserter

UpwardEdgeInserterModule

<no_crossings>
VisibilityLayout

upwardPlanarizer

<no_crossings>
DominanceLayout

upwardPlanarizer

Figure 17.10 The upward planarization framework for hierarchical graph layout in the
OGDF; modules for ranking, hierarchy layout, and acyclic subgraphs are omitted and can
be found in Figure 17.8.

The crossing minimization step, realized by an UpwardPlanarizerModule, is the heart
of the upward planarization. The OGDF modularizes this step similarly as for the pla-
narization approach. First, a feasible upward planar subgraph is computed by a FUPS-

Module, which is implemented by FUPSSimple, and then the remaining edges are inserted
by an UpwardEdgeInserterModule, implemented by applying a fixed embedding approach
(FixedEmbeddingUpwardEdgeInserter). Figure 17.11 compares two upward drawings of
the same digraph, one produced by the Sugiyama approach and the other one by apply-
ing upward planarization. Typically, Sugiyama drawings tend to become quite flat, thus
enforcing many crossings, whereas the upward planarization approach unfolds the digraph
well, thereby saving a lot of crossings and revealing the true structure of the digraph.

The crossing minimization step is also used by two further algorithms: Visibility-

Layout based on the computation of a visibility representation by Rosenstiehl and Tarjan
[RT86] and DominanceLayout based on dominance drawings of s-t-planar digraphs. An

558 CHAPTER 17. THE OPEN GRAPH DRAWING FRAMEWORK (OGDF)

10

1

12

13

14

15

16 17

18

19

20 21

22

23 24

25

26

27 28

29

0

1

2

3

4 30

5

31

6

32

7

33

8

34

9

35

36

37

10

1

12

13

14

15

1617

18

19

2021

22

2324

25

26

27

28

29

0

1

2

3

4

30

5

31

6

32

7

33

8

34

9

35

36

37

Figure 17.11 Two upward drawings of the same graph, drawn with SugiyamaLayout

(left, 27 crossings) and UpwardPlanarizationLayout (right, 1 crossing).

s-t-planar digraph is a directed, acyclic planar graph G with exactly one source s and
exactly one sink t. DominanceLayout applies the layout algorithm for s-t-planar digraphs
by Di Battista, Tamassia, and Tollis [DTT92]. If the input digraph G contains no transitive
edges, the algorithm computes a planar dominance grid drawing of G, i.e., a straight-line
embedding such that, for any two nodes u and v, there is a directed path from u to v if and
only if x(u) ≤ x(v) and y(u) ≤ y(v). Dominance drawings characterize the transitive closure
of a digraph by means of the geometric dominance relation among the nodes [DTT92]. If
G does contain transitive edges, the algorithm splits these edges by introducing artificial
nodes and computes a dominance drawing for the resulting digraph in which the artificial
nodes represent bend points.

17.4.3 Energy-Based Drawing Algorithms

Energy-based drawing algorithms constitute the most common drawing approach for undi-
rected graphs. They are reasonably fast for medium sized graphs, intuitive to understand,
and easy to implement—at least in their basic versions. The fundamental underlying idea
of energy-based methods is to model the graph as a system of interacting objects that
contribute to the overall energy of the system, such that an energy-minimized state of the

17.4. GRAPH DRAWING ALGORITHMS 559

system corresponds to a nice drawing of the graph. In order to achieve such an optimum,
an energy or cost function is minimized. There are various models and realizations for this
approach, and the flexibility in the definition of both the energy model and the objective
function enables a wide range of optimization methods and applications. There is a wealth of
publications concerning energy-based layout methods; see the overview in [DETT99, KW01]
and the comprehensive discussion in Chapter 12.

Single-level Algorithms. The OGDF provides implementations for several classical
algorithms, such as the force-directed spring embedder algorithm [Ead84], the grid-variant
of Fruchterman and Reingold [FR91] (SpringEmbedderFR), and the simulated annealing
approach by Davidson and Harel [DH96] (DavidsonHarelLayout). We also implemented
the energy-based approach by Kamada and Kawai [KK89] (SpringEmbedderKK), which uses
the shortest graph-theoretic distances as ideal pairwise distance values and subsequently
tries to obtain a drawing that minimizes the overall difference between ideal and current
distances. Further implementations include the GEM algorithm [FLM95] (GEMLayout) and
Tutte’s barycenter method [Tut63] (TutteLayout). All implementations of energy-based
drawing algorithms are directly derived from the class LayoutModule.

An important advantage of energy-based methods—based on the iterative nature of the
numerical methods for computing the layout—is that they provide an animation of the
change from a given layout to a new one, thus allowing us to use a given drawing as input. In
addition, these algorithms support stopping the computation when either the improvement
of successive steps falls under a certain threshold or as soon as a prespecified energy value
is reached. Our implementations therefore provide the corresponding interfaces to adjust
the respective parameters.

Multi-level Algorithms. In addition to these single level algorithms, the OGDF provides
a generic framework for the implementation of multilevel algorithms, realized by the class
ModularMultilevelMixer. Multilevel approaches can help to overcome local minima and
slow convergence problems of single level algorithms. Their result does not depend on the
quality of an initial layout, and they are well suited also for large graphs with up to tens or
even hundreds of thousands of nodes.

The multilevel framework allows us to obtain results similar to those of many different
multilevel layout realizations [Wal03, GK02, HJ04]. Instead of implementing these versions
from scratch, only the main algorithmic phases— coarsening, placement, and single level
layout—have to be implemented or reused from existing realizations. The module concept
allows us to plug in these implementations into the framework, enabling also a comparison
of different combinations as demonstrated in [BGKM10]. Figure 17.12 shows two example
drawings of large graphs.

On the one hand, the multilevel framework provides high flexibility for composing mul-
tilevel approaches out of a variety of realizations for the different layout steps. On the
other hand, this modularity prohibits fine-tuning of specific combinations by adjusting the
different phases to each other. Therefore the OGDF also contains a dedicated implemen-
tation of the fast multipole multilevel method (FMMMLayout) by Hachul and Jünger [HJ04],
as well as an engineered and optimized version of this algorithm supporting multicore hard-
ware [Gro09] (FastMultipoleMultilevelEmbedder). Figure 17.13 shows a drawing of a
very large graph with 143,437 nodes, which was obtained—using this engineered version—
in just 2.1 seconds on an Intel Xeon E5430 (2.66GHz) quadcore machine.

560 CHAPTER 17. THE OPEN GRAPH DRAWING FRAMEWORK (OGDF)

Figure 17.12 Two drawings obtained with OGDF’s multilevel framework: graph data

(left; 2,851 nodes; 15,093 edges) and graph crack (right; 10,240 nodes; 30,380 edges).

Figure 17.13 The graph fe ocean (143,437 nodes; 409,593 edges) drawn with the Fast-

MultipoleMultilevelEmbedder in 2.1 seconds.

17.4. GRAPH DRAWING ALGORITHMS 561

17.4.4 Drawing Clustered Graphs

A clustered graph C = (G,T) is a tuple consisting of a graph G = (V,E) and a hierarchical
structuring T called cluster tree. Every node of V is assigned to exactly one inner node of
T , which is the cluster to which it belongs.

In the OGDF, a clustered graph C is represented by an instance of class ClusterGraph,
which stores the necessary information together with a reference to the underlying graph G.
The OGDF provides methods to test c-planarity of arbitrary clustered graphs and to draw
such graphs in either orthogonal or hierarchical style.

Orthogonal Layout. Similar to the planarization approach for general graphs, we imple-
mented the planarization approach for clustered graphs based on the method by Di Battista
et al. [DDM01], which is realized by the class ClusterPlanarizationLayout. This method
uses the topology-shape-metrics approach and is suitable only for c-connected clustered
graphs, i.e., clustered graphs with the property that every subgraph induced by the nodes
of some cluster c and its subclusters is connected.

The cluster planarization algorithm works as follows: First, we calculate a minimum
spanning tree for each cluster, thereby treating its subclusters as simple nodes. Afterward
these trees are joined together. We start to insert the remaining edges one after another if
this is possible without introducing any crossings. We call the resulting graph the maximal
planar cluster subgraph G′. Hence, after this step there generally remains a set of edges
which could not yet be inserted.

We apply the following steps for every edge e = (u, v) that still has to be inserted: We
generate a dual graph D with the following properties: faces within the same cluster are
joined by bidirectional arcs. Arcs between faces of different clusters are only generated if
these clusters are on the path between u and v in T . The direction of such arcs is chosen
accordingly. Finally we add arcs from u to all of its incident faces, and arcs from all faces
incident to v, to v. Then we search for the shortest path between u and v in D and generate
edge crossings according to the used arcs.

Thanks to the OGDF’s modularity we can easily reuse all available code concerning bend
minimization and compaction—originally only intended for planar graphs—without a single
change.

In order to also cope with non-c-connected clustered graphs, the OGDF provides two quite
different approaches: As a simple and fast heuristic, non-connected clusters are made con-
nected by temporarily adding single dummy edges between the components of the induced
subgraphs. A much more sophisticated approach is implemented by the class Maximum-

CPlanarSubgraph: This class applies a branch-and-cut approach that computes the maxi-
mum c-planar subgraph of a clustered graph [CGJ+08]. The result can be used for the first
step of the cluster planarization approach and at the same time also constitutes the first
practical c-planarity testing algorithm for arbitrary (i.e., also non-c-connected) clustered
graphs. The branch-and-cut approach is based on the result that every c-planar clustered
graph can be augmented to a completely connected clustered graph, i.e., where for each clus-
ter both the cluster and its complement are connected [CW06]. As the call function also
returns the set of edges that is eventually added to achieve c-connectivity, these edges can
be used in order to make the input graph c-connected, allowing us to apply the planarization
and drawing approach without adding unnecessary crossings.

Figure 17.14 shows an example drawing of a c-planar (but not c-connected) clustered
graph, obtained with ClusterPlanarizationLayout and the simple heuristic for making
the clustered graph c-connected.

562 CHAPTER 17. THE OPEN GRAPH DRAWING FRAMEWORK (OGDF)

Send

Invoice

Receive

Payment

G/L

Interface

Sales

Order

customer

exists

Create

Customer

Get Customer

from System

Create

Order

Item

exists

Create item
Get item

ID

Enter Order

Lines

Credit Check

Order Entry

Inventory

Accounts Receivables

pass C.C. ?

Work in Progress

Extend

Credit Limit

Purchasing

Book Order

Create Shop

Floor Jobs

Create Item

Demand

all items

available

Get Items

from Stock

Create

P/O

Close

Jobs

Put final

Goods in FGI

Close Order

Lines

Ship

Goods

Close

Order
A/R Interface

Figure 17.14 A clustered graph drawn in orthogonal style with ClusterPlanarization-

Layout.

Hierarchical Layout. For drawing directed graphs with an additional cluster structure
in a hierarchical style, SugiyamaLayout provides an additional call method. This methods
implements a cluster hierarchical layout algorithm that is based on Sugiyama’s framework as
described by Sanders [San96a, San96b] and applies improvements for the crossing reduction
strategy proposed by Schreiber [Sch01] and Forster [For02].

Though this approach would also allow us to draw compound graphs, i.e., a generaliza-
tion of clustered graphs where edges can also be attached at clusters, the implementation
currently supports only clustered graphs. The reason is that there is yet no representation
of compound graphs in the OGDF; it will be added in a future release.

17.5 Success Stories

This section showcases some outstanding implementations in the OGDF and the story
behind their development. These are also good examples for demonstrating design decisions
and engineering aspect.

17.5. SUCCESS STORIES 563

17.5.1 SPQR-Trees

In the early 1970s, Hopcroft and Tarjan [HT73a] published the first linear-time algorithm
for computing the triconnected components of a graph. This decomposition is in particular
important in graph drawing—here usually known as the data structure SPQR-tree—, as it
allows us to encode all planar embedding of a graph. Hence, this algorithm has been cited
over and over again for showing that SPQR-trees can be constructed in linear time. However,
for a long time nobody was able to come up with an implementation of this algorithm, since
the paper was hard to understand and contained various flaws, thus preventing a straight-
forward implementation.

This situation is a classical example for showing the need of publicly available reference
implementations, revealing all the algorithmic details and simplifying the application of
the algorithm. A breakthrough was achieved in the early 2000s—almost 20 years after the
publication of the algorithm—by Gutwenger and Mutzel [GM01]. They described how to fix
the flaws in the Hopcroft and Tarjan algorithm, and also provided a stable implementation
of SPQR-trees in the AGD library. This implementation is now part of the OGDF and thus
open source, allowing everybody to study and understand it. Since this implementation is
publicly available, we observed a lot of interest in it, ranging from applications that just
apply the data structure to reimplementations, e.g., in other programming languages.

17.5.2 Exact Crossing Minimization

One of the most challenging problems in graph drawing is the crossing number problem,
i.e.: What is the minimum number of edge crossings required when drawing a given graph?
See Chapter 2. for an extensive introduction to this topic. For a long time, no exact
algorithms existed that could compute the crossing number for at least some interesting
graphs in practice. The classical benchmark instances for evaluating crossing minimization
algorithms are the Rome graphs, a benchmark set of quite sparse graphs with up to 100
nodes. The first approach that could compute the exact solutions for a handful of interesting
Rome graphs was based on an ILP formulation presented by Buchheim et al. [BEJ+05] and
implemented using AGD and CPLEX. In the following years, this approach was revised and
reimplemented using the OGDF by Chimani et al. [BCE+08, CGM09], and the resulting
implementation was able to solve many more graphs. The key ideas were to use branch-
and-cut-and-price (by applying the ABACUS framework) and better primal heuristics (the
planarization approach provided by the OGDF). The currently best algorithm for exact
crossing minimization [Chi08, CMB08] is also implemented using the OGDF, and now
allows us to solve the majority of Rome graphs exactly.

This example demonstrates how the OGDF’s modular design supports the development
of new algorithms. Here, the planarization approach (see Section 17.3.3) is used as pri-
mal heuristic, as well as other important components like testing planarity, extraction of
Kuratowski subdivisions [CMS08], and the non-planar core reduction [CG09] as a prepro-
cessing strategy. It also shows that exact algorithms based on ILP formulations require
additional frameworks providing an LP-solver and support for the design and implemen-
tation of branch-and-cut(-and-price) algorithms. Hence, we decided to (optionally) use
the libraries COIN-OR as LP-solver interface (which also allows us to choose CPLEX as
LP-solver) and ABACUS in the OGDF.

564 CHAPTER 17. THE OPEN GRAPH DRAWING FRAMEWORK (OGDF)

17.5.3 Upward Graph Drawing

The classical approach for upward drawing of acyclic digraphs is Sugiyama’s framework,
which was already proposed in the early 1980s. The first step of this framework layers the
graph, and the subsequent steps ensure that each node is finally placed on its assigned layer.
It is well known that such a fix layer assignment forces unnecessary crossings in the drawing,
but the Sugiyama framework is still widely used. A breakthrough in upward crossing mini-
mization was recently achieved by Chimani et al. [CGMW08, CGMW09, CGMW10]. They
propose a new method for upward crossing minimization that does not need to layer the
graph and report on substantial reduction in crossings (compared to Sugiyama’s framework
and other approaches) for commonly used benchmark graphs.

They developed this new approach using the OGDF and made use of the OGDF’s modular
design by reusing some of the modules from Sugiyama’s framework (see also Figure 17.10), as
well as sophisticated algorithms like upward planarity testing for sT -digraphs. Within their
experimental study, they could apply the OGDF’s Sugiyama layout algorithm providing
state-of-the-art crossing minimization heuristics for the layered approach. The resulting
implementation is also modularized and thus allows us to easily replace particular phases
of the algorithm with alternative implementations.

This example demonstrates how the OGDF helps in developing alternative approaches,
and how new frameworks can be established such that other users can easily experiment
with it and modify some of the phases.

Acknowledgments

Markus Chimani was funded via a junior professorship by the Carl-Zeiss-Foundation.
The OGDF, as it is today, is by far not only the product of the authors of this chap-

ter. It benefits from contributions of many additional supporters, in alphabetical order:3

Dino Ahr, Gereon Bartel, Christoph Buchheim, Tobias Dehling, Martin Gronemann, Ste-
fan Hachul, Mathias Jansen, Thorsten Kerkhof, Joachim Kupke, Sebastian Leipert, Daniel
Lückerath, Jan Papenfuß, Gerhard Reinelt, Till Schäfer, Jens Schmidt, Michael Schulz,
Andrea Wagner, René Weiskircher, Hoi-Ming Wong, and Bernd Zey.

3See also http://www.ogdf.net/doku.php/team:about for an up-to-date list.

REFERENCES 565

References

[AGMN97] D. Alberts, C. Gutwenger, P. Mutzel, and S. Näher. AGD-library: A
library of algorithms for graph drawing. In Proc. WAE ’97, pages 112–
123, 1997.

[BCE+08] C. Buchheim, M. Chimani, D. Ebner, C. Gutwenger, M. Jünger, G. W.
Klau, P. Mutzel, and R. Weiskircher. A branch-and-cut approach to the
crossing number problem. Discrete Optimization, Special Issue in Memory
of George B. Dantzig, 5(2):373–388, 2008.

[BDMT98] P. Bertolazzi, G. Di Battista, C. Mannino, and R. Tamassia. Optimal
upward planarity testing of single-source digraphs. SIAM J. Comput.,
27(1):132–169, 1998.

[BEJ+05] C. Buchheim, D. Ebner, M. Jünger, P. Mutzel, and R. Weiskircher. Exact
crossing minimization. In P. Eades and P. Healy, editors, Graph Drawing
(Proc. GD ’05), Lecture Notes Comput. Sci. Springer-Verlag, 2005. To
appear.

[BGKM10] G. Bartel, C. Gutwenger, K. Klein, and P. Mutzel. An experimental
evaluation of multilevel layout methods. In 18th International Symposium
on Graph Drawing 2010 (GD10), number 6502 in Lecture Notes Comput.
Sci., pages 80–91. Springer-Verlag, 2010.

[BJL00] C. Buchheim, M. Jünger, and S. Leipert. Fast layout algorithm for k-level
graphs. In J. Marks, editor, Proc. Graph Drawing 2000, volume 1984 of
Lecture Notes Comput. Sci., pages 229–240. Springer-Verlag, 2000.

[BJL06] C. Buchheim, M. Jünger, and S. Leipert. Drawing rooted trees in linear
time. Software: Practice and Experience, 36(6):651–665, 2006.

[BL76] K. Booth and G. Lueker. Testing for the consecutive ones property interval
graphs and graph planarity using PQ-tree algorithms. J. Comput. Syst.
Sci., 13:335–379, 1976.

[BM04] J. M. Boyer and W. Myrvold. On the cutting edge: Simplified o(n) pla-
narity by edge addition. J. Graph Algorithms Appl., 8(3):241–273, 2004.

[CG72] E. G. Coffman and R. L. Graham. Optimal scheduling for two processor
systems. Acta Informatica, 1:200–213, 1972.

[CG09] M. Chimani and C. Gutwenger. Non-planar core reduction of graphs.
Discrete Mathematics, 309(7):1838–1855, 2009.

[CGJ+08] M. Chimani, C. Gutwenger, M. Jansen, K. Klein, and P. Mutzel. Com-
puting maximum c-planar subgraphs. In I. G. Tollis and M. Patrignani,
editors, Graph Drawing, volume 5417 of Lecture Notes Comput. Sci., pages
114–120. Springer-Verlag, 2008.

[CGM09] M. Chimani, C. Gutwenger, and P. Mutzel. Experiments on exact crossing
minimization using column generation. ACM Journal of Experimental
Algorithmics, 14(3):4.1–4.18, 2009.

[CGMW08] M. Chimani, C. Gutwenger, P. Mutzel, and H.-M. Wong. Layer-free up-
ward crossing minimization. In C. McGeoch, editor, Experimental Algo-
rithms, 7th International Workshop, WEA 2008, volume 5038 of Lecture
Notes Comput. Sci., pages 55–68. Springer-Verlag, 2008.

[CGMW09] M. Chimani, C. Gutwenger, P. Mutzel, and H.-M. Wong. Upward pla-
narization layout. In D. Eppstein and E. Gansner, editors, Proceedings of

566 CHAPTER 17. THE OPEN GRAPH DRAWING FRAMEWORK (OGDF)

the 17th Symposium on Graph Drawing 2009 (GD 2009), volume 5849 of
Lecture Notes Comput. Sci., pages 94–106. Springer-Verlag, 2009.

[CGMW10] M. Chimani, C. Gutwenger, P. Mutzel, and H.-M. Wong. Layer-free
upward crossing minimization. ACM J. Exp. Algorithmics, 15:Article
No. 2.2, 2010.

[Chi08] M. Chimani. Computing crossing numbers. PhD thesis, TU Dortmund,
2008. http://hdl.handle.net/2003/25955.

[CMB08] M. Chimani, P. Mutzel, and I. Bomze. A new approach to exact crossing
minimization. In Proc. ESA ’08, volume 5193 of Lecture Notes Comput.
Sci., pages 284–296. Springer-Verlag, 2008.

[CMS08] M. Chimani, P. Mutzel, and J. M. Schmidt. Efficient extraction of multiple
Kuratowski subdivisions. In Proc. GD ’07, volume 4875 of Lecture Notes
Comput. Sci., pages 159–170. Springer-Verlag, 2008.

[CNAO85] N. Chiba, T. Nishizeki, S. Abe, and T. Ozawa. A linear algorithm for
embedding planar graphs using PQ-trees. J. Comput. Syst. Sci., 30(1):54–
76, 1985.

[CW06] S. Cornelsen and D. Wagner. Completely connected clustered graphs. J.
Discrete Algorithms, 4(2):313–323, 2006.

[DDM01] G. Di Battista, W. Didimo, and A. Marcandalli. Planarization of clustered
graphs. In P. Mutzel, M. Jünger, and S. Leipert, editors, Graph Drawing,
volume 2265 of Lecture Notes Comput. Sci., pages 60–74. Springer-Verlag,
2001.

[DETT99] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing.
Prentice Hall, Upper Saddle River, NJ, 1999.

[DH96] R. Davidson and D. Harel. Drawing graphs nicely using simulated anneal-
ing. ACM Trans. Graph., 15(4):301–331, 1996.

[DT89] G. Di Battista and R. Tamassia. Incremental planarity testing. In Proc.
30th Annu. IEEE Sympos. Found. Comput. Sci., pages 436–441, 1989.

[DT96] G. Di Battista and R. Tamassia. On-line maintenance of triconnected
components with SPQR-trees. Algorithmica, 15:302–318, 1996.

[DTT92] G. Di Battista, R. Tamassia, and I. G. Tollis. Constrained visibility rep-
resentations of graphs. Inform. Process. Lett., 41:1–7, 1992.

[Ead84] P. A. Eades. A heuristic for graph drawing. In Congressus Numerantium,
volume 42, pages 149–160, 1984.

[Eig03] M. Eiglsperger. Automatic Layout of UML Class Diagrams: A Topology-
Shape-Metrics Approach. PhD thesis, Eberhardt-Karl-Universität
(Tübingen), 2003.

[EK86] P. Eades and D. Kelly. Heuristics for reducing crossings in 2-layered net-
works. Ars Combinatoria, 21(A):89–98, 1986.

[EL95] P. Eades and X. Lin. A new heuristic for the feedback arc set problem.
Australian J. Combin., 12:15–26, 1995.

[FK96] U. Fössmeier and M. Kaufmann. Drawing high degree graphs with low
bend number. In Graph Drawing (Proc. GD ’95), Lecture Notes Comput.
Sci. Springer-Verlag, 1996.

[FLM95] A. Frick, A. Ludwig, and H. Mehldau. A fast adaptive layout algorithm for
undirected graphs. In GD ’94: Proceedings of the DIMACS International

REFERENCES 567

Workshop on Graph Drawing, pages 388–403, London, UK, 1995. Springer-
Verlag.

[FM98] S. Fialko and P. Mutzel. A new approximation algorithm for the planar
augmentation problem. In Proceedings of the Ninth Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA ’98), pages 260–269, San Fran-
cisco, California, 1998. ACM Press.

[For02] M. Forster. Applying crossing reduction strategies to layered compound
graphs. In S. G. Kobourov and M. T. Goodrich, editors, Graph Draw-
ing, volume 2528 of Lecture Notes Comput. Sci., pages 276–284. Springer-
Verlag, 2002.

[FR91] T. M. J. Fruchterman and E. M. Reingold. Graph drawing by force-
directed placement. Softw. Pract. Exper., 21(11):1129–1164, 1991.

[GK02] P. Gajer and S. G. Kobourov. GRIP: Graph drawing with intelligent
placement. J. Graph Algorithms Appl., 6(3):203–224, 2002.

[GKNV93] E. R. Gansner, E. Koutsofios, S. C. North, and K. P. Vo. A technique for
drawing directed graphs. IEEE Trans. Softw. Eng., 19:214–230, 1993.

[GM97] C. Gutwenger and P. Mutzel. Grid embedding of biconnected pla-
nar graphs. Extended Abstract, Max-Planck-Institut für Informatik,
Saarbrücken, Germany, 1997.

[GM01] C. Gutwenger and P. Mutzel. A linear time implementation of SPQR
trees. In J. Marks, editor, Proceedings of the 8th International Symposium
on Graph Drawing (GD 2000), volume 1984 of Lecture Notes Comput.
Sci., pages 77–90. Springer-Verlag, 2001.

[GM03] C. Gutwenger and P. Mutzel. Graph embedding with minimum depth and
maximum external face. In G. Liotta, editor, 11th Symposium on Graph
Drawing 2003, Perugia, volume 2912 of Lecture Notes Comput. Sci., pages
259–272. Springer-Verlag, 2003.

[GMW05] C. Gutwenger, P. Mutzel, and R. Weiskircher. Inserting an edge into a
planar graph. Algorithmica, 41(4):289–308, 2005.

[GMZ09a] C. Gutwenger, P. Mutzel, and B. Zey. On the hardness and approxima-
bility of planar biconnectivity augmentation. In H. Q. Ngo, editor, Pro-
ceedings of the 15th Annual International Computing and Combinatorics
Conference 2009, volume 5609 of Lecture Notes Comput. Sci., pages 249–
257. Springer-Verlag, 2009.

[GMZ09b] C. Gutwenger, P. Mutzel, and B. Zey. Planar biconnectivity augmentation
with fixed embedding. In J. Fiala, J. Kratochvl, and M. Miller, editors,
Proceedings of the 20th International Workshop on Combinatorial Algo-
rithms 2009, volume 5874 of Lecture Notes Comput. Sci., pages 289–300.
Springer-Verlag, 2009.

[Gro09] M. Gronemann. Engineering the fast-multipole-multilevel method for mul-
ticore and SIMD architectures. Master’s thesis, Technische Universität
Dortmund, 2009.

[GT01] A. Garg and R. Tamassia. On the computational complexity of upward
and rectilinear planarity testing. SIAM J. Comput., 31(2):601–625, 2001.

[Gut10] C. Gutwenger. Application of SPQR-Trees in the Planarization Approach
for Drawing Graphs. PhD thesis, Technische Universität Dortmund, Ger-
many, Fakultät für Informatik, 2010.

568 CHAPTER 17. THE OPEN GRAPH DRAWING FRAMEWORK (OGDF)

[HJ04] S. Hachul and M. Jünger. Drawing large graphs with a potential-field-
based multilevel algorithm. In Janos Pach, editor, Proc. Graph Draw-
ing 2004, volume 3383 of Lecture Notes Comput. Sci., pages 285–295.
Springer-Verlag, 2004.

[HT73a] J. Hopcroft and R. E. Tarjan. Dividing a graph into triconnected compo-
nents. SIAM J. Comput., 2(3):135–158, 1973.

[HT73b] J. E. Hopcroft and R. E. Tarjan. Efficient algorithms for graph manipu-
lation. Communications of the ACM, 16(6):372–378, 1973.

[JLM98] M. Jünger, S. Leipert, and P. Mutzel. A note on computing a maximal
planar subgraph using PQ-trees. IEEE Transactions on Computer-Aided
Design, 17(7):609–612, 1998.

[JT00] M. Jünger and S. Thienel. The ABACUS system for branch-and-cut-
and-price algorithms in integer programming and combinatorial optimiza-
tion. Software: Practice and Experience, 30:1325–1352, 2000. See also
http://www.informatik.uni-koeln.de/abacus/.

[JTS89] R. Jayakumar, K. Thulasiraman, and M. N. S. Swamy. O(n2) algorithms
for graph planarization. IEEE Trans. Comp.-Aided Design, 8:257–267,
1989.

[Kan96] G. Kant. Drawing planar graphs using the canonical ordering. Algorith-
mica, 16:4–32, 1996. (special issue on Graph Drawing, edited by G. Di
Battista and R. Tamassia).

[KB91] G. Kant and H. L. Bodlaender. Planar graph augmentation problems.
In Proc. WADS ’91, volume 519 of Lecture Notes Comput. Sci., pages
286–298. Springer-Verlag, 1991.

[Ker07] T. Kerkhof. Algorithmen zur Bestimmung von guten Graph-Einbettungen
für orthogonale Zeichnungen. Master’s thesis, University of Dortmund,
2007.

[KK89] T. Kamada and S. Kawai. An algorithm for drawing general undirected
graphs. Inform. Process. Lett., 31(1):7–15, 1989.

[Kla01] G. W. Klau. A Combinatorial Approach to Orthogonal Placement Prob-
lems. PhD thesis, Universität des Saarlandes, Saarbrücken, Germany,
Fachbereich Informatik, Technische Fakultät I, 2001.

[KM98] G. W. Klau and P. Mutzel. Quasi-orthogonal drawing of planar graphs.
Technical Report MPI-I-98-1-013, Max Planck Institut für Informatik,
Saarbrücken, Germany, 1998.

[KM99] G. W. Klau and P. Mutzel. Optimal compaction of orthogonal grid draw-
ings. In G. Cornuejols, R. E. Burkard, and G. J. Woeginger, editors,
Integer Programming and Combinatorial Optimization, volume 1610 of
Lecture Notes Comput. Sci., pages 304–319. Springer-Verlag, 1999.

[KW01] M. Kaufmann and D. Wagner, editors. Drawing Graphs, volume 2025 of
Lecture Notes Comput. Sci. Springer-Verlag, 2001.

[LEC67] A. Lempel, S. Even, and I. Cederbaum. An algorithm for planarity testing
of graphs. In Theory of Graphs: Internat. Symposium (Rome 1966), pages
215–232, New York, 1967. Gordon and Breach.

[Mar10] K. Martin. Tutorial: COIN-OR: Software for the OR community. Inter-
faces, 40(6):465–476, 2010. See also http://www.coin-or.org.

REFERENCES 569

[MN99] K. Mehlhorn and S. Näher. LEDA: A Platform for Combinatorial and
Geometric Computing. Cambridge University Press, 1999.

[MSM00] C. Matuszewski, R. Schönfeld, and P. Molitor. Using sifting for k-layer
crossing minimization. In Graph Drawing (Proc. GD ’99), Lecture Notes
Comput. Sci. Springer-Verlag, 2000. to appear.

[PT00] M. Pizzonia and R. Tamassia. Minimum depth graph embedding. In
M. Paterson, editor, Proceedings of the 8th Annual European Symposium
on Algorithms (ESA 2000), volume 1879 of Lecture Notes Comput. Sci.,
pages 356–367. Springer-Verlag, 2000.

[RT81] E. Reingold and J. Tilford. Tidier drawing of trees. IEEE Trans. Softw.
Eng., SE-7(2):223–228, 1981.

[RT86] P. Rosenstiehl and R. E. Tarjan. Rectilinear planar layouts and bipolar
orientations of planar graphs. Discrete Comput. Geom., 1(4):343–353,
1986.

[San96a] G. Sander. Layout of compound directed graphs. Technical Report
A/03/96, Universität Saarbrücken, 1996.

[San96b] G. Sander. Visualisierungstechniken für den Compilerbau. PhD thesis,
Universität Saarbrücken, Germany, 1996.

[Sch01] F. Schreiber. Visualisierung biochemischer Reaktionsnetze. PhD thesis,
Universität Passau, Germany, 2001.

[STT81] K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understanding
of hierarchical systems. IEEE Trans. Syst. Man Cybern., SMC-11(2):109–
125, 1981.

[Tam87] R. Tamassia. On embedding a graph in the grid with the minimum number
of bends. SIAM J. Comput., 16(3):421–444, 1987.

[Tar72] R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM J.
Comput., 1(2):146–160, 1972.

[TDB88] R. Tamassia, G. Di Battista, and C. Batini. Automatic graph drawing and
readability of diagrams. IEEE Trans. Syst. Man Cybern., SMC-18(1):61–
79, 1988.

[Tut63] W. T. Tutte. How to draw a graph. Proc Lond Math Soc, 13:743–767,
1963.

[Wal90] J. Q. Walker II. A node-positioning algorithm for general trees. Softw. –
Pract. Exp., 20(7):685–705, 1990.

[Wal03] C. Walshaw. A multilevel algorithm for force-directed graph-drawing. J.
Graph Algorithms Appl., 7(3):253–285, 2003.

[WT92] J. Westbrook and R. E. Tarjan. Maintaining bridge-connected and bicon-
nected components on-line. Algorithmica, 7:433–464, 1992.

18
GDToolkit

Giuseppe Di Battista
University “Roma Tre”

Walter Didimo
University of Perugia

18.1 Introduction . 571
18.2 Key Features of GDToolkit . 572
18.3 Graph-classes and their Hierarchy . 573

Topology level • Shape Level • Metrics Level

18.4 Constructors . 583
18.5 Management of Constraints. 585

Topology Constraints • Shape Constraints • Metrics
Constraints

18.6 Examples of Applications . 589
Internet Analysis • Web Searching • Database Analysis

Acknowledgements . 594
References . 595

18.1 Introduction

GDToolkit (available at http://www.dia.uniroma3.it/∼gdt) is an object-oriented graph draw-
ing library, written in the C++ programming language. It provides many facilities that sup-
port users to develop specific graph visualization interfaces that can be used in real-world
domains.

The computation of a drawing is typically decomposed into a sequence of logical steps,
and several algorithms can be chosen for each step, which offer different compromises in
terms of efficiency and effectiveness. Developers can tune the ratio between the performance
of their applications and the quality of the computed drawings, by combining the different
algorithms available for each step. Generic drawing algorithms and drawing conventions
can be customized and tailored for a specific application context by means of different types
of constraints that the developer can apply on the drawings.

The design of GDToolkit started in 1996, as a part of the ALCOM-IT European Project.
For the use of basic data-structures like vectors, lists, maps, and sets, GDToolkit was
originally strongly based on the LEDA library [MN95, MN00]. After several years, the
current version of GDToolkit is now completely LEDA free, since the basic data-structures
have been totally re-implemented. GDToolkit is now under a commercial license; detailed
information about license terms and conditions can be found at the official web page of the
project.

This chapter describes the main functionalities and architectural aspects of GDToolkit
and it is structured as follows. The key features and the design principles of GDToolkit are
first described (Section 18.2). Specific architectural aspects concerned with the design and
the use of class constructors are then examined (Section 18.4). The constraint management

571

572 CHAPTER 18. GDTOOLKIT

system of the library is discussed in Section 18.5. Finally, some examples of real-world
applications developed using GDToolkit are illustrated (Section 18.6).

18.2 Key Features of GDToolkit

Several key features have been taken into account in the design of GDToolkit. They are
listed and discussed below:

A specific class for each type of graph. In GDToolkit each type of graph is mod-
eled as a specific class, called a graph-class. Graph-classes are organized into a
hierarchy that reflects different levels of abstraction, ranging from graph topology
to graph geometry (see Section 18.3 for a detailed description of the hierarchy).
A similar architecture has been previously proposed in other projects of graph
drawing libraries [BBDL91, DGST90]. There are basic graph-classes to model
graphs with different topological properties, like general multi-graphs, directed
graphs, planar graphs, flow networks, trees. In addition, there are graph-classes
for representing graphs with associated some drawing information. For example,
there exist intermediate graph-classes that model orthogonal drawings and up-
ward drawings only in terms of drawing “shape” (see, e.g., [DETT99]), and there
are graph-classes that model drawings of graphs in terms of vertex and edge-bend
coordinates.
All the graph algorithms implemented in GDToolkit are encapsulated as meth-
ods of the topmost graph-class in which they are safely applicable. Derived
graph-classes inherit methods from the ancestor ones, optionally refining or hid-
ing them when unsafe. Inheritance and encapsulation effectively help the appli-
cation developer in dealing with the intrinsic complexity of graph algorithms and
data-structures.

A graph drawing algorithm is viewed as a sequence of steps. Each step maps
an object of a graph-class to an object of another graph-class. A drawing is typ-
ically the result of a sequence of constructors; each time a constructor is applied
to a graph-object g, a new graph-object g′ is created and equipped with addi-
tional drawing features with respect to g. For example, the code in Figure 18.1
shows how to create an orthogonal drawing of a graph as a simple sequence of
constructors.

/* creates a graph ug, loading it from file "my-graph" */

undi_graph ug;

ug.read ("my-graph");

/* computes a planar embedding for ug, with possible crossing nodes */

plan_undi_graph pug (ug);

/* computes an orthogonal shape for the planar embedded graph */

orth_plan_undi_graph opug (pug);

/* compacts the orthogonal shape to create the final drawing */

draw_undi_graph dug (opug);

Figure 18.1 A fragment of code that computes an orthogonal drawing of the graph
described by the graph-object ug. The graph is loaded from a file and the drawing is
computed according to the topology-shape-metrics approach [Tam87]. Each computation
step is performed by a different constructor.

18.3. GRAPH-CLASSES AND THEIR HIERARCHY 573

Efficient object constructors. Suppose that B is a graph-class that inherits from
A. Invoking a constructor of B that takes in input a graph-object g of A has the
effect of creating a new graph-object g′ of B that contains additional drawing
information (attributes) with respect to g. Typically, in the construction process,
all the structures of g are first copied in the state of g′, and then the state of g′ is
enriched with additional data computed by some algorithms. Sometimes however,
once g′ has been created, g is no longer needed in the program. In these cases one
may wish to “promote” g to become an object of class B, avoiding to duplicate
data for the structures of g. Such a promoting mechanism makes it possible to
save computational time and space resources, especially when g describes a large
graph. The graph-classes of GDToolkit are designed to allow that. Details about
the promoting mechanisms of GDToolkit are given in Section 18.4.

Management of Constraints. As many other graph drawing libraries, GDToolkit
is not devoted to a specific application field. It is mainly thought as a general
purpose graph drawing collection of objects and algorithms, which can be used
in several real-world contexts. However, different application domains may need
to deal with different variants of a generic graph drawing convention, depending
on the specificity of the domain itself. These variants often reflect into a set of
drawing constraints, and therefore it is crucial that the drawing algorithm is able
to deal with these constraints. For example, some applications might require
that a subset of edges is not allowed to cross, or that some vertices should have
a prescribed dimension.
GDToolkit makes it possible to customize its drawing conventions and its drawing
algorithms by means of an effective constraint management system. The graph-
objects of GDToolkit can be equipped with constraints that can be viewed as
additional properties for vertices, edges, or faces. Constraints can be added or
removed at each time of the life-cycle of a graph-object. If a constraint is added
to a graph-object, this constraint remains consistent even if the object is updated.
Also, GDToolkit constructors automatically preserve (and in case enforce) the
constraints when a new graph-object is created as a refinement or as a copy of
an existing graph-object. The constraint management system of GDToolkit is
described in detail in Section 18.5

Extensibility. In order to make the extensibility of the library easy, the definition of
new classes, constructors, and constraints is done according to specific patterns,
which should be taken into account by programmers that wish to extend the
library. The principles of these patterns are described in Sections 18.3, 18.4,
and 18.5.

In the next section the architecture of GDToolkit is described, focusing on the key fea-
tures discussed above. Several code and drawing examples are provided in order to better
illustrate the use of the library.

18.3 Graph-classes and their Hierarchy

The graph-classes of GDToolkit are structured into a hierarchy, and provide objects for
each specific type of graph. The design of the hierarchy is mainly driven by the well-known
topology-shape-metrics approach [DETT99, Tam87] for orthogonal drawings. According to
this approach, a drawing is computed into three phases:

574 CHAPTER 18. GDTOOLKIT

Topology: A planar embedding of the input graph is computed, by possibly adding
dummy vertices to replace crossings if the graph is not planar; the planar em-
bedding is described by the circular lists of edges incident to each vertex, or
equivalently by the set of faces.

Shape: An orthogonal shape is computed within the planar embedding found in the
previous phase, where one of the faces is chosen as the external face; the shape
describes the sequence of left and right bends along the edges, and the angles
formed by two consecutive edges incident to the same vertex in a circular order.

Metrics: The final position of the vertices and bends is computed, while preserving
the shape determined in the previous phase. Then, dummy vertices are removed.

GDToolkit applies and extends this approach to other drawing conventions. Indeed, more
in general, a drawing is described (and constructed) at three different levels of abstractions,
where each level adds drawing information to the parent level. The first level describes the
topology (embedding) of the drawing, the second level its “shape”, and the third level the
final geometry of the drawing in terms of vertex and edge-bend coordinates. The shape of
a drawing can be regarded as a partial description of the drawing that typically determines
the relative position of vertices and edges, without deciding their final placement. For some
drawing conventions the concept of shape does not make sense, and in this case it is possible
to skip an abstraction level in the construction of the drawing. The hierarchy of the main
graph-classes of GDToolkit is depicted in Figure 18.2.

draw_undi_graph

orth_plan_undi_graph upwa_plan_undi_graph

flow_dire_graph SPQR_tree

treeplan_undi_graph dire_graph

undi_graph

layered_undi_graph

Topology

Metrics

Shape

Figure 18.2 The hierarchy of the main graph-classes of GDToolkit.

18.3.1 Topology level

The root of the graph classes hierarchy is the undi graph class, whose objects represent
generic graphs that can be connected or not, and that can have multiple edges and self-
loops. Also, any edge of an undi graph object can be optionally oriented, i.e, an undi graph
can have both undirected and directed edges at the same time.

Each node and each edge of an undi graph object is associated with a non-negative integer
identifier. No duplication of identifiers is allowed in the same class of elements. Methods for
automatically generating identifiers are provided by the library, but identifiers can also be

18.3. GRAPH-CLASSES AND THEIR HIERARCHY 575

manually set or changed by the programmer. When a graph object is copied into another
graph object, nodes and edges are duplicated while preserving their identifiers. Therefore,
identifiers can be used to keep a one-to-one correspondence between the set of nodes and
edges of the two graphs.

An undi graph stores information about its embedding, i.e., the circular ordering of the
edges incident to every node. This embedding is preserved during any copy operation of the
graph. Also, class undi graph contains a large set of basic methods to access and update the
topology of the graph, and advanced methods to deal with its embedding, orientation, and
connectivity. For example, there are methods that test the existence of planar embeddings
for the graph, or of planar bimodal embeddings in the case the graph has only directed edges.
We recall that a bimodal embedding for a planar digraph is such that, for each vertex, all
the incoming edges (as well as all the outgoing edges) are consecutive around the vertex.
There are methods to compute st-orientations, methods to connect the graph by adding a
minimal set of extra edges, and methods to perform different kinds of traversal of the graph.
Figure 18.3 shows a fragment of code that creates a new undi graph object ug reading the
structure of the graph from a file, executes two copies ug1 and ug2 of ug, and updates (if
possible) the embedding of ug1 into a planar one, and the embedding of ug2 into a planar
bimodal one, after an orientation for ug2 is found. Note that, if ug2 is biconnected, the
program computes an st-orientation for it.

/* creates an object ug, loading it from file "my_graph",

* and makes two copies of ug */

undi_graph ug;

ug.read("my_graph");

undi_graph ug1 (ug);

undi_graph ug2 (ug);

/* makes the embedding of ug1 planar, if possible*/

if (!ug1.make_embedding_planar ())

cout << "\nThe graph is not planar" << flush;

/* if graph ug2 is biconnected, makes it st-oriented,

* else makes it randomly oriented*/

if (ug2.is_biconnected())

ug2.make_directed(ug2.first_node(),ug2.last_node());

else ug2.make_directed(true);

/* makes the embedding of ug2 planar bimodal, if possible */

if (!ug2.make_embedding_cand_planar())

cout << "\nThe oriented graph is not planar bimodal" << flush;

Figure 18.3 A fragment of code that illustrates how to use some methods of the
undi graph class.

Most graph algorithms implemented as methods of an undi graph object runs in linear
time. For example, an st-orientation of a graph with 200,000 vertices and 600,000 edges is
executed in about 14 seconds under Linux on a typical machine with i5-540M Intel processor
and 4 GB RAM.

576 CHAPTER 18. GDTOOLKIT

Embedded planar graphs are modeled by the class plan undi graph, which enriches the
basic topological structure of an undi graph with the description of a set of faces. Following
the philosophy of the library, a plan undi graph object can be created using a construc-
tor that takes as a constant parameter an undi graph object. This constructor applies a
planarity testing algorithm and, if the graph is not planar, a planarization algorithm that
replaces crossings with “dummy” nodes, called crossing nodes.

The planarity testing algorithm implemented in GDToolkit is the one described by Boyer
et al. [BCPD04]; it has been shown to be faster than the one implemented in the LEDA
library [MN95, MN00]. The planarization algorithm is based on a technique that inserts an
edge per time by following a shortest path in the dual graph of the planar embedded graph
computed so far [DETT99]. While planarizing sparse graphs is rather fast, executing the
planarization algorithm on dense graphs might require a significant computational effort,
due to the high number of crossings. For example, a graph with 500 vertices and 750 edges
is planarized in about 13 seconds under Linux on a computer with i5-540M Intel processor
and 4 GB RAM. A much smaller but much denser graph consisting of 100 vertices and 500
edges is planarized in about 42 seconds.

Class tree offers methods to perform standard operations on ordered rooted trees, like
visits in different orders, re-rooting, and so on. The SPQR tree class inherits from class
tree, and models the data structure introduced by Di Battista and Tamassia [DT96] to
represent the triconnected components and the different embeddings of a biconnected graph.
It is possible to use SPQR-tree objects to enumerate and change the embeddings of a
graph, although the current implementation of SPQR-trees in GDToolkit only deals with
planar graphs. In GDToolkit, SPQR-trees are extensively used to implement branch-and-
bound algorithms that compute drawing with the minimum number of bends in the variable
embedding setting [BDD00, BDD02].

Class dire graph defines specialized methods performing on directed graphs. A special
subclass of dire graph is the flow dire graph class, which represents flow networks [AMO93]
with capacities, costs, and flow values for the arcs. Every node of a flow network may also
have a certain balance value that can be either negative or positive, depending on the fact
that the node demands or supplies flow (by default, the balance value of a node is zero,
which means that its total entering flow equals its total leaving flow). The class provides
methods to compute feasible flows in a given network while optimizing some function, like
for example the total cost. Several drawing algorithms in the library extensively use a
flow dire graph object to compute a feasible flow with prescribed value and minimum cost.
The flow is computed in a network that is typically constructed from the topology of the
graph to be drawn.

18.3.2 Shape Level

At the shape level, GDToolkit offers three classes: orth plan undi graph, which models or-
thogonal representations; upwa plan undi graph, which models upward and quasi-upward
representations, and layered undi graph, which models layered graphs. In the following we
give some details about orthogonal, upward, and quasi-upward representations in GDToolkit,
by also recalling some basic concepts related to these drawing conventions.

Orthogonal representations in GDToolkit are modeled according to the simple-podevsnef
drawing convention[BDD00], a simplified and pretty robust version of the podevsnef conven-
tion (also called Kandinsky) defined in [FK96]. Vertices are represented as small rectangles,
all having the same size, and any vertex can have any number of incident edges.

The library offers different algorithmic choices to compute orthogonal representations,
with different compromises between efficiency and effectiveness. Figure 18.4 shows two

18.3. GRAPH-CLASSES AND THEIR HIERARCHY 577

0

1

2

3 45

6

7

8

9

10

11 12

13

14

15

16 17

18 19

12

21

24

10

4

0

16

2

1

28

5

8 157

11

26 20

13

17

19

22

27

23

29

6

14

3

9

18

25

0

1

2

3

4

5

6

7

8

9

10

1112

13

14

15

1617

1819

6

12

21

24

10

4

0

16

2

1

28

5

8

9

25

11

26

20

13

17

19

22

27

23

2914

3

15

18

7

(a) (b)

Figure 18.4 Two orthogonal representations of the same planar graph computed by
GDToolkit. (a) An orthogonal representation with the minimum number of bends for a
given planar embedding; (b) An orthogonal representation with the minimum number of
bends over all possible planar embeddings of the graph. Node and edge identifiers are shown
in the drawing.

0

1

23

4

5

6

7

8

910

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38 39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75 76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

7

62

144

45

9

76

167

32

46

6

111

27

12

149

107

175

118

22

179 55

24

109

25

30

91

75

129

43

154

136

77

113

35

108

127

128

94

74

100

122

172

90

84

63

56

145

59

174

65

168

155

67

158

68

71

170

150

78

157

126

162

79

92

146

86

96 137

99

151

104

156

102

141

103

165

105

110

166

178

159

173

161

177

044125

23

39

3

8

64

160

119

116

831485

49

21
13

15

31 47

81

53

20 139

14861

93

52

164

89

26

28

138

95

112

69

40 1

153

123

169

114

70

124

13334

140

176

135

132

98

36

4 106

5

41

57 17

37

58

54

60

82130

72

131

180

142

29

171

143

42

80

121

163

38

87

11

66

19

88

147

117

152

51

101

2

16

10

50

18

120

73

115

48

33

97134

Figure 18.5 An orthogonal representation of a graph with 100 vertices.

examples of orthogonal representations of a planar graph G, one having the minimum num-
ber of bends within the given planar embedding of G, and the other having the minimum
number of bends over all planar embeddings of G. The representation in (a) has been com-
puted with an O(n2 log n)-time algorithm based on a flow technique that extends the one
described in [Tam87]. The representation in (b) has been computed with an exponential-
time algorithm based on a branch-and-bound technique, which enumerates and explores the
embeddings of the graph using SPQR-trees. Both the polynomial-time algorithm and the
exponential-time algorithm are described in [BDD00].Figure 18.5 shows an orthogonal rep-
resentation of a graph with 100 vertices. The computation of a minimum-bend orthogonal
drawing for an embedded planar graph with 100 vertices and 200 edges takes about 0.2 sec-
onds under Linux on a machine with i5-540M Intel processor and 4 GB RAM. Computing a
bend-minimum orthogonal drawing over all planar embeddings for a graph with 30 vertices
and 50 edges takes about 10 seconds.

578 CHAPTER 18. GDTOOLKIT

0

1

2

3

4

5

6

7

8

9

10

12

13

14

1516

17

18

19

20

21

2223

24

25

26

27

28

29

11

9

42

113331

41

4 19

7 22

0

1

2

8

39

3

6

23

14

27

12

43

36
24

35

32

20

25

13

30

16
17

21

34

38

28 26

37

40

15

18
10

5

29

(a)

0

1

2

3

4

5

6

7

8

9

10

12

13

14 15

16

17

18

19

20

2122

23

24

25 26

27

28

29

11

9

42

11

33 31

41

419

7

22

0

1 2

8

39

3

5

29

6

23

14

27

12

43

36
24

35
32

2025

13
30

16
17

21

34

38

28

26

37

40

15

18
10

(b)

Figure 18.6 Two quasi-upward planar representations of the same digraph, computed by
GDToolkit. (a) A representation with two bends on edge 5 and two bends on edge 29; (b)
A representation with no bend, i.e., it is an upward planar representation.

Concerning upward representations, GDToolkit adopts the quasi-upward drawing conven-
tion defined by Bertolazzi et al. [BDD02]. We recall that an upward drawing of a directed
graph is a drawing such that each vertex is represented as a distinct point of the plane and
each edge is drawn as a simple curve monotonically increasing in the upward direction (i.e.,
from bottom to top), according to its orientation. An upward planar drawing is a drawing
that is planar and upward a the same time. An upward planar drawing can exist only if the
digraph is acyclic and admits a bimodal embedding. An upward planar representation is a
partial description of an upward planar drawing, which defines the two linear lists of out-
going and incoming edges for each vertex, without fixing the final positions of the vertices.
Unfortunately, acyclicity and bimodality are not sufficient conditions for the existence of
an upward planar drawing, and in practice most digraphs do not admit such a layout. A
quasi-upward drawing is a generalization of an upward drawing, which allows bends along
the edges. A bend is a point in which the edge inverts its vertical direction, switching
from upward to downward or vice-versa (if the edge is drawn as a smoothed curve, a bend
along the edge is a point with horizontal tangent for the edge). The only requirement of a
quasi-upward drawing is that for each directed edge (u, v), the edge enters v from below and
leaves u from above. This implies that each edge has an even number of bends (possibly

18.3. GRAPH-CLASSES AND THEIR HIERARCHY 579

zero bends). Every digraph admits a quasi-upward drawing (even if it is acyclic) and a
planar digraph admits a quasi-upward planar drawing if and only if it admits a bimodal
embedding. Note that, an upward drawing can be regarded as a quasi-upward drawing with
no bends along the edges. A quasi-upward planar representation is a partial description of a
quasi-upward planar drawing; it defines the two linear lists of incoming and outgoing edges
for each vertex and the sequence of bends along the edges.

As for orthogonal representations, GDToolkit provides different methods to compute a
quasi-upward planar representation of a digraph. Figure 18.6 shows two examples of quasi-
upward planar representations of the same digraph; the first representation is computed by
using a flow-based O(n2 log n)-time algorithm that minimizes the number of bends within
a given planar bimodal embedding; the second one is computed with a branch-and-bound
exponential-time algorithm that minimizes the number of bends over all planar bimodal
embeddings of the digraph. The algorithms for computing quasi-upward representations are
those described in [BDD02]. In practice, the computation of a quasi-planar representation
is very fast and takes less time then computing orthogonal drawings. For example, a
quasi-planar representation of a bimodal planar digraph with 200 vertices and 240 edges is
computed in about 0.05 seconds under Linux on a computer with i5-540M Intel processor
and 4 GB RAM.

/* creates a graph ug, loading it from file "my-graph" */

undi_graph ug;

ug.read("my_graph");

/* computes a planar embedding for ug, with possible crossing nodes */

plan_undi_graph pug (ug);

/* computes an orthogonal shape for the planar embedded graph,

* specifying the external face and the desired algorithm */

orth_plan_undi_graph opug (pug,pug.last_face(),PLAN_ORTH_OPTIMAL);

Figure 18.7 A fragment of code that creates an orthogonal shape of a graph.

GDToolkit also offers the possibility of orienting an undirected embedded planar graph
in such a way that the number of its sources and sinks is minimized and it has an upward
planar representation. As described in [DP03], this helps in the implementation of drawing
algorithms for visibility representations in case the graph is not biconnected. Observe that,
for a biconnected graph an upward orientation with the minimum number of sources and
sinks always coincides with an st-orientation of the graph.

Objects of classes orth plan undi graph and upwa plan undi graph are usually constructed
from plan undi graph objects, by specifying the wanted layout algorithm. It is also possible
to specify an external face if the selected algorithm preserves the planar embedding. To give
an example, consider the simple code in Figure 18.7. It constructs an orth plan undi graph
object opug by the plan undi graph object pug. When opug’s constructor is invoked, a face
of pug is chosen to be the external face; if such a face is not specified, it is chosen as the first
in the list of faces of pug. The algorithm PLAN ORTH OPTIMAL selected to construct opug

corresponds to the algorithm that computes an orthogonal representation of the graph in
the simple-podevsnef model, with the minimum number of bends within the given planar
embedding.

580 CHAPTER 18. GDTOOLKIT

18.3.3 Metrics Level

At the bottom level of the hierarchy GDToolkit provides the draw undi graph class, which
is very easy to use. Indeed, an object of this class is an undi graph object with additional
basic geometric information, like vertex-coordinates and bend-coordinates; draw undi graph
objects are also equipped with some attributes to define colors and labels for vertices and
edges.

The basic philosophy of the draw undi graph class is to provide one or more constructors
from each other graph-class of the library. Often, GDToolkit provides different algorithms
to compute a drawing in a specific convention; each algorithm has a different trade-off
between drawing aesthetics and time performance. For instance, an orthogonal drawing
can be computed from an orth plan undi graph object by selecting an algorithm in a wide
set of compaction algorithms, obtained by combining different alternatives like:

• Decomposing the faces of the orthogonal representation into rectangles [Tam87]
or into regular faces [BBD+00].

• Computing the coordinates of vertices and bends with a linear-time algorithm
based on topological numbering or with an O(n2 log n)-time algorithm based on
flow-techniques [DETT99].

• Applying or not a one-dimensional compaction post-processing to further reduce
the area and the total edge length of the drawing, if possible.

The code in Figure 18.8 computes two different orthogonal drawings with the same shape.
The first drawing, dug1, is computed by applying the fastest compaction algorithm in
the library, while the second one, dug2, is constructed by using the slowest compaction
algorithm. The resulting drawings, dug1 and dug2, are depicted in Figure 18.9; observe
that dug2 is much more compact in terms of area and total edge length.

/* creates a graph ug, loading it from file "my-graph" */

undi_graph ug;

ug.read("my_graph");

/* computes a planar embedding for ug, with possible crossing nodes */

plan_undi_graph pug (ug);

/* computes an orthogonal shape for the embedded graph */

orth_plan_undi_graph opug (pug);

/* computes two drawings of the orthogonal shape,

* using different compaction algorithms */

draw_undi_graph dug1 (opug, FAST_COMPACTION);

draw_undi_graph dug2 (opug, SLOW_REGULAR_COMPACTION_2_REFINED);

Figure 18.8 A fragment of code that computes two different orthogonal drawings with
the same shape.

As another example, visibility and polyline drawings can be directly computed from an
object pug of class plan undi graph, by choosing between a linear-time compaction algorithm
or a polynomial-time compaction algorithm based on flow techniques [Did00]. Indeed, for
these kind of drawing conventions the concept of shape is not defined. Figure 18.10 shows
two visibility drawings and two polyline drawings of the same embedded planar graph. The

18.3. GRAPH-CLASSES AND THEIR HIERARCHY 581

(a) (b)

Figure 18.9 (a) Drawing dug1 and (b) drawing dug2, computed with the code of Fig-
ure 18.8. The two drawings have the same shape but different geometry. The drawing in
(b) is much more compact, both in terms of area and in terms of total edge length.

drawings in Figures 18.10 (a)-(b) are obtained by executing a linear-time drawing algorithm,
while the drawings in Figures 18.10 (c)-(d) are obtained by applying an O(n2 log n)-time
compaction algorithm that reduces the total edge length.

(a) (b) (c) (d)

Figure 18.10 Two visibility drawings and two polyline drawings of the same embedded
planar graph. The total edge length of the drawings (c) and (d) is smaller than the one of
the drawing (a) and (b).

It is also interesting to observe that, since a quasi-upward drawing can be computed by
using a visibility representation as intermediate step, the same compaction algorithms ap-
plied above can be used for computing a quasi-upward drawing of a quasi-upward represen-

582 CHAPTER 18. GDTOOLKIT

tation. For example, Figure 18.11 shows two different drawings of the same quasi-upward
planar representation, computed with different compaction algorithms. The drawing in
Figure 18.11 (b) has smaller total edge length. GDToolkit also implements a recent algo-
rithm [Did05, Did06] for compacting upward planar representations, which is based on the
concept of switch-regular faces, introduced in [DL98]. According to this strategy, the aug-
mentation of the upward planar representation to an including st-digraph is not performed
by using the face decomposition described in [BDLM94], but it is done by first decompos-
ing the faces into switch-regular ones. This avoids the insertion of useless extra edges and
typically leads to drawings that have better aspect ratio (see Figure 18.12).

(a) (b)

Figure 18.11 Two different quasi-upward drawings of the same quasi-upward represen-
tation. The total edge length of the drawing in (b) is smaller that the total edge length of
the drawing in (a).

0

1

2

3

4

5

6

7

8

9

10

11 12

13

14

15

16

17 1819 20

21

22

23

24

25

26

27

28 29

0

1

2

3

4

5

6

7

8

9

10

11 12

13

14

15

16 17 18

19 20

21

22

23

24

25

26

27

28

29

(a) (b)

Figure 18.12 Two upward drawings of the same upward representation. (a) The drawing
has been computed using the standard augmentation technique described in [BDLM94]. (b)
The drawing has been computed with the new algorithm described in [Did05].

18.4. CONSTRUCTORS 583

18.4 Constructors

As observed in the previous sections, a drawing algorithm in GDToolkit typically reflects in
a path of constructors. For this reason, constructors play a crucial role in the library and
they are written following a common pattern, which is depicted in Figure 18.13.

Suppose that a graph-class B inherits a graph-class A. According to the pattern of
Figure 18.13, a constructor of B first invokes a constructor or a copy operator of A to
transfer the inherited information; then, the constructor of B invokes a private method,
local new, that allocates memory for the local structures that are needed to store additional
information, and finally it calls another private method, loca init, that computes and
stores the data in the new local structures.

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

use a copy operator of the parent class

allocate memory for the local structures

initialize data for the local structures

Figure 18.13 A schematic illustration of the design pattern of GDToolkit constructors.

As a concrete example, imagine that a plan undi graph object pug is created from an
undi graph object ug. Object pug must have the same nodes and edges as ug and, ad-
ditionally, it defines a set of faces and possible extra nodes that replace crossings. The
construction of the planar embedding of pug is done by applying a planarization algorithm
on the topology of ug, possibly subject to some planarization constraints (see Section 18.5).
Figure 18.14 shows the code of a constructor of class plan undi graph. Parameter po spec-
ifies if the new graph object must have the same embedding as ug or not. Parameter
err mess enables/disables an error-handler in the case some planarization constraints can
not be satisfied. Method local new allocates memory for the list of faces, while method
local init executes the planarization algorithm.

plan_undi_graph::

plan_undi_graph (const undi_graph& ug, planarize_options po, bool err_mess)

{

/* copies the basic structure of the graph (nodes and edges) */

undi_graph::operator=(ug);

/* creates the additional data structures required by

* a plan_undi_graph object */

local_new();

/* executes a planarization algorithm to computes faces

* and related objects */

local_init(po,err_mess);

}

Figure 18.14 A constructor of class plan undi graph. The code reflects the pattern illus-
trated in Figure 18.13.

584 CHAPTER 18. GDTOOLKIT

As mentioned in Section 18.2, another key aspect of GDToolkit is the possibility of
constructing a new graph-object by means of a promoting mechanism. Suppose for example
that a is an undi graph object and suppose we want to construct a plan undi graph object b
with the same set of vertices and edges as a. As explained above, b enriches the information
stored in a with a set of faces, which defines a planar embedding for a. Suppose also that a
is no longer needed in the program after the construction of b; indeed, b contains a super-set
of information of a. In this situation it could be useful to get b as the result of a promoting
procedure applied to a that avoids duplication of data, so saving computational time and
memory space. The graph-classes of GDToolkit support such a promoting mechanism by
means of a public method, called steal from. Referring to the example above, method
steal from invoked on b “steals” the data-structures of a and then constructs a set of new
data-structures to store the additional information of b (in the specific example a set of
faces). To make this idea efficient, the instance variables in the graph-classes of GDToolkit
are just references (pointers) to the data-structures that contain the data. This implies
that b can steal the data of a by simply copying in constant time the internal references
of a. After this operation, both a and b link the same data-structures, and therefore update
collisions may happen. To avoid this drawback, method steal from automatically cleans
the references of a, which becomes as an “empty” object. Figure 18.15 shows a schematic
description of the promoting mechanism. Figure 18.16 gives an example of use of method
steal from.

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

b

aa

b

Figure 18.15 A schematic description of the promoting mechanism. Object b is the result
of the promoting, and object a is made useless after the promoting process.

/* creats an undi_graph object (*ug), loading it from file "my-graph" */

undi_graph *ug = new undi_graph();

(*ug).read ("my-graph");

/* computes an empty planar embedded graph */

plan_undi_graph pug();

/* initializes pug with the nodes and edges of (*ug);

* object (*ug) will be useless from now on */

pug.steal_from(*ug);

/* (*ug) is deallocated from the main memory */

delete(ug);

Figure 18.16 A plan undi graph object is constructed promoting an undi graph object.

18.5. MANAGEMENT OF CONSTRAINTS 585

18.5 Management of Constraints

GDToolkit is equipped with a flexible architecture for managing constraints. Different types
of constraint can be concurrently applied on the graph, which are taken into account by
the involved layout algorithms. A constraint type is a reference to an object as well as
types node and edge, and each constraint still has a unique identifier. The undi graph class
provides a set of methods for adding, removing, and copying constraints.

Constraints in GDToolkit have a special “intelligent” management system, which is ex-
plained in the following points.

• Each constraint is described by a specific set of parameters that depends on the
type of the constraint itself. For example, a constraint that makes an edge e not
crossable is described by the only parameter e; a constraint that forces a vertex
v to have height h and width w is described by the triple (v, h, w). In addition,
each constraint has an internal read-only parameter that specifies the type of
constraint. This type can be accessed by means of a public method.

• A graph G′ that is obtained as a copy or by inheritance of a graph G, also
inherits all constraints of G. Furthermore, constraints react according to their
type to all the relevant events occurring on their node and edge parameters.
More precisely, each type of constraint is represented by a specific class that
encapsulates its behavior with respect to changes of the nodes and edges involved
in the constraint. An abstract class provides the set of virtual reaction methods
common to all the derived constraint classes, and each derived constraint class
provides its own implementation for each reaction method.

• The main events with a potential impact on a constraint applied on a given
node/edge are the deletion, the split, and the merge of that node/edge. For
each of these events, each constraint class defines a reacting method. For ex-
ample, if an edge e is split into two edges e1 and e2, a reaction method called
update after edge split() is automatically invoked on all the constraints ap-
plied on e, so that each constraint executes its specific implementation of this
method.

• Theoretically, any number of constraints can be set on a graph at any time.
However, each algorithm decides its own policy about each kind of constraint.
This means that the programmer can decide to implement an algorithm that
takes into account or not a specific type of constraint. Also, some constraints
could be not compatible to each other; in this case, an algorithm that takes them
into account, typically causes an error.

GDToolkit currently offers several types of predefined constraints involving both topol-
ogy, shape, and metrics. The use of constraints in the topology-shape-metrics framework
have been addressed in several papers, including [BDLN05, CGM+10, DDLP10, EFK00,
GKM08, Tam98]. GDToolkit implements some of the constraints described in the literature
or their variants. However, any programmer can define a new constraint by extending the
base abstract class and by providing an implementation for each reaction method. In the
following the main predefined constraints of GDToolkit are described.

18.5.1 Topology Constraints

Concerning the topology of a graph, GDToolkit provides three different types of constraints;
all of them are taken into account by the planarization algorithm.

586 CHAPTER 18. GDTOOLKIT

The first type of constraint imposes that an edge e is not allowed to cross any other edge.
If edge e is split into two edges e1 and e2, the constraint is propagated on both e1 and e2.
Symmetrically, if an edge e is obtained by merging two edges e1, e2, and at least one of
them is not crossable, then e will become not crossable too. If the planarization algorithm
encounters an edge e that is not crossable, it omits to insert its dual edge in the dual graph
of the planar embedded graph computed so far. This implies that a shortest path in the
dual graph never intersects e.

The second type of constraint imposes that a specified set of vertices {v1, v2, . . . vk} be-
longs to the same face. In order to maintain this property, the planarization algorithm
temporarily adds to the graph a star gadget, consisting of a dummy vertex u and dummy
edges (u, v1), (u, v2), . . . , (u, vk), where the dummy edges of the star are made not crossable,
applying on them the previous type of constraint. The star gadget is removed at the end of
the planarization process. Figure 18.17 shows an example of application of this constraint.

v2

v
3

v
1

v2

v
3

v
1

v2

v
3

v
1

f

(a) (b) (c)

Figure 18.17 Illustration of the star gadget used to force a set of vertices to stay in the
same face. In this example, the vertices are v1, v2, v3. (a) A star gadget is added; it consists
of the square black vertex and of the bold edges. (b) A planar embedding of the enhanced
graph is computed; (c) The final planar embedding for the input graph. At the end of the
planarization process, v1, v2, v3 belong to the same face f .

The third type of topological constraint is a variant of the previous one. It imposes that
a certain set of vertices {v1, v2, . . . , vk} belongs to the same face f and that these vertices
circularly occur on the boundary of f in the specified order. To satisfy this constraint,
the planarization algorithm uses the star gadget shown above, with the additional property
that the circular sequence of edges incident to the dummy vertex of the star gadget is fixed.

Figure 18.18 shows two orthogonal drawings: The drawing in (a) has been obtained
without any topological constraint. The drawing in (b) has been computed imposing that
vertices 7, 12, 1, 0 belong to the same face (the face is highlighted). In order to satisfy this
constraint, the planarization algorithm introduced some edge-crossings.

18.5.2 Shape Constraints

At the shape level, GDToolkit provides several predefined constraints that are taken into
account by the flow-based algorithms that compute orthogonal and quasi-upward represen-
tations. These constraints are listed and discussed below.

• Number of bends per edge. This constraint can be applied on an edge e, in order
to establish a certain policy in bending e. Two different policies can be applied:

18.5. MANAGEMENT OF CONSTRAINTS 587

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

0

1

2

34

5

6

7

89 10

11

12 13

14

(a) (b)

Figure 18.18 Two orthogonal drawings of the same graph. (a) The drawing has been
computed with no constraint. (b) The drawing has been computed forcing vertices 7, 12, 1, 0
to stay in the same face.

– Edge e must have zero bends, i.e., it must be a straight-line edge.

– Edge e can have any number of bends. This means that the algorithm will
assign a zero cost to each bend of e, and therefore e will turn any time this
avoids to bend other edges.

Each of the two policies is translated into a suitable constraint in the flow network
associated with the orthogonal or quasi-upward representation. We recall that in
such a flow network (see also [BDD02, DETT99, Tam87]) there is a node vf for
each face f of the graph and there is a pair of directed arcs efg = (vf , vg), egf =
(vg, vf) for each edge e shared by two (possibly coincident) faces f and g. The
flow along the arcs efg, egf determines the right bends and the left bends along
e in the final representation. In order to guarantee that e has no bend in the
representation, it is sufficient to set an infinite cost (or zero upper capacity) on
efg, egf . Conversely, in order to assign the highest turn priority to e, one can
assign cost zero and infinite upper capacity to both efg and egf .

• Turn direction. This constraint forces an edge e = (u, v) to turn only in a specified
direction. This means that e can be forced to have only right bends or only left
bends, while moving on it either from u or from v. To implement this constraint,
we just remove in the flow network one of the two arcs efg, egf , where f and g
are the two (possibly coincident) faces shared by e.

• Angle type. This last constraint allows the programmer to decide the value that a
specified angle must have in an orthogonal representation. Possible angle values
in degrees are {0, 90, 180, 270, 360}. The constraint is specified by a triple (e, v, a),
where e is an edge incident to v, and a is the value of the angle formed at v between
edge e and its successive edge in clockwise order around v. This type of constraint
is still translated into a suitable constraint in the flow network associated with
the orthogonal representation. More precisely, it is sufficient to fix the value of
the flow along the arc of the network that connects v to the face in which the

588 CHAPTER 18. GDTOOLKIT

angle lies; indeed, this flow value defines the value of the angle in the orthogonal
representation.

Figure 18.19 shows an example of use of shape constraints.

0

1

2

3

4

5

6

7

8 9

10

11

12

13

14

0

1

2

3

4

5

6

7

8 910

11

12

13

14

180

(a) (b)

Figure 18.19 (a) The orthogonal drawing has been computed from the graph of Fig-
ure 18.18, with the constraint that edges (5, 2), (4, 7) cannot bend (the edges are in bold),
while edge (5, 2) can have any number of bends (the edge is dashed). (b) An orthogonal
drawing computed by adding the further constraint that the angle at vertex 4 to the right
of edge (4, 7) is a 180 degrees angle.

18.5.3 Metrics Constraints

Concerning the metrics of a drawing, GDToolkit currently offers two predefined constraints
for orthogonal drawings.

The first constraint allows the programmer to customize the size of each vertex, indepen-
dently to each other. More in details, every vertex v can be drawn has a rectangle having a
predefined width w and a predefined height h in terms of units of an integer coordinate grid.
In absence of constraints, v will be drawn as a small rectangle that occupies only a grid
unit, that is, v will have width and height equal to zero. The constraint on the dimension
of the nodes is handled in the compaction step of the topology-shape-metrics approach, by
using the flow-based technique described in [DDPP99]. Figure 18.20 shows two orthogonal
drawings of the same embedded planar graph. In the drawing of Figure 18.20 (a) all ver-
tices have dimensions zero, while in the drawing of Figure 18.20 (b) some vertices have been
expanded imposing constraint dimensions. Observe that the shape of the two drawings is
the same.

The second constraint makes it possible to specify the points where an edge will be
incident to a side of a vertex. More precisely, assume that an edge e is incident to a vertex
v. An orthogonal representation fixes the side s of v on which e will be incident. If on v a

18.6. EXAMPLES OF APPLICATIONS 589

0

1 2 3

4

5

67

8 9

10

11

12

13 14

15

16

17

18

19

20

21

22

23 24

2526

27 28

29

30 31

0

1 2 3

4

5

67

8 9

10

11

12

13 14

15

16

17

18

19

20

21

22

23 24

25

26

27 28

29

30 31

(a) (b)

Figure 18.20 Two orthogonal drawings with the same shape: (a) The drawing has no
constraint; (b) The dimensions of some vertices have been preassigned.

dimension constraint has been fixed so that s has length l, the programmer can impose any
distance d ≤ l between the incidence point of e on s and a corner of s (see Figure 18.21).

l d

e

v

Figure 18.21 Illustration of the constraint that makes it possible to fix the incidence
point of an edge on the side of a vertex in an orthogonal drawing.

18.6 Examples of Applications

The GDToolkit library has been effectively used to develop several applications in different
real-world domains, which is a proof of its flexibility. In the following we briefly discuss
some of these applications.

18.6.1 Internet Analysis

At a high level of abstraction, the Internet can be seen as a network of so called Autonomous
Systems. An Autonomous System (AS in the following) is a group of sub-networks under
the same administrative authority, and is identified by a unique integer number. In this
sense, an AS can be seen as a portion of the Internet, and the Internet can be seen as the

590 CHAPTER 18. GDTOOLKIT

totality of the ASes. To maintain the reachability of any portion of the Internet, each AS
exchanges routing information with a subset of other ASes, mainly selected on the basis of
economic and social policies. To exchange information, the ASes adopt a routing protocol
called BGP (Border Gateway Protocol). This protocol is based on a distributed architecture
where border routers that belong to distinct ASes exchange information about the routes
they know. Two border routers that directly communicate are said to perform a peering
session, and the ASes they belong to are said to be adjacent. The ASes graph is the graph
having a vertex for each AS and one edge between each pair of adjacent ASes. The ASes
graph consists of more than 10, 000 vertices and then it is not reasonable to visualize it
completely on a computer screen.

Internet Service Providers are often interested in visualizing and analyzing the structure
of the ASes graph and the related connection policies, in order to extract valuable infor-
mation on the position of their partners and competitors, capture recurrent patterns in
the Internet traffic, and detect routing instabilities. Several tools have been designed for
this purpose (see, e.g., [DK01] for references). The system Hermes [CDD+02] is based on
the GDToolkit facilities, and allows users to incrementally explore the Internet topology
by means of automatically computed maps. The basic graph drawing convention used to
represent the maps is the Kandinsky model for orthogonal drawings. However, since the
handled graphs often have many vertices of degree one connected to the same vertex, the
Kandinsky model is enriched with new features for effectively representing such vertices.

Figure 18.22 A map showing the ASes adjacent to AS10474, NETACTIVE, Tiscali South
Africa. (Figure taken from [DL07].)

The graphical user interface of Hermes offers several exploration facilities. The user can
search for a specific AS and can start the exploration of the Internet from that AS. At
each successive step, the user can display information about the routing policies of the
ASes contained in the current map, or she can expand the map by exploring one of these
ASes. For example, Figure 18.22 shows a snapshot of the system where the AS10474
(NETACTIVE, Tiscali South Africa) is searched and selected by the user for exploration;
a first map that consists of the ASes adjacent to AS10474 is then automatically computed

18.6. EXAMPLES OF APPLICATIONS 591

(a) (b)

Figure 18.23 (a) A new map obtained from the previous map by exploring AS11845. (b)
A more complex map obtained by performing several exploration steps. (Figure taken from
[DL07].)

and displayed by the system. Figure 18.23 shows how the map is expanded when the user
decides to explore other ASes.

18.6.2 Web Searching

The output of a classical Web search engine consists of an ordered list of links (URLs) that
are selected and ranked according to the user’s query, the documents content, and (in some
cases, like Google) the popularity of the links in the World Wide Web. The returned list
can however consist of several hundreds of URLs and users may omit to check some URLs
that might be relevant for them just because these links do not appear in the first positions
of the list.

A Web meta-search clustering engine is a system conceived to support the user in retriev-
ing data from the Web by overcoming some of the limitations of traditional search engines.
A Web meta-search clustering engine provides a visual interface to the user who submits
a query; it forwards the query to (one or more) traditional search engines, and returns a
set of clusters, also called categories, which are typically organized into a hierarchy. Each
category contains URLs of documents that are semantically related to each other and is
labeled with a string that describes its content. As a consequence, the user of a meta-search
clustering engine has a global view of the different semantic areas involved by her query and
can more easily retrieve the Web data relative to those topics in which she is interested.

Although an effective representation of the categories and of their semantic relationships is
essential for efficiently retrieving the wanted information, most Web meta-search clustering
engines (see, e.g., Vivı́simo, iBoogie1, SnakeT2 [FG04, FG05]) have a GUI in which the
hierarchy of clusters is displayed as a tree. However, this type of representation may not

1http://www.iboogie.com/
2http://snaket.di.unipi.it/

592 CHAPTER 18. GDTOOLKIT

Louis Biography Lance

Armstrong

.... Louis Biography Lance

Armstrong

....

(a) (b)

Figure 18.24 (a) A portion of a tree of categories for the query “Armstrong”. (b) The
tree is equipped with an edge that highlights cluster relationships.

be fully satisfactory for a complex analysis of the returned Web data. Suppose for example
that the user’s query is “Armstrong” and that the clusters hierarchy returned by a Web
meta-search clustering engine is the tree depicted in Figure 18.24 (a). Is the category
“Biography” related to “Louis” or to “Lance” or to both (or to no one of them but to the
astronaut Neil Armstrong?). If instead of a tree, the systems returned a graph as the one in
Figure 18.24 (b), the user would be facilitated in deciding whether the category “Biography”
is of her interest.

WhatsOnWeb [DDGL05, DDGL06, DDGL07] is a meta-search clustering engine that makes
it possible to retrieve data from the Web by using drawings of graphs. The nodes represent
categories of semantically coherent URLs and the edges describe relationships between pairs
of categories. The graphical environment of WhatsOnWeb consists of two frames (see, e.g.,
Figure 18.25). In the left hand side frame the hierarchy of categories is represented as a
classical directories tree. In the right hand side frame the user interacts with the drawing
of a clustered graph[FCE95], where each cluster coincides with a semantic category.

The drawing is computed using the orthogonal drawing algorithms of GDToolkit. The
user can expand/contract clusters in the graph and the drawing changes accordingly. Using
the constraint dimensions described in Section 18.5.3, each cluster is drawn as a box having
the minimum size required to host just its label (if the cluster is contracted) or a drawing of
its sub-clusters (if the cluster is expanded). The map in Figure 18.25 (a) shows a snapshot of
the interface, where the results for the query “Armstrong” are presented; in the figure, the
category “Louis Armstrong” has been expanded by the user. In order to preserve the user
mental map during the browsing, WhatsOnWeb preserves the orthogonal shape of the drawing
during after every expansion or contraction operation. For example, Figure 18.25 (b) shows
the map obtained by expanding the categories “Jazz”, “School”, and “Louis Armstrong
Stamp” in the first map.

18.6.3 Database Analysis

The third example of real-world application based on GDToolkit is focused on the analysis
of a relational database. The logical schema of a relational database (also called relational
schema) describes the database as a set of tables, where each table consists of a set of
attributes. Links between tables might be present. A link between two tables A and B
represents either an integrity constraint or a join between an attribute of A and an attribute
of B; these two attributes are called the attributes of the link.

18.6. EXAMPLES OF APPLICATIONS 593

(a)

(b)

Figure 18.25 Snapshots of the user interface of WhatsOnWeb. (a) A map for the query
“Armstrong”; in the map the user performed the expansion of the category “Louis Arm-
strong”. (b) A subsequent map obtained by expanding the categories “Jazz”, “School”, and
“Louis Armstrong Stamp”; this last category contains two URLs, described by reporting
their titles. (Figure taken from [DL07].)

594 CHAPTER 18. GDTOOLKIT

Figure 18.26 A database relational schema automatically drawn by DBDraw.

DBDraw [DDPP03, DDPP02] is a system that inspects a relational database and automat-
ically computes a drawing of its relational schema (see, e.g., Figure 18.26). The drawing is
represented within the orthogonal drawing convention subject to several constraints:

• Each table must be large enough to display inside it all its attributes.

• Each link connecting two tables A and B must be incident to A and on B in
correspondence of the attributes of the link.

• Links cannot be incident to a table from north or from south.

The three constraints above are enforced by using the topology constraints and the metrics
constraints described in Section 18.5.1 and Section 18.5.3.

Acknowledgements

Many people contributed to the development of GDToolkit, other than the authors of this
chapter. We wish to warmly tank some of them whose contribution has been crucial for
the success of the project. In alphabetic order, thanks to: Pier Francesco Cortese, Antonio
Leonforte, Alessandro Marcandalli, Francesco Matera, Maurizio Patrignani, and Maurizio
Pizzonia.

REFERENCES 595

References

[AMO93] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory,
Algorithms, and Applications. Prentice Hall, Englewood Cliffs, NJ, 1993.

[BBD+00] S.S. Bridgeman, G. Di Battista, W. Didimo, G. Liotta, R. Tamassia, and
L. Vismara. Turn-regularity and optimal area drawings of orthogonal repre-
sentations. Computational Geometry: Theory and Applications, 16:53–93,
2000.

[BBDL91] M. Beccaria, P. Bertolazzi, G. Di Battista, and G. Liotta. A tailorable and
extensible automatic layout facility. In Proc. IEEE Workshop on Visual
Languages (VL ’91), pages 68–73, 1991.

[BCPD04] J. M. Boyer, P. F. Cortese, M. Patrignani, and G. Di Battista. Stop minding
your P’s and Q’s: Implementing a fast and simple dfs-based planarity
testing and embedding algorithm. In Proc. 11th Symposium on Graph
Drawing, LNCS, volume 2912, pages 25–36, 2004.

[BDD00] P. Bertolazzi, G. Di Battista, and W. Didimo. Computing orthogonal
drawings with the minimum number of bends. IEEE Trans. on Computers,
49(8):826–840, 2000.

[BDD02] P. Bertolazzi, G. Di Battista, and W. Didimo. Quasi-upward planarity.
Algorithmica, 32(3):474–506, 2002.

[BDLM94] P. Bertolazzi, G. Di Battista, G. Liotta, and C. Mannino. Upward drawings
of triconnected digraphs. Algorithmica, 6:476–497, 1994.

[BDLN05] Carla Binucci, Walter Didimo, Giuseppe Liotta, and Maddalena Nonato.
Orthogonal drawings of graphs with vertex and edge labels. Comput.
Geom., 32(2):71–114, 2005.

[CDD+02] A. Carmignani, G. Di Battista, W. Didimo, F. Matera, and M. Pizzo-
nia. Visualization of the high level structure of the internet with Hermes.
Journal of Graph Algorithms and Applications, 6(3):281–311, 2002.

[CGM+10] Markus Chimani, Carsten Gutwenger, Petra Mutzel, Miro Spönemann,
and Hoi-Ming Wong. Crossing minimization and layouts of directed hyper-
graphs with port constraints. In Graph Drawing, volume 6502 of Lecture
Notes in Computer Science, pages 141–152, 2010.

[DDGL05] E. Di Giacomo, W. Didimo, L. Grilli, and G. Liotta. A topology-driven
approach to the design of web meta-search clustering engines. In Theory
and Practice of Computer Science (SOFSEM ’05), volume 3381 of Lecture
Notes in Computer Science, pages 106–116, 2005.

[DDGL06] E. Di Giacomo, W. Didimo, L. Grilli, and G. Liotta. Using graph drawing
to search the web. In 13th International Symposium on Graph Drawing,
GD 2005, volume 3843 of Lecture Notes in Computer Science, pages 480–
491, 2006.

[DDGL07] Emilio Di Giacomo, Walter Didimo, Luca Grilli, and Giuseppe Liotta.
Graph visualization techniques for web clustering engines. IEEE Trans.
Vis. Comput. Graph., 13(2):294–304, 2007.

[DDLP10] Emilio Di Giacomo, Walter Didimo, Giuseppe Liotta, and Pietro Palladino.
Visual analysis of one-to-many matched graphs. J. Graph Algorithms Appl.,
14(1):97–119, 2010.

596 CHAPTER 18. GDTOOLKIT

[DDPP99] G. Di Battista, W. Didimo, M. Patrignani, and M. Pizzonia. Orthogonal
and quasi-upward drawings with vertices of prescribed size. In Symposium
on Graph Drawing (GD’99), volume 1731 of LNCS, pages 297–310, 1999.

[DDPP02] G. Di Battista, W. Didimo, M. Patrignani, and M. Pizzonia. Drawing
database schemas. Software - Practice and Experience, (32):1065–1098,
2002.

[DDPP03] G. Di Battista, W. Didimo, M. Patrignani, and M. Pizzonia. DBDraw - au-
tomatic layout of relational database schemas. In M. Jünger and P. Mutzel,
editors, Graph Drawing Software, pages 237–256. Springer-Verlag, 2003.

[DETT99] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing.
Prentice Hall, Upper Saddle River, NJ, 1999.

[DGST90] G. Di Battista, A. Giammarco, G. Santucci, and R. Tamassia. The archi-
tecture of Diagram Server. In Proc. IEEE Workshop on Visual Languages
(VL ’90), pages 60–65, 1990.

[Did00] W. Didimo. Flow Techniques and Optimal Drawing of Graphs. PhD the-
sis, Dipartimento di Informatica e Sistemistica, Univeristà di Roma“La
Sapienza”, 2000.

[Did05] W. Didimo. Computing upward planar drawings using switch-regularity
heuristics. In Theory and Practice of Computer Science (SOFSEM ’05),
volume 3381 of LNCS, pages 117–126, 2005.

[Did06] Walter Didimo. Upward planar drawings and switch-regularity heuristics.
J. Graph Algorithms Appl., 10(2):259–285, 2006.

[DK01] M. Dodge and R. Kitchin. Atlas of Cyberspace. Addison Wesley, 2001.

[DL98] G. Di Battista and G. Liotta. Upward planarity checking: “faces are more
than polygons”. In Symposium on Graph Drawing (GD’98), volume 1547
of LNCS, pages 72–86, 1998.

[DL07] W. Didimo and G. Liotta. Mining Graph Data, chapter Graph Visualiza-
tion and Data Mining, pages 35–64. Wiley, 2007.

[DP03] W. Didimo and M. Pizzonia. Upward embeddings and orientations of
undirected planar graphs. Journal of Graph Algorithms and Applications,
7(2):221–241, 2003.

[DT96] G. Di Battista and R. Tamassia. On-line planarity testing. SIAM Journal
on Computing, 25:956–997, 1996.

[EFK00] Markus Eiglsperger, Ulrich Fößmeier, and Michael Kaufmann. Orthogonal
graph drawing with constraints. In SODA, pages 3–11, 2000.

[FCE95] Q. Feng, R. F. Choen, and P. Eades. How to draw a planar clustered graph.
In COCOON’95, volume 959 of LNCS, pages 21–31, 1995.

[FG04] P. Ferragina and A. Gulĺı. The anatomy of a hierarchical clustering en-
gine for web-page, news and book snippets. In Fourth IEEE International
Conference on Data Mining (ICDM’04), pages 395–398, 2004.

[FG05] P. Ferragina and A. Gulĺı. A personalized search engine based on web-
snippet hierarchical clustering. In 14th international conference on World
Wide Web, pages 801–8106, 2005.

[FK96] U. Fößmeier and M. Kaufmann. Drawing high degree graphs with low
bend numbers. In Symposium on Graph Drawing (GD’95), volume 1027 of
LNCS, pages 254–266, 1996.

REFERENCES 597

[GKM08] Carsten Gutwenger, Karsten Klein, and Petra Mutzel. Planarity testing
and optimal edge insertion with embedding constraints. J. Graph Algo-
rithms Appl., 12(1):73–95, 2008.

[MN95] K. Mehlhorn and S. Näher. LEDA: A platform for combinatorial and
geometric computing. Commun. ACM, 38(1):96–102, 1995.

[MN00] K. Mehlhorn and S. Näher. LEDA: A Platform for Combinatorial and
Geometric Computing. Cambridge University Press, Cambridge, UK, 2000.

[Tam87] R. Tamassia. On embedding a graph in the grid with the minimum number
of bends. SIAM J. Comput., 16(3):421–444, 1987.

[Tam98] Roberto Tamassia. Constraints in graph drawing algorithms. Constraints,
3(1):87–120, 1998.

19
PIGALE

Hubert de Fraysseix
CNRS UMR 8557. Paris

Patrice Ossona de
Mendez
CNRS UMR 8557. Paris

19.1 Introduction . 599
Why GPL? • Chapter Organization

19.2 Data Structures . 600
The Topological Quasi-Static Model • Graph Properties

19.3 Basic Graph Algorithms . 603
Depth-First Search • Planarity and Nonplanar Subgraph
Exhibition • Connectivity Tests • Augmentation of Planar
Graphs • Graph Symmetry and Clustering

19.4 Random Map Generators . 609
19.5 Graph Drawing Algorithms . 609

Planar Straight-Line Grid Drawings • Spring Embedders
• Visibility Drawing and Variants • Contact Drawings •

Spectral Drawings in IRn

19.6 Implementation . 613
User Interface • File Storage • Macro Recording •

Multi-Threaded Server

19.7 Interfacing with PIGALE . 615
References . 617

19.1 Introduction

This chapter gives an overview of the Public Implementa-
tion of a Graph Algorithm Library and Editor (Pigale).
Pigale integrates a graph algorithm library written in C++

and a graph editor based on the Qt c© and OpenGLTM li-
braries. This program runs under Linux, Mac OS XTM and
WindowsTM platforms. It is particularly intended for aca-
demic researchers working on topological graph theory.

Pigale is available under GPL1 license and may be downloaded on sourceforge.net at
http://pigale.sourceforge.net. Pigale may be used as a library, as a graph editor or
as a multi-threaded graph algorithm server.

The GNU General Public License is a free, copyleft license for software and other kinds
of works. the GNU General Public License is intended to guarantee your freedom to share

c©Copyright Trolltech AS, Norway.
TMOpenGL is a trademark of Silicon Graphics, Inc.; Mac OS X is a trademark of Apple Inc.; Windows is a
trademark of Microsoft.
1GNU General Public License.

599

600 CHAPTER 19. PIGALE

and change all versions of a program — to make sure it remains free software for all its
users (see http://www.gnu.org/licenses/gpl.html).

The library is built on an original data structure. This data structure optimizes operations
performed on static graphs.

19.1.1 Why GPL?

Free software has the following advantages, which we believe are essential for academic
software:

• It increases the exchanges between research centers and facilitates the integration
of algorithms originating from several contexts into a coherent framework, thus
inducing de facto new standards in the concerned field.

• It increases the visibility of the laboratories’s skills, thus offering a showcase
toward potential industrial partners and allows the development of industrial
software based on well-designed license-free libraries.

• It allows to reduce the economic gap between rich and poor countries and con-
tributes to the competitiveness of local laboratories and companies by reducing
the cost linked to the acquisition of foreign licenses.

• It allows the users to control the source code of sometimes strategic modules
of their projects and suppresses the dramatic dependence on a single software
provider, which ties the users to the perennity and the goodwill of a particular
actor.

19.1.2 Chapter Organization

The rest of this chapter is organized as follows. Section 19.2 discusses data structures for
representing graphs and their embeddings. In Section 19.3, we describe fundamental graph
algorithms provided by Pigale. The map generators available in Pigale are outlined in
Section 19.4. In Section 19.5, we present the drawing algorithms supported by Pigale. The
implementation of Pigale, including the graphical interface for creating graphs in Pigale

is illustrated in Section 19.6. Finally, in Section 19.7, we show an example of use of Pigale
as a software libary.

19.2 Data Structures

In this section, we present the graph model and data structures we have developed in
Pigale.

19.2.1 The Topological Quasi-Static Model

Pigale provides two main graph data structures, depending on whether one considers dense
graphs or sparse ones:

• For dense graphs, a matrix is used, which represents the adjacency relation among
vertices or the vertex-edge incidence relation;

• For sparse graphs, either a list of incidences (i.e., a list of all edges with vertex
incidences) or lists of adjacencies for the vertices are used.

19.2. DATA STRUCTURES 601

Although the matrix encoding allows constant-time adjacency testing, it does not allow to
list the edges incident to a vertex in constant time per incident edge. Also, this encoding
needs space quadratic in the number of vertices. As the Pigale software is mainly concerned
with topological graph algorithms, particularly traversal-based algorithms, it has been a
natural choice to consider list encodings of graphs. On the one hand, we shall allow to
input graphs encoded as a list of edge incidences in order to simplify the interface to other
software (see Figure 19.1). On the other hand, the internal representation of graphs is
tailored to fit the types of topological graph algorithms we mainly consider.

e1

e2

e3

e4

e5

e6

e7

e8

e9
e10

e11

e12

e13e14

v1 v2

v3

v4

v5 v6

v7 v8

L =
(
(5, 7), (5, 4), (4, 3), (1, 3),

(1, 2), (2, 3), (4, 8), (8, 7),

(8, 5), (8, 6), (6, 7), (6, 5),

(6, 4), (4, 7)
)

Figure 19.1 Encoding of a graph by a list of incidences

Internal graph representation is a major issue for the efficiency of graph algorithms.
Although most of the data structures used by graph algorithm libraries are oriented to
fully dynamic graphs, thus offering constant-time insertion and deletion operations, the
Pigale data structure is oriented to quasi-static graphs, that is, graphs on which only few
modifications are done. Moreover, these modifications mainly correspond to a sequence
of additions and (after some computations) of deletions of the added elements. In such a
context, it is of particular interest to index vertices by consecutive integer values from 1 to
n (where n is the order of the graph) and edges by consecutive integer values from 1 to m
(where m is the size of the graph).

Since Pigale is designed to ease the writing of topological graph algorithms, the data
structure is based on the mathematical notion of combinatorial map. A combinatorial map
is a triple (B, τ, σ), where B is a set of half-edges, each called a brin (also sometimes called
flag or dart), τ is a fixed point free involution of B whose orbits are the edges of the map,
and σ is a permutation of B whose orbits are the vertices of the map.

This combinatorial structure is particularly efficient for map traversals. However, edges
and vertices only have an implicit description in this model. This is the reason why Pigale’s
graph description slightly differs from the one of the combinatorial map. The structure
describing maps in Pigale is based on the functions shown in Table 19.1, where V =
{1, . . . , n} is the index set of the vertices, E = {1, . . . ,m} is the index set of the edges, and
B = {−m, . . . ,−1, 1, . . . ,m} is the index set of the brins.

602 CHAPTER 19. PIGALE

Note that for technical reasons, the vertex set, the edge set and the brin set are actually
{0, . . . , n}, {0, . . . ,m} and {−m, . . . ,m}. The operators are extended to 0 with reserved
values cir[0] = acir[0] = vin[0] = pbrin[0] = 0. (see Figure 19.2).

Operator Domain Description
−b B → B brin opposite to b (τ(b))
cir[b] B → B brin next to b in circular order (σ(b))
acir[b] B → B brin before b in circular order (σ−1(b))
|b| B → E edge containing b
vin[b] B → V vertex incident to b
e E → B first brin of edge e
pbrin[v] V → B first brin incident to vertex v

Table 19.1 Functions of the data structure for maps in Pigale.

v1 v2

v3

v4

v5 v6

v7 v8

1

−1

−2

2

−3

3

−4

4

−5 5

6

−7

7
−88

−9

9 10
−11

11

−1212
−13

13
−14

14

−6

−10

−13
−12
−11
−10
−9
−8
−7
−6
−5
−4
−3
−2
−1

1
2
3
4
5
6
7
8
9
10

12
11

13

brin # Cir Acir Vin

−12
−13−11

10
−9
−8
7

−3
5

−4
−5
2

−1
9

8
−14
6
3

−6
4

−10
11
12

−13
14

−2
−7

−12

−11

−10
−9

−8

−7

−6

−5
−4

−3

−2

−1
1

14 1

−14 13

−14

2

3

4

5

6

7

8
9

10

11

12

13

14

4
6
6
6
8
8
8
4
2
1
1
4
5
5

7
4
3
3
2
3
8
7
5
6
7
5
4
7

Figure 19.2 Encoding of a graph by a combinatorial map.

19.2.2 Graph Properties

Since in our model vertices, edges and brins are represented by integer values, most of the
properties attached to the elements of the graph will be scalar. In order to reduce the slow
down of calls to constructors and destructors of complex types, it has been decided to favor
scalar properties.

19.3. BASIC GRAPH ALGORITHMS 603

Since the graph structure is a very general abstract one, most algorithms and applications
need more or less specific properties to be added to vertices, edges or brins. It appears that
class derivation, which is suitable in contexts where a limited number of distinct sets of
properties are meaningful, does not work well in our case. This is the reason why we
have opted for a more flexible framework in which properties may be added or suppressed
dynamically. Then only a few subsets of properties have to be distinguished, the subsets
corresponding to coherent views of a graph as a mere graph (i.e., a list of edge to vertex
incidences), a topological graph (where circular orders around the vertices are defined) or
a geometric graph (where vertices have coordinates, labels, colors, . . .), leading to three
logical views in Pigale, namely: Graph, TopologicalGraph, and GeometricGraph, of the
set of graph properties stored in a GraphContainer data structure.

19.3 Basic Graph Algorithms

In this section, we describe the implementation of several basic graph algorithms in Pigale.

19.3.1 Depth-First Search

Depth-First Search (DFS) is central to the planarity algorithm implemented in Pigale.
It is responsible for a sensible percentage of the execution time. Thus, the optimization
of this particular algorithm has strong consequences on the efficiency of other important
algorithms.

One of the main characteristics of DFS is that the DFS-tree it builds is traversed several
times and that the tree/cotree partition it induces is intensively used in the planarity
testing algorithm. For these reasons, it appeared that an efficient optimization stands
in the renumbering of the vertices and the edges of the graph using the following scheme
(see Figure 19.3):

• the vertices are numbered 1, . . . , n in the order of first discovery by the DFS;

• the tree edges are numbered 1, . . . , n − 1 in the order of first traversal by the
DFS. Precisely, brin i is adjacent to the parent of vertex (i + 1) and brin −i is
adjacent to vertex (i+ 1);

• the cotree edges are numbered n, . . . ,m in order opposite to the order in which
their low incidences are met by the DFS. The positive brin is incident to the
lower vertex according to tree order.

From the above numbering, it follows that a traversal of the edges in DFS order may be
simulated using a simple for(e=1; e<n; e++) loop. Also, testing if an edge belongs to the
tree is performed by a simple (e<n) test.

19.3.2 Planarity and Nonplanar Subgraph Exhibition

The linear-time planarity testing algorithm implemented in Pigale is based on the charac-
terization by de Fraysseix and Rosenstiehl [FR85, FR82, FR83a, FR83b] and its improve-
ment [FOdMR06, FOdM12, Fra08]. This algorithm is currently the fastest-implemented
planarity testing algorithm [BCPD04].

A linear-time algorithm to find a Kuratowski subdivision in a nonplanar graph (see Fig-
ure 19.4) has been implemented in Pigale, based on a theoretical characterization of DFS
cotree-critical graphs [FOdM01a, FOdM02, FOdM03].

604 CHAPTER 19. PIGALE

7 6

5

4

2 8

1 3

1

−1

11

−11

4

−4

−14

14

−6 6

5

−3

3
−1010

−2

2 −13
−9

9

−1212
−7

7
−8

8

−5

13

Figure 19.3 DFS numbering of a combinatorial map.

20

03

07

10

04

13

15

12

05

16

18

08

02

09

14

17

19

11

06

01

13

0210

07

20

06

09

19

15

03

12

16

14

08

01

05

17

18

11

04

Figure 19.4 A Kuratowski subdivision in a nonplanar graph.

This algorithm relies on the concept of DFS cotree-critical graphs, which is a by-product
of our planarity testing algorithms. Roughly speaking, a DFS cotree-critical graph is a
simple graph of minimum degree 3 having a DFS tree, such that any nontree (i.e., cotree)
edge is critical, in the sense that its deletion would lead to a planar graph. A first study of
DFS cotree-critical graphs appeared in [FR83a], where it is proved that a DFS cotree-critical
graph is either isomorphic to K5 or includes a subdivision of K3,3 and no subdivision of K5.

The algorithm consists of two steps:

1. Extraction of a DFS cotree-critical subgraph by a case analysis algorithm; and

2. Extraction of a Kuratowski subdivision from the DFS cotree-critical subgraph.

19.3. BASIC GRAPH ALGORITHMS 605

Step 2 is performed by an algorithm whose simplicity contrasts with the complexity of
its theoretical justification (which relies on the full characterization of DFS cotree-critical
graphs proved in [FOdM03]. This algorithm roughly works as follows:

• It first computes the set of the critical edges of a graph, using the property that
a tree edge is critical if and only if it belongs to a fundamental cycle of length 4
of some cotree edge to which it is not adjacent.

• Then, three pairwise non-adjacent non-critical edges are found to complete a
Kuratowski subdivision isomorphic to K3,3.

17

18

2012

19

11

09

04

02

06

07

16

05

08

03

01

13

14

10

15

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

Figure 19.5 Finding a minimal subset of nonplanar edges. On the right is a Bezier
drawing of the planar graph obtained after deletion of the computed set of nonplanar edges.

This algorithm is the central routine of a heuristic for exhibiting an inclusion-minimal
set of edges whose deletion ensures the planarity of the graph (see Figure 19.5).

19.3.3 Connectivity Tests

Based on properties of regular orientations of planar graphs, Pigale offers a linear-time
algorithm to test whether a planar graph is 3-connected and a linear-time algorithm to
test whether a maximal planar graph is 4-connected [FOdM01b, FOdM04, FOdM01d]. The
study of graphs by means of special orientations is relatively recent. For instance, bipolar
orientations have become a basic tool in many graph drawing problems [OdM94, FOdMR95].

Constrained orientations (i.e., orientations with bounded indegrees) lead to new charac-
terizations of connectivity for planar undirected graphs. Although standard 3-connectivity
testing algorithms for planar graphs are heavily related to planarity testing algorithms (see
[HT73, Tar74] and PQ-tree algorithms), the algorithm in Pigale assumes that the input
graph is already embedded in the plane so the problem drastically reduces to the acyclic-
ity testing of a particular orientation. Concerning the 4-connectivity testing of a maximal
planar graph, the use of an indegree bounded orientation was already used in [CE91] to
enumerate triangles. In Pigale, the use of a specific orientation allows to further simplify
the algorithm. The 4-connectivity test itself also reduces to an acyclicity test. It should be
noted that no special data structure is used for these algorithms since in the planar case
the acyclicity of an orientation can be efficiently tested using a dual topological sort.

606 CHAPTER 19. PIGALE

19.3.4 Augmentation of Planar Graphs

11

18

07

20

02

04

05 06

09

03

08

10

16

19

17

13

01

12

14

15

05

07

20

10

15

13

18

16

14

1104

01

06

17

03

19

08

09

12

02

Figure 19.6 Augmentation of a 3-connected planar graph.

Constrained orientations have many applications [FOdM94a, FMOdMR95] (see also above).
These orientations are a basic tool in solving combinatorial problems that preserve topolog-
ical properties [FOdM01d]. Planar augmentations are a simple example of such problems.

Augmentation problems are concerned with the addition of dummy edges to a graph in
order to obtain some connectivity or maximality properties. For instance, the problem of
finding the minimum number of edges to augment a graph to a biconnected graph has been
solved in [ET76]. If the original graph is planar and if it is required to preserve the planarity,
the problem is NP-complete [Kan93]. Triangulating a biconnected graph while minimizing
the maximum degree has also been proved to be an NP-complete problem.
Pigale offers several optimal augmentation algorithms, including a linear-time algorithm

for augmenting a 3-connected planar graph to a maximal planar graph (see Figure 19.6)
that increases the degree of any vertex of the graph by no more than 6 (which is optimal)
[FOdM95, FOdM94b].

19.3.5 Graph Symmetry and Clustering

03

11

10

07

05

04

09

01

02

06

08

03

01

02

04

05

02

03

04

05

06

06

Figure 19.7 Finding a symmetry of a graph.

19.3. BASIC GRAPH ALGORITHMS 607

Based on spectral analysis [FK92], Pigale offers a heuristic to find symmetries in a
general simple graph (planar or not) [Fra99, FOdM06] (see Figure 19.7). These symmetries

Figure 19.8 3D view of the graph displaying the symmetry.

may actually be viewed in the 3D drawing built from the spectral analysis of the graph (see
Figure 19.8).

Using spectral analysis, Babai proved in 1978 that the abstract automorphism group of
any multigraph G having s distinct eigenvalues with respective multiplicities m1,m2, . . . ,ms

is a subgroup of ω(m1) ⊕ ω(m2) ⊕ . . . ⊕ ω(ms), where ω(m) denotes the real orthogonal
group of dimension m [Bab78]. As a consequence, if all the eigenvalues of G are simple, the
only automorphisms of G are involutions.

Some years before, Mani proved that every triconnected planar graph G can be realized
as the 1-skeleton of a convex polytope P in IR3 such that all automorphisms of G are
induced by isometries of P [Man71]. One non trivial consequence of this result is that
the automorphism group Aut(G) of a triconnected planar graph G has a chain of normal
subgroups Aut(G) = G0 . G1 Gm = 1, where each quotient Gi/Gi−1 is either cyclic,
or isomorphic to a symmetric group or A5.

The result of Mani may be expressed in a weaker form: any triconnected planar graph
has an embedding f into IR3, such that Aut(G) is the group of isometries of IR3 globally
preserving the point set P = f(V (G)), that we shall denote by ω(3, P).

These two results are generalized in [FOdM06], where it is proved that every twin-free
loopless multigraph G has some regular embedding, that is, some embedding f : V (G)→ IRk

such that Aut(G) is isomorphic to the group ω(k, f(V (G))) of isometries of IRk globally pre-
serving f(V (G)), and that this group might be expressed as a subgroup of a group sum
relying on spectral considerations. This result is proved using techniques similar to those
used in the symmetry detection heuristic presented in [Fra99]. The problem of finding
regular embeddings is reduced to the one of finding metrics on the vertex set of the multi-
graph that define Euclidean, reconstructing, and commuting distance matrices, which may
be built from particular symmetric real matrices with 0 on the diagonal (the commuting
reconstructing predistances).

Several such distances have been implemented in Pigale (see Table 19.2 and Figure 19.9).

608 CHAPTER 19. PIGALE

Figure 19.9 Embedding a cube in IRn−1 using different distances (from left to right):
Czekanovski-Dice, translated adjacency, and Laplacian.

Czekanovski-Dice distance dist2(i, j) = 1− |N(i) ∩N(j)|
|N(i)|+ |N(j)|

Oriented distance dist2(i, j) = 1− |N
−(i) ∩N−(j)|

|N−(i)|+ |N−(j)| −
|N+(i) ∩N+(j)|
|N+(i)|+ |N+(j)|

Adjacency distance (not
Euclidean)

dist2(i, j) =

{
0, if i = j or i and j are adjacent
1, otherwise

Translated adjacency
distance

dist2(i, j) =

{
0, if i = j
1− 2

n
, if i and j are adjacent

1, otherwise

Bisection distance dist2(i, j) =

{
0, if i = j
1− 2

d(i)+d(j)+2
, if i and j are adjacent

1, otherwise

IR2 distance dist2(i, j) = (x(i)− x(j))2 + (y(i)− y(j))2

Laplacian distance dist2(i, j) =

{
0, if i = j
2n− d(i)− d(j), if i and j are adjacent
2n− d(i)− d(j) + 2, otherwise

Q distance dist2(i, j) =

0, if i = j
1, if i and j are non adjacent
1− 1√

d(i)d(j)
, otherwise

Table 19.2 Choice of distances for the spectral analysis/embedding in Pigale; N(i) (resp.
N−(i), N+(i)) denotes the set of the neighbors (resp. in-neighbors, out-neighbors) of vertex
i and d(i) = |N(i)| denotes the degree of vertex i.

19.4. RANDOM MAP GENERATORS 609

19.4 Random Map Generators

Several polynomial-time random planar map uniform generators have been implemented by
Gilles Schaeffer in Pigale [Sch99]:

• planar maps (connected, 2-connected, or 3-connected),

• planar cubic maps (2-connected, 2-connected bipartite, 3-connected, 3-connected
bipartite, or dual-4-connected),

• planar 4-regular maps (2-connected, 3-connected, or bipartite),

• planar bipartite maps.

Also, linear-time uniform generators of outerplanar maps have been implemented by
Nicolas Bonichon [BGH03].

The implementation of these algorithms in Pigale uses the uniform pseudo-random num-
ber generator of Matsumoto and Nishimura [MN98]. This pseudo-random number generator
is also used to generate random graphs where edges are independently included with fixed
probabilities (Erdős-Rényi model).

19.5 Graph Drawing Algorithms

This section is devoted to the graph drawing algorithms provided by Pigale.

19.5.1 Planar Straight-Line Grid Drawings

0705 03

11

10

14

13

02

16

01

04

09

12

15

06

08

08

09

16

05

06

11

13

10

07

14

15

12

02

03

04

01

Figure 19.10 Fraysseix Pach Pollack (with edge augmentation) and Schnyder (using
vertex augmentation).

Pigale includes several linear-time planar straight-line drawing algorithms for simple
planar graphs, including the Fraysseix-Pach-Pollack algorithm [FPP88, FPP90] and Schny-
der’s algorithm [Sch89, Sch90] (see Figure 19.10). Some bounds and conjectures on the size
of straight-line drawings may be found in [FOdM01c].

A linear-time compact convex drawing algorithm for 3-connected planar graphs [BFM04],
as well as a compact polyline drawing for simple planar graphs [BLSM02], have been added
by Nicolas Bonichon (see Figure 19.11).

610 CHAPTER 19. PIGALE

16

08 06

01

15

12

14

11 13

03

02

09

10

05

07

04

01

02

03

04

05

06

07

08

09 10 11

12

1314

15

16

Figure 19.11 Compact convex drawing and compact polyline drawing.

19.5.2 Spring Embedders

1544

11

06

25

29

09

28

23

34

02

24

39

21

01

33

16

27

07

22

31

35

41

30

10

20 19

14

43

05

38

46

42

18

04

40

03

36

13

17

37

12

08

26

45

32

01

02

03

04

05

06

07
08

09

10

11

12

13

14 15

16

17

18

19

20

21

22
23

24

25

26

27

28

29

30

31

32

3 3

34

35

36

3 7

38

39

40

41

42

43

44

45

46

Figure 19.12 Tutte drawing and a drawing with curved edges based on a spring embedder
initialized with Tutte drawing.

The Tutte drawing of a 3-connected planar graph [Tut60, Tut63] is implemented in Pigale

and usually represents a good starting drawing for a spring embedder drawing algorithm (see
Figure 19.12). Our spring embedder has the particularity to preserve an initial geometric
map (relative positions and crossings) of a (nonplanar) graph.

19.5.3 Visibility Drawing and Variants

Visibility and rectilinear drawings [RT86, TT86] have received much attention because of
their good readability (see Figure 19.13). All the algorithms mentioned in this section are
linear-time algorithms. With the exception of the Polrec algorithm, all the representations
described in this section concern simple planar graphs. The area of the drawing may be
further reduced by allowing horizontal and vertical visibility, as in an algorithm proposed
by de Fraysseix, Pach, and Pollack (see Figure 19.14).

19.5. GRAPH DRAWING ALGORITHMS 611

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

Figure 19.13 Visibility drawings. The drawing on the right is within a 10× 10 grid.

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

Figure 19.14 Rectilinear drawing constructed by an algorithm by de Fraysseix, Pach,
and Pollack.

D-T-EX1014

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

2

22

21

18

-10

1

-24

6

-19

D-T-EX1014

01

02

03 04

0506

07

08

09

1011 12

13

14

15

16

15

22

23 3

-13

-9

6

5

-7

Figure 19.15 Polrec drawings based on a DFS-tree and a BFS-tree, respectively.

The Polrec algorithm produces a drawing where vertices are represented by boxes, a
tree is represented using straight-line vertical segments and cotree-edges are represented by
U-shaped polylines (see Figure 19.15). Such a representation can be used for non-simple
nonplanar graphs with loops (see Figure 19.16).

612 CHAPTER 19. PIGALE

Random_1

01

02 03

04

05

06

07

08

09 10

11

12

13

14

15

16

17

18

19

20

13

3

11

21

-34

-35

-37

2

-36

-7-29

30

33

-16

-19

5

-12

-14

Random_1

0102 0304

05

06

07 08

09

10

11

12

13

14

15 16

17

18

19

20

23

-26

3

11

-10

18

-35

-37

2

-36

-7

4

-31

-19

-14

-25

-28

22

Figure 19.16 DFS-based and BFS-based Polrec representations of a nonplanar graph.

19.5.4 Contact Drawings

An emerging representation of graphs concerns contact and intersection representations.
All the algorithms mentioned in this section are linear-time algorithms and concern simple
planar graphs.

01

02

03 04 05

06

07

08

09

10

11

12

13

14

15 16 17 18 19 20

21

22

2324

2526

27

28

29

30
01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23
24

25
26

27

28

29

30

Figure 19.17 Representation of a bipartite planar graph by contact of segments.

Pigale offers a representation of bipartite planar graphs as contact graphs of horizontal
and vertical straight line segments [FOdMP91, FOdMP95] (see Figure 19.17), as well as a
representation of planar graphs by contacts of T-shaped vertices or by contacts of trian-
gles [FOdMR94, FOdMR97] (see Figure 19.18). The generalization of the representation
of planar graphs by contact of triangles to linear hypergraphs [FOdMR08] has not been
implemented yet.

19.5.5 Spectral Drawings in IRn

As mentioned in Section 19.3.5, spectral analysis may be used to generate 3D visualizations
of (nonplanar) graphs in polynomial time (see Figure 19.19). The time complexity of the
algorithm derives from the complexity of the computation of the eigenvalues of an n × n
matrix, where n is the number of vertices of the represented graph.

19.6. IMPLEMENTATION 613

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

01

02

03

04

05

06

07

08

09

10

11

1213

14

15

Figure 19.18 Contacts of Ts and contacts of triangles.

0251

03

05

24

53

11

01

21

66

08

52

55

74

12

27

17

22

29

06

32

59

73

16

45

71

18

26

50

70

43

39

19

65

67

64

13

42

54

72

30

31

09

33

20

28

34

41

37

36

63

47

10

57

46

15

04

25

60

5649

23

69

61

14

35

40

58

62

07

38

44

68

48

Figure 19.19 3D embedding of a nonplanar graph with 3D symmetries.

19.6 Implementation

19.6.1 User Interface

Pigale provides a graph editor that allows the user to load, save or generate graphs, to edit
them, to check the properties of the graph (automatically displayed by the program), to
perform several transformations (augmentations, orientations, computation of duals, etc.),
and to compute representations of the graph.

While mouse-editing a graph, a user can add, delete, contract, bisect, orient, reorient,
unorient, and color edges, and can set their width; the user can also add, move, delete, and
color vertices, and can put numerical labels on them.

19.6.2 File Storage

We use a general proprietary format, called TGF. A TGF file contains records, here corre-
sponding to graphs. Each record consisting of a variable number of fields. One of its main
advantage is that we can write and read any complex data structure. But it is dependent
of the processor type (e.g., big-endian or little-endian).

614 CHAPTER 19. PIGALE

Figure 19.20 Pigale editing window.

We have partially implemented the GRAPHML file format (cf. [BEH+02] and the web
site http://graphml.graphdrawing.org/), which is now the only way to add text labels
to the vertices.

We use a very simple ASCII file structure to store graphs. For example, the following
file defines a graph, called Triangle, with three vertices, labeled 10, 20, 30, and three edges.
The first 0 on the last line indicates the end of the list of edges. The second zero indicates
the end of the graph data.

PIG:0 Triangle

10 20

20 30

30 10

0 0

19.6.3 Macro Recording

One can record any number of functions from the menus into macros, which can be saved
as text files.

A macro can be repeated any number of times (possibly until the user will press the ESC
key). If the first record of the macro is not a call to a graph generator, the macro will start
loading the next graph of the current file.

Macros can be used to develop and benchmark algorithms and to test conjectures.

19.6.4 Multi-Threaded Server

The Pigale editor may be put in server mode, which allows the editor to be controlled
by a client application. A simple program client is provided as an example of how to
communicate with the server. The client reads its instructions from stdin so that it should

19.7. INTERFACING WITH PIGALE 615

not be difficult for applications to communicate with the server. However, it is not difficult
to write, for instance, a web server that acts as a front end to Pigale.

19.7 Interfacing with PIGALE

As mentioned in its name, Pigale is not only an editor, but also a library. Nearly all the
algorithms in Pigale may be run in a non-graphic context through a library call.

An example of a simple C++ program using Pigale library is given below.

#include <Pigale.h>

int main ()

{

GraphContainer GC; // defined in TAXI/graph.h

// GC is the object that will contain all the information of a graph.

int n = 4; // n = number of vertices [1,n]

int m = 5; // m = number of edges [1,m]

GC.setsize(n,m); // defines the size of the container

/*

- a tvertex v is an integer v(): 1 <= v() <= n = GC.nv()

- a tedge e is an integer e(): 1 <= e() <= m = GC.ne()

- a tedge e is composed of 2 tbrin b0,b1 equal to e() and -e()

tvertex, tedge, tbrin behave like integers in many respects

*/

Prop<tvertex> vin(GC.Set(tbrin()),PROP_VIN);

// vin is an array of tbrin whose values are tvertex.

// Create the edges: each edge (tedge) is incident to 2 vertices (tvertex)

vin[1] = 1; vin[-1] = 2; // edge 1 is incident to vertices 1 and 2

vin[2] = 1; vin[-2] = 3;

vin[3] = 2; vin[-3] = 3;

vin[4] = 3; vin[-4] = 4;

vin[5] = 2; vin[-5] = 4;

// create a topological graph access

TopologicalGraph G(GC); // defined in TAXI/graphs.h

// print the number of vertices and edges

cout << "Nodes: " << G.nv() << "\tEdges: " << G.ne()<< endl;

// print the edges (if e is a tedge, e() is the int that represents it)

cout << "Edges:" << endl;

for(tedge e = 1; e <= G.ne();e++)

cout << e() << " = [" << G.vin[e] << "," << G.vin[-e] << "]" <<endl;

// For planarity test, graphs should be LOOPLESS. You can remove loops:

// int nloops = RemoveLoops();

// Compute a planar embedding or return -1

if(G.Planarity() == 0)

{cout << "not planar" << endl; return -1;}

616 CHAPTER 19. PIGALE

// At each vertex v there is a tbrin G.pbrin[v] incident to it:

// G.vin[G.pbrin[v]] = v;

// So we can print the planar map, that is the cirular order of

// half edges around each vertex.

cout << "Map (half edges):"<<endl;

for(tvertex v = 1; v <= G.nv() ; v++)

{cout << v() <<" -> ";

tbrin first = G.pbrin[v];

tbrin b = first;

do

{cout << b() << " ";

}

while((b = G.cir[b]) != first);

cout << endl;

}

// Or you could print the circular order of vertices aroud each vertex

cout << "Map (vertices):"<<endl;

for(tvertex v = 1; v <= G.nv() ; v++)

{cout << v() <<" -> ";

tbrin first = G.pbrin[v];

tbrin b = first;

do

{cout << G.vin[-b]() << " ";

}

while((b = G.cir[b]) != first);

cout << endl;

}

return 0;

}

REFERENCES 617

References

[Bab78] L. Babai. Automorphism group and category of cospectral graphs. Acta
Math. Acad. Sci. Hung., 31:295–306, 1978.

[BCPD04] J. M. Boyer, P. F. Cortese, M. Patrignani, and G. Di Battista. Stop
minding your P’s and Q’s: implementing fast and simple DFS-based
planarity and embedding algorithm. In Graph Drawing, volume 2912
of Lecture Notes in Computer Science, pages 25–36. Springer, 2004.

[BEH+02] U. Brandes, M. Eiglsperger, I. Herman, M. Himsolt, and M. S. Mar-
shall. GraphML progress report: Structural layer proposal. In Springer-
Verlag, editor, Proc. 9th Intl. Symp. Graph Drawing (GD ’01), volume
2265, pages 501–512, 2002.

[BFM04] N. Bonichon, S. Felsner, and M. Mosbah. Convex drawings of 3-
connected planar graphs (extended abstract). In J. Pach, editor, Graph
Drawing 2004, volume 3383 of Lecture Notes in Computer Science,
pages 60–70. Springer Verlag, 2004.

[BGH03] N. Bonichon, C. Gavoille, and N. Hanusse. Canonical decomposition of
outerplanar maps and application to enumeration, coding and genera-
tion. In Springer-Verlag, editor, 29th International Workshop, Graph-
Theoretic Concepts in Computer Science (WG), volume 2880 of Lecture
Notes in Computer Science, pages 81–92, 2003.

[BLSM02] N. Bonichon, B. Le Saëc, and M. Mosbah. Optimal area algorithm for
planar polyline drawings. In Springer-Verlag, editor, 28th International
Workshop, Graph-Theoretic Concepts in Computer Science (WG), vol-
ume 2573 of Lecture Notes in Computer Science, pages 35–46, 2002.

[CE91] M. Chrobak and D. Eppstein. Planar orientations with low out-degree
and compaction of adjacency matrices. Theoret. Comput. Sci., 86:243–
266, 1991.

[ET76] K. P. Eswaran and R. E. Tarjan. Augmentation problems. SIAM J.
Comput., 5:653–665, 1976.

[FK92] H. de Fraysseix and P. Kuntz. Pagination of large scale networks. Al-
gorithms review, 2(3):105–112, 1992.

[FMOdMR95] H. de Fraysseix, T. Matsumoto, P. Ossona de Mendez, and P. Rosen-
stiehl. Regular Orientations and Graph Drawing. In Third Slovenian
International Conference in Graph Theory, pages 12–13, 1995. abstract.

[FOdM94a] H. de Fraysseix and P. Ossona de Mendez. On regular orientations. In
Prague Midsummer Combinatorial Workshop, pages 9–13, 1994. Ab-
stract.

[FOdM94b] H. de Fraysseix and P. Ossona de Mendez. Some augmentation prob-
lems. In Effiziente Algorithmen, volume 34/1994, page 11, 1994. Ab-
stract.

[FOdM95] H. de Fraysseix and P. Ossona de Mendez. Regular orientations, arboric-
ity and augmentation. In DIMACS International Workshop, Graph
Drawing 94, volume 894 of Lecture Notes in Computer Science, pages
111–118, 1995.

[FOdM01a] H. de Fraysseix and P. Ossona de Mendez. An algorithm to find a Kura-
towski subdivision in DFS cotree critical graphs. In Edy Try Baskoro,

618 CHAPTER 19. PIGALE

editor, Proceedings of the Twelfth Australasian Workshop on Combi-
natorial Algorithms (AWOCA 2000), pages 98–105, Indonesia, 2001.
Institut Teknologi Bandung.

[FOdM01b] H. de Fraysseix and P. Ossona de Mendez. Connectivity of planar
graphs. Journal of Graph Algorithms and Applications, 5(5):93–105,
2001.

[FOdM01c] H. de Fraysseix and P. Ossona de Mendez. Lower bounds on sets sup-
porting Fáry drawings. In O. Pangrac, editor, Graph Theory Day V,
volume 2001-539 of KAM Series, pages 35–37, 2001.

[FOdM01d] H. de Fraysseix and P. Ossona de Mendez. On topological aspects of
orientations. Discrete Mathematics, 229(1-3):57–72, 2001.

[FOdM02] H. de Fraysseix and P. Ossona de Mendez. A characterization of DFS
cotree critical graphs. In Graph Drawing, volume 2265 of Lecture notes
in Computer Science, pages 84–95, 2002.

[FOdM03] H. de Fraysseix and P. Ossona de Mendez. On cotree-critical and DFS
cotree-critical graphs. Journal of Graph Algorithms and Applications,
7(4):411–427, 2003.

[FOdM04] H. de Fraysseix and P. Ossona de Mendez. Connectivity of planar
graphs. In Graphs Algorithms and Applications 2. World Scientific,
2004.

[FOdM06] H. de Fraysseix and P. Ossona de Mendez. Regular embeddings of multi-
graphs. In M. Klazar, J. Kratochvil, M. Loebl, J. Matousek, R. Thomas,
and P. Valtr, editors, Topics in Discrete Mathematics, volume 26 of
Algorithms and Combinatorics, pages 553–563. Springer-Verlag, 2006.
Dedicated to Jarik Nešetřil on the occasion of his 60th birthday.

[FOdM12] H. de Fraysseix and P. Ossona de Mendez. Planarity and Trémaux
trees. European Journal of Combinatorics, 33(3):279–293, 2012.

[FOdMP91] H. de Fraysseix, P. Ossona de Mendez, and J. Pach. Representation of
planar graphs by segments. Intuitive Geometry, 63:109–117, 1991.

[FOdMP95] H. de Fraysseix, P. Ossona de Mendez, and J. Pach. A left-first search
algorithm for planar graphs. Discrete Computational Geometry, 13:459–
468, 1995.

[FOdMR94] H. de Fraysseix, P. Ossona de Mendez, and P. Rosenstiehl. On triangle
contact graphs. Combinatorics, Probability and Computing, 3:233–246,
1994.

[FOdMR95] H. de Fraysseix, P. Ossona de Mendez, and P. Rosenstiehl. Bipolar
orientations revisited. Discrete Applied Mathematics, 56:157–179, 1995.

[FOdMR97] H. de Fraysseix, P. Ossona de Mendez, and P. Rosenstiehl. On triangle
contact graphs. In Combinatorics, Geometry and Probability: A Tribute
to Paul Erdős, pages 165–178. Cambridge University Press, 1997.

[FOdMR06] H. de Fraysseix, P. Ossona de Mendez, and P. Rosenstiehl. Depth-first
search and planarity. International Journal of Foundations of Computer
Science, 17(5):1017–1029, 2006. Special Issue on Graph Drawing.

[FOdMR08] H. de Fraysseix, P. Ossona de Mendez, and P. Rosenstiehl. Represen-
tation of planar hypergraphs by contacts of triangles. In Proceedings of
Graph Drawing 2007, volume 4875/2008 of Lecture Notes in Computer
Science, pages 125–136. Springer, 2008.

REFERENCES 619

[FPP88] H. de Fraysseix, J. Pach, and R. Pollack. Small sets supporting Fary
embeddings of planar graphs. In Twentieth Annual ACM Symposium
on Theory of Computing, pages 426–433, 1988.

[FPP90] H. de Fraysseix, J. Pach, and R. Pollack. How to draw a planar graph
on a grid. Combinatorica, 10:41–51, 1990.

[FR82] H. de Fraysseix and P. Rosenstiehl. A depth-first search characterization
of planarity. Annals of Discrete Mathematics, 13:75–80, 1982.

[FR83a] H. de Fraysseix and P. Rosenstiehl. A discriminatory theorem of Kura-
towski subgraphs. In J. W. Kennedy, M. Borowiecki, and M. M. Sys lo,
editors, Graph Theory, Lagów 1981, volume 1018 of Lecture Notes in
Mathematics, pages 214–222. Springer-Verlag, 1983. Conference dedi-
cated to the memory of Kazimierz Kuratowski.

[FR83b] H. de Fraysseix and P. Rosenstiehl. Système de référence de Trémaux
d’une représentation plane d’un graphe planaire. Annals of Discrete
Mathematics, 17:293–302, 1983.

[FR85] H. de Fraysseix and P. Rosenstiehl. A characterization of planar graphs
by Trémaux orders. Combinatorica, 5(2):127–135, 1985.

[Fra99] H. de Fraysseix. An heuristic for graph symmetry detection. In J.
Kratochv́ıl, editor, Graph Drawing, volume 1731 of Lecture Notes in
Computer Science, pages 276–285. Springer, 1999.

[Fra08] H. de Fraysseix. Trémaux trees and planarity. In P. Ossona de Mendez,
M. Pocchiola, D. Poulalhon, J.L. Ramı́rez Alfonśın, and G. Schaeffer,
editors, The International Conference on Topological and Geometric
Graph Theory, volume 31 of Electronic Notes in Discrete Mathematics,
pages 169–180. Elsevier, 2008.

[HT73] J. Hopcroft and R. E. Tarjan. Dividing a graph into triconnected com-
ponents. SIAM J. Comput., 2(3):135–158, 1973.

[Kan93] G. Kant. Algorithms for Drawing Planar Graphs. PhD thesis, Dept.
Comput. Sci., Univ. Utrecht, Utrecht, Netherlands, 1993.

[Man71] P. Mani. Automorphismen von polyedrischen Graphen. Mathematische
Annalen, 192:279–303, 1971.

[MN98] M. Matsumoto and T. Nishimura. Mersenne twister: A 623-
dimensionally equidistributed uniform pseudo-random number genera-
tor. ACM Transactions on Modeling and Computer Simulation, 8(1):3–
30, 1998.

[OdM94] P. Ossona de Mendez. Orientations bipolaires. PhD thesis, Ecole des
Hautes Etudes en Sciences Sociales, Paris, 1994.

[RT86] P. Rosenstiehl and R. E. Tarjan. Rectilinear planar layout and bipolar
orientation of planar graphs. Discrete and Computational Geometry,
1:343–353, 1986.

[Sch89] W. Schnyder. Planar graphs and poset dimension. Order, 5:323–343,
1989.

[Sch90] W. Schnyder. Embedding planar graphs in the grid. In First ACM-
SIAM Symposium on Discrete Algorithms, pages 138–147, 1990.

[Sch99] G. Schaeffer. Random sampling of large planar maps and convex polyhe-
dra. In ACM, editor, Annual ACM Symposium on Theory of Computing
(Atlanta, GA, 1999), pages 760–769 (electronic), New-York, 1999.

620 CHAPTER 19. PIGALE

[Tar74] R. E. Tarjan. Testing graph connectivity. In Conference Record of Sixth
Annual ACM Symposium on Theory of Computing (Seattle, Washing-
ton), pages 185–193, 1974.

[TT86] R. Tamassia and I. G. Tollis. A unified approach to visibility repre-
sentations of planar graphs. Discrete Comput. Geom., 1(4):321–341,
1986.

[Tut60] W. T. Tutte. Convex representations of graphs. In Proc. London Math.
Society, volume 10, pages 304–320, 1960.

[Tut63] W. T. Tutte. How to draw a graph. In Proc. London Math. Society,
volume 13, pages 743–768, 1963.

20
Biological Networks

Christian Bachmaier
University of Passau

Ulrik Brandes
University of Konstanz

Falk Schreiber
IPK Gatersleben and

University of Halle-Wittenberg

20.1 Introduction . 621
Molecular Biological Foundations • Biological Networks

20.2 Signal Transduction and Gene Regulatory Networks . 623
Definition • Requirements • Layout Methods

20.3 Protein-Protein Interaction Networks 625
Definition • Requirements • Layout Methods

20.4 Metabolic Networks . 628
Definition • Requirements • Layout Methods

20.5 Phylogenetic Trees . 634
Definition • Requirements • Layout Methods

20.6 Discussion . 644
References . 646

20.1 Introduction

Biological processes are often represented in the form of networks such as protein-protein
interaction networks and metabolic pathways. The study of biological networks , their mod-
eling, analysis, and visualization are important tasks in life science today. An understanding
of these networks is essential to make biological sense of much of the complex data that is
now being generated. This increasing importance of biological networks is also evidenced
by the rapid increase in publications about network-related topics and the growing number
of research groups dealing with this area. Most biological networks are still far from being
complete and they are usually difficult to interpret due to the complexity of the relationships
and the peculiarities of the data. Network visualization is a fundamental method that helps
scientists in understanding biological networks and in uncovering important properties of
the underlying biochemical processes. This chapter therefore deals with major biological
networks, their visualization requirements and useful layout methods. We start with some
basic biology and important biological networks.

20.1.1 Molecular Biological Foundations

A cell consists of many different (bio-)chemical compounds. A crucial macromolecule in
organisms is DNA (deoxyribonucleic acid), which is the carrier of genetic information. But
DNA itself is not able to provide the structure of a cell, to act as a catalyst for chemical
reactions or to sense changes in the cell’s environment. Such functions are carried out by
proteins, large molecules which are built according to information stored in DNA sequences.
The central dogma of molecular biology deals with the information transfer from DNA to
proteins. It states that proteins do not code for the production of other proteins, DNA

621

622 CHAPTER 20. BIOLOGICAL NETWORKS

or RNA (ribonucleic acid), i.e., that information cannot be transferred from one protein
to another protein directly or from a protein back to nucleic acid. Instead, the standard
pathway of information flow is from DNA to RNA to protein. Genes represented by DNA
sequences are transcribed into RNA sequences which are then translated into proteins, see
Figure 20.1. These proteins have different types such as structural components (which
give cells their shape and help them move), transport proteins (which carry substances
such as oxygen), enzymes (which catalyze most chemical processes in cells and help change
metabolites into each other) and regulatory proteins (which regulate the expression of other
genes). Crick summarized the standard pathway of information flow as “DNA makes RNA,
RNA makes protein and proteins make us” [Kel00].

Figure 20.1 The standard pathway of information flow: DNA→RNA→protein. Two
kinds of proteins (enzymatic and regulatory proteins) are shown as well as two types of
gene regulation (via regulatory protein and external signal).

20.1.2 Biological Networks

Several highly important biological networks are related to molecules such as DNA, RNA,
proteins and metabolites and to interactions between them. Gene regulatory and signal
transduction networks describe how genes can be activated or repressed and therefore which
proteins are produced in a cell at a particular time. Such regulation can be caused by reg-
ulatory proteins or external signals. The related networks are considered in Section 20.2.
Protein-protein interaction networks represent the interaction between proteins such as the
building of protein complexes and the activation of one protein by another protein. Sec-
tion 20.3 deals with these networks and their visualization in detail. Metabolic networks

20.2. SIGNAL TRANSDUCTION AND GENE REGULATORY NETWORKS 623

show how metabolites are transformed, for example to produce energy or synthesize spe-
cific substances. Metabolic and closely related networks are studied in Section 20.4. In
Section 20.5 we consider phylogenetic trees, special networks or hierarchies which are often
built on information from molecular biology such as DNA or protein sequences. Phyloge-
netic trees represent the ancestral relationships between different species. They are used
to study evolution, which describes and explains the history of species, i.e., their origins,
how they change, survive, or become extinct. Finally, signal transduction, gene regulatory,
protein-protein interaction and metabolic networks interact with each other and build a
complex network of interactions; furthermore these networks are not universal but species-
specific, i.e., the same network differs between different species. These topics are discussed
in Section 20.6.

Often established layout methods as described in the previous chapters are used to visu-
alize biological networks. Sometimes these methods are slightly modified, e.g., by adding
extra forces to force-directed approaches. We will not discuss all these modifications in de-
tail for each network, instead we focus on two topics: metabolic networks and phylogenetic
trees. Metabolic networks have been studied for a long time in biology and biochemistry,
and specific visualization requirements are given, e.g., by established drawing styles. We
present some algorithmic extensions of the hierarchical layout approach which aim to ful-
fil these requirements. Phylogenetic tree visualizations are quite different to usual tree
drawings. Therefore we discuss specific algorithms which have been developed to produce
information-rich layouts of phylogenetic trees.

20.2 Signal Transduction and Gene Regulatory Networks

A key issue in biology is the response of a cell to internal and external stimuli and the
subsequent regulation of its genetic activity. Signal transduction and gene regulatory path-
ways and networks describe processes to coordinate the cell’s response to such stimuli. Here
we consider both networks together as the underlying mechanisms have many similarities,
the networks share some common elements and both often result in the regulation of gene
expression. Consequently, similar visualization approaches are used for signal transduction
and gene regulatory pathways and networks.

20.2.1 Definition

Signal transduction is a communication process within a cell to coordinate its responses to
an environmental change. The stimulus comes from the cell’s environment, e.g., molecules
such as hormones. The response is a reaction of the cell, e.g., the activation of a gene or
the production of energy. A signal transduction pathway is a directed network of chemical
reactions in a cell from a stimulus (an external molecule which binds to a receptor on the
cell membrane) to the response (e.g., the activation of a gene). Here we focus on signal
transduction pathways that aim at transcription factors and thus alter the expression of
genes in a cell. The signal transduction network of a cell is the complete network of all
signal transduction pathways. A signaling cascade is a process where signal transduction
involves an increasing number of molecules in the steps from the stimulus to the response.

Gene regulation is a general term for cellular control of the synthesis of proteins at the
transcription step. Gene regulation can also be seen as the response of a cell to an internal
stimulus. Often one gene is regulated by another gene via the corresponding protein (called
transcription factor), thus gene regulation is coordinated in a gene regulatory network . This
network directs the level of expression for each gene in the cell by controlling whether and

624 CHAPTER 20. BIOLOGICAL NETWORKS

how often that gene will be transcribed into RNA. Similar to signaling cascades in signal
transduction networks a gene can activate more genes in turn and an initial stimulus can
trigger the expression of large sets of genes.

As mentioned above we study signal transduction and gene regulation together. Fig-
ure 20.1 sketches both processes with signal transduction going from an external signal via
several steps to the activation of a gene as one possible response and gene regulation going
from a gene via a protein to another gene.

Events of signal transduction and gene regulatory processes occur in different parts of a
cell (cellular compartments). To represent compartments these networks can be modeled as
clustered graphs. A clustered graph C = (G,T) consists of a directed graph G = (V,E) and
a rooted tree T , such that the leaves of T are exactly the nodes of G. The nodes v ∈ V of
the graph are chemical and biochemical compounds (ranging from ions, to small molecules,
macromolecules and genes) and the edges e ∈ E are biochemical events (e.g., binding, trans-
portation and reaction). The occurrence of signal transduction and gene regulatory events
in different cellular compartments can be modeled be the tree T . Each node t ∈ T represents
a cluster of nodes of G consisting of the leaves of the subtree rooted at t. The modeling
of such networks based on clustered graphs can be used for cluster-preserving layout algo-
rithms [EH00]. However, as it is only partly known in which compartment an event occurs,
signal transduction and gene regulatory processes are usually modeled by graphs. The path-
ways and networks can be derived from databases such as KEGG [KGKN02, KGH+06] and
TransPath [KVC+03] (for an overview of biological databases see, for example, [CG10]).

20.2.2 Visualization Requirements

Important goals of the visualizations of signal transduction and gene regulatory pathways
are the understanding of the regulation of cellular processes by external and internal signals,
the flow of information through the pathways and networks, the interconnection of genes,
the discovering of master-genes responsible for the regulation of larger sets of genes, and
the identification of main and alternative regulatory paths.

The main visualization requirements are:

• Pathways : The main direction of the processes (e.g., from top to bottom) should
be clearly visible to express the temporal order of the events.

• Compartments : Events of signal transduction and gene regulation occur in differ-
ent cellular compartments and this information should be visually represented.

• Complexes : Especially during signal transduction one event occurring frequently
is the building of molecular complexes. Their structure and how they are built
by interacting molecules should be displayed.

Signal transduction and gene regulatory pathways often contain metabolic reactions, there-
fore the visualization requirements discussed in Section 20.4 are also of interest. However,
there is no need for the consideration of open and closed cycles (see Section 20.4.2) and
usually co-substances are not considered.

20.2.3 Layout Methods

There are two established approaches to visualize signal transduction and gene regulatory
pathways and networks: force-directed and hierarchical layout methods. It should be noted
that some visualizations of gene regulatory networks in books and articles also use orthog-
onal or grid-based drawing styles.

20.3. PROTEIN-PROTEIN INTERACTION NETWORKS 625

Figure 20.2 A hierarchical layout of a part of the gene regulatory network of E. coli.

There are some systems supporting force-directed layouts for the visualization of signal
transduction and gene regulatory pathways and networks. These tools are either based on
re-implementations of well-known algorithms or on existing layout libraries. Usually the
visualizations do not meet the main requirements, especially the main direction and the
consideration of compartments. There are a few approaches to improve the general force-
directed method. Examples are the PATIKA system [DBD+02, GD06] where the force-
directed layout has been extended to deal with several application specific requirements,
e.g., cellular compartments, and the approach presented in [SDMW09] where placement,
directional, compartmental and other constraints are considered.

Another common approach for the visualization of signal transduction and gene regulatory
networks are graph drawing solutions based on hierarchical layout methods, see Figure 20.2.
There exist several systems which use hierarchical layouts for the visualization of these
networks, e.g., TransPath [KVC+03]. Most are based on existing layout libraries such as
dot [KN95] and Pajek [BM02]. These approaches meet some visualization requirements
such as the main direction of pathways.

20.3 Protein-Protein Interaction Networks

Proteins are one of the most important molecule groups for living cells. For example, they
serve as enzymes for catalysis of metabolic processes, signaling substances (hormones),
structural or mechanical material (hair), or transporters for other substances (oxygen).
The primary structure of a protein is a long sequence out of essentially twenty different
amino acids connected by peptide bonds .

20.3.1 Definition

A protein can interact with another protein, e.g., to build a protein complex or to activate
it. Protein-protein interactions form large networks. Their visualization aids biologists in
pinpointing the role of proteins and in gaining new insights about the processes within and
across cellular processes and compartments, e.g., for formulating and experimentally testing
specific hypotheses about gene function.

Often only the existence of an interaction between two proteins is known, but the interac-
tion type, such as activation, binding to, or phosphorylation, remains unknown. However,
for the understanding of biological processes, information about the interaction type is cru-
cial, although up to now databases contain little information about that. Therefore we
define a protein-protein interaction network as a directed graph G = (V,E, τ) where V
is the set of proteins, E the set of directed interactions (the initiator defines the source),
and τ : E → T defines the type of each edge (interaction type). Protein-protein interaction
networks can be derived from databases such as BIND [BDH03] and DIP [XFS+01].

626 CHAPTER 20. BIOLOGICAL NETWORKS

20.3.2 Visualization Requirements

Important goals of the visualization of protein-protein interaction networks are the under-
standing of the overall structure of the interactions, the interactions between two proteins,
and the functions of proteins by investigating the functions of their neighbors or of all
proteins within a cluster the protein belongs to. These networks are inherently complex:
large, non-planar with many edge crossings, many separate components, and nodes of a
wide range of degrees [HJP02]. Thus, the main visualization requirements are the common
aesthetic criteria for graph layouts such as even node distribution, symmetry, uniform edge
lengths, or Euclidian distances reflecting graph-theoretic distances.

20.3.3 Layout Methods

The established approach for the visualization of protein-protein interaction networks is the
force-directed layout method. For drawing networks where interactions are not typed or
not of interest accelerated force-directed methods are used: Basalaj and Eilbeck [BE99] use
an incremental multidimensional scaling heuristic [Bas99] and Han, Ju and Park [HJP02]
use Walshaw’s algorithm [Wal02], which is a multi level variant of the original algorithm of
Fruchterman and Reingold [FR91]. Both algorithms can generate two and three dimensional
drawings. For example, Figure 20.3 shows a force-directed layout of interactions in yeast
(Saccharomyces cerevisiae).

phosphorylate

phosphorylate

phosphorylate

inactivate

activate

inhibit inhibit

inhibit

bind to
bind to

bind to

bind to

bind to

bind to

bind to

bind to

bind to

inhibit [indirect]

activate [indirect]

activate [indirect] activate [indirect]

activate [indirect]activate [indirect]

inactivate

bind

bind

bind

bind

bind

bind

bind

activate

activate
activate

activate

activate

activate

activate
activate

activate

activate
activate

activate

YMR199W

YBR160W

YGR108W

YPR120C

YLR210W

YYPL256C

YAL040C

YPR119W

YGR109C

YDL155W

activate

YNL145W
YDR461W

YKL178C

YDR054C

YLR079W

YDR052C

YDL017W

YPL031C

YDL127W

YHR084W
YGR040W

YDL159W
YNL053W

YBL016W

YJL157C

YJR086W

YHR005C

YOR212W

YFL026W

YLR362W

YDR103W

YFL039C

YER114C

YBL085W

YLR229C

YAL041W

YBR200W

YHL007C

Figure 20.3 A force-directed 2D layout of protein-protein interactions in yeast (redrawn
from [FS03]).

However, the general methods cannot cope well with the complexity of protein-protein
interaction networks containing typed interactions. In those networks it is not only necessary
to show the interactions, but also to explore their different type. For computing visual
representations of a network depending on the type of interaction a combination of circular
and force-directed algorithms has been suggested [FS03]: Proteins not supporting a selected
type of interaction t ∈ T are placed on an outer circle, whereas proteins that support

20.3. PROTEIN-PROTEIN INTERACTION NETWORKS 627

that type, i.e., to which an edge of type t is incident, are clustered inside the circle, see
Figure 20.4. Thereby the radius of the circle is chosen as big as possible while still fitting
in the drawing canvas. As the node labels have a font and thus a fixed height, the circular
placement is done with constant vertical distance between them rather than with equal
distribution. In the second phase, the positions of the nodes which are involved in the
selected interaction are recomputed. Let G′ = (V ′, E′) with E′ = { e ∈ E | τ(e) = t } and
V ′ ⊆ V the set of vertices adjacent to an edge in E′ be the subgraph representing the
interaction t. Based on a variation of the force-directed GEM layout [FLM95] the drawing
of G′ is generated. GEM optimizes minimal node distances and constant edge lengths while
it also tends to display symmetries. However, the gravity force to attract nodes to the
center is not suitable to keep all nodes in V ′ inside the circle. Either the gravity force has
to be set so high that it distorts the drawing, or it is not strong enough to prevent nodes
from escaping the circle. Thus, a reflective barrier at 80% of the circle radius is introduced.
Any node which is about to leave this perimeter is reflected toward the interior of the circle
while the energy acting on it is slightly dampened.

YDL127W

YNL145W

YDL159W

YAL040C

YPL256W

YLR210W

YHR084W

YNL053W

YDL017W

YPR119W

YHR031C

YBR160W

YOR212W

YDL155W

YJR086W

YLR362W

YJL157C

YLR097W

YBL016W

YGR040W

YGR108W

YDR052C

YMR199W

YPR120C

YPL031C

YGR109C

YKL178C

YDR461W

YFL026W

YDR54C

YFL039C

YBR200W

YHL007C

YDR103W
YER114C

YLR229C

YBL085W

YAL041W

bind

bind
bind

bind
bind

bind

bind

Figure 20.4 The graph of Figure 20.3 with focus on interaction “bind” (redrawn
from [FS03]).

While working with a visualization focusing on a special type of interaction, users build
a mental map of the picture. Thus, when working with a dynamic visualization tool which
allows frequent changes of the interaction type of interest, it is important to help the user
in maintaining the mental map. In the described method [FS03] animations are used to
provide smooth transitions between different visualizations and ensure that the position of
the nodes on the outer circle are fixed over all types of interactions. After computing the
new drawing, the nodes are moved on straight lines from their initial positions to their final
positions. Thereby the node speed is increased in the beginning and decreased toward the
end to allow an easy perception. Edges which have been visible in the initial drawing fade
into the background while newly active edges fade from background to foreground color.

628 CHAPTER 20. BIOLOGICAL NETWORKS

20.4 Metabolic Networks

Metabolic reactions are fundamental to life processes, e.g., for the production of energy
and the synthesis of substances. A huge number of reactions occur at any time in living
cells and the product of one reaction is usually used by another reaction, thus metabolic
reactions are strongly interconnected and form metabolic pathways and networks.

20.4.1 Definition

A metabolic reaction R is a transformation of chemical substances or metabolites (reac-
tants) into other substances (products) usually catalyzed by enzymes . In general metabolic
reactions are reversible, that is, they occur in both directions. Such reactions are charac-
terized by a steady state, i.e., if occurring isolated they reach a state where the amount
of change in both directions is equal. A cell is in a constant exchange of substances with
its environment. Furthermore, many reactions are regulated, i.e., they are suppressed or
enhanced by other factors (allosteric control). This shifts the steady state and together
with the steady supply of substances from outside and their final use, e.g., by exporting
them from the cell, one can consider a main direction of a reaction. This is also expressed
by the differentiation of substances into reactants and products. As already seen, metabolic
reactions interact with each other, i.e., the product of one reaction is usually a reactant of
another reaction. A metabolic path P = (R1, . . . , Rn) is a sequence of metabolic reactions
where for all 1 ≤ i < n at least one product of reaction Ri is a reactant of reaction Ri+1.
The metabolic network or metabolism of a particular cell or an organism is the complete
network of metabolic reactions of this cell or organism. A metabolic pathway is a connected
sub-network of the metabolic network either representing specific processes or defined by
functional boundaries, e.g., the network between an initial and a final substance as shown
in Figure 20.5.

From a formal point of view a metabolic pathway is a hyper-graph. The nodes repre-
sent the substances and the hyper-edges represent the reactions. A hyper-edge connects
all substances of a reaction, is directed from reactants to products and is labeled with the
enzymes that catalyze the reaction. Hyper-graphs can be represented by bipartite graphs.
Additionally to the nodes representing substances, the reactions are nodes (either labeled
with the enzymes or with further nodes for enzymes) and edges are binary relations connect-
ing the substances of a reaction with the corresponding reaction node. This is a common
modeling of metabolic pathways, e.g., for their simulation using Petri-nets [HT98, RML93].
For the analysis and visualization of metabolic pathways substances are often divided into
two types [MZ03]: main substances and co-substances. Co-substances are usually small or
current metabolites, e.g., ATP, ADP, H2O, NH3 and NADH. These substances normally
transfer electrons or functional groups such as phosphate and amino groups [NIS90]. Main
substances are all other metabolites. However, this is not a global property but is given
according to the reaction [MZ03], and a small metabolite such as ATP may be considered
as main substance in a particular reaction. For visualization purposes this distinction is
important as main substances and co-substances are often differently visually represented.
Here a metabolic pathway is modeled as directed bipartite graph G = (VS , VR, E) with

nodes u1, . . . , un, w1, . . . , wm ∈ VS representing substances, nodes v ∈ VR representing reac-
tions (including the enzyme(s) catalyzing the reaction) and directed edges (u1, v), . . . , (un, v),
(v, w1), . . . , (v, wm) ∈ E representing the transformation of substances u1, . . . , un to sub-
stances w1, . . . , wm by the reaction v. A reversible reaction does not contain backward
edges as in some models for simulation purposes, instead this property of an reaction is
represented by an attribute. Another attribute is used to mark main and co-substances.

20.4. METABOLIC NETWORKS 629

D−Fructose

ATP

beta−D−Fructose6−phosphate

ADP

alpha−D−Glucose

alpha−D−Glucose

6−phosphate

D−Glyceraldehyde

3−phosphate

Glyceronephosphate

beta−D−Fructose1,6−bisphosphate beta−D−Fructose1,6−bisphosphate

beta−D−Glucose

ATP

beta−D−Glucose6−phosphate

ADP

ATP

ADP

ATP

ADP

(Phosphate)n

(Phosphate)n

ATP

ADP

ATP

ADP

ATP

ADP

2.7.1.1

5.3.1.1

4.1.2.13 4.1.2.13

2.7.1.1

5.1.3.3

2.7.1.1

2.7.1.11

2.7.1.63

2.7.1.63

5.1.3.155.3.1.9

5.3.1.9

2.7.1.11

2.7.1.2

2.7.1.2

5.3.1.9

Figure 20.5 An example of a metabolic pathway.

630 CHAPTER 20. BIOLOGICAL NETWORKS

There are several networks which are closely related to metabolic pathways or networks (see
Figure 20.6):

• Simplified metabolic network : A network which contains reactions, enzymes and
main substances, but no co-substances.

• Metabolite network and simplified metabolite network : A network which consists
only of substances (metabolites); in the simplified case only of main substances.

• Enzyme network : A network which consists only of the enzymes catalyzing the
reactions.

(a) (b) (c) (d)

Figure 20.6 A metabolic network (a) and corresponding networks: (b) the simplified
metabolic network, (c) the simplified metabolite network and (d) the enzyme network.
Circles denote metabolites and rectangles represent enzymes

These networks are not always directly associated with a metabolic network. For example,
the metabolites in a metabolite network are not necessarily connected according to the re-
actions of a metabolic network, but can be established by correlation analysis of metabolite
profiles [KWLF01]. An enzyme network can be derived from a protein-protein interaction
network. Again for relations in such a network a corresponding (connecting) substance can-
not always be found within the metabolic network and protein-protein interaction networks
may be undirected.

Metabolic pathways can be derived from several databases such as EcoCyc [KRS+00],
UM-BBD [EHW00], and MetaCrop [GBWK+08]. For an overview and comparison between
different databases see the work of Baxevanis, Wittig and De Beuckelaer [Bax03, WB01].
Simplified metabolic networks are widely used, a popular example is the KEGG/LIGAND
database [KGKN02].

20.4.2 Visualization Requirements

The focus of this and the following section is the visualization of (simplified) metabolic
pathways and networks. Undirected metabolite networks and enzyme networks as a subset
of protein-protein interaction networks have been discussed in Section 20.3.

Visual representations of metabolic pathways are widely used and help scientists to un-
derstand the complex relationships between the components of the networks. However, the
style of pathway visualizations varies significantly [Mic98]. Examples are biochemical and
biological textbooks [Cam96, LNC93, Mic99], pathway posters [Mic93, Nic97] and electronic

20.4. METABOLIC NETWORKS 631

databases [ABH94, KGKN02, OLP+00]. Visualizations of metabolic pathways should help
understanding the interconnections between metabolites, analyzing the flow of substances
through the network and identifying main and alternative paths. The established presen-
tation styles and discussions with users result in several visualization requirements [Sch02]:

1. Parts of reactions : The display of substances and enzymes is application and
user-specific. Usually for main substances their name, structural formula or both
should be shown. Co-substances should be displayed using their name or abbre-
viation and enzymes should be represented by their name or EC-number [Int92].

2. Reactions : The reaction arrow(s) should be shown from the reactants to the
products with enzymes placed on one side of the reaction arrow and co-substances
on the opposite side. The reversibility of a specific reaction should be clearly
visible. For co-substances their temporal order, which depends on the reaction
mechanism, is important, and they should be placed according to this order.

3. Pathways : The main direction of reactions (e.g., from top to bottom) should be
clearly visible to express the temporal order of reactions. There are important
exceptions to the main direction used for the visualization of specific pathways,
e.g., the citrate acid cycle or the fatty acid synthesis. The structure of these
cyclic reaction chains should be emphasized. Such pathways are characterized
by the continuous repetition of a reaction sequence in which the product of the
sequence re-enters in the next loop as a reactant. There are two mechanisms.
First, the reactant and the product of the reaction sequence are identical from
loop to loop (e.g., citrate acid cycle)— a mechanism called a closed cycle. Second,
the reactant of the reaction sequence varies slightly from the product (e.g., fatty
acid cycle) - this is called an open cycle.

Besides usual quality criteria, e.g., low number of edge crossings, these visualization
requirements result in some specific layout criteria: the hierarchical placement of nodes
depending on the structure of the network, the treatment of nodes of varying sizes and the
consideration of layout constraints for the order of co-substances and the visualization of
specific pathways. Often closed and open cycles are displayed as circles and spirals, respec-
tively. In a spiral related reaction steps from different loops and corresponding substances
are placed side by side to emphasis the cyclic structure. As this drawing style needs much
space and makes it difficult for a user to trace the reaction sequence of long pathways,
an alternative visualization would be to unravel the spiral and align related reactions and
substances horizontally.

20.4.3 Layout Methods

There are two established approaches to visualizing metabolic pathways and networks:
force-directed and hierarchical layout methods.

Force-directed methods are often used and several pathway analysis tools support such
layout. Frequently they visualize not only metabolic and metabolite pathways, but differ-
ent types of biochemical pathways and networks. Examples are PathwayAssist [NEDM03],
PathDB [MBF+00] and pathSCOUT [MdRW03]. These tools use either their own imple-
mentations of well-known algorithms or are based on existing layout libraries. For example,
VisANT [HMWD04] contains an algorithm based on the layout method of Eades [Ead84],
and the method described by Rojdestvenski [Roj03] is based on the force-directed method
of Kamada and Kawai [KK89]. On the other hand Cytoscape [SMO+03] uses the yFiles li-

632 CHAPTER 20. BIOLOGICAL NETWORKS

D−Fructose

ATP

beta−D−Fructose6−phosphate

ADP

alpha−D−Glucose

alpha−D−Glucose

6−phosphate

D−Glyceraldehyde

3−phosphate

Glyceronephosphate

beta−D−Fructose1,6−bisphosphate

beta−D−Fructose1,6−bisphosphate

beta−D−Glucose

ATP

beta−D−Glucose6−phosphate

ADP

ATP
ADP

ATP

ADP

(Phosphate)n

(Phosphate)n

ATP

ADP

ATP

ADP

ATP

ADP

2.7.1.1

5.3.1.1

4.1.2.13

4.1.2.13

2.7.1.1

5.1.3.3

2.7.1.1

2.7.1.11

2.7.1.63

2.7.1.63

5.1.3.15

5.3.1.9

5.3.1.9

2.7.1.11

2.7.1.2

2.7.1.2
5.3.1.9

D−Fructose

ATP

beta−D−Fructose6−phosphate

ADP

alpha−D−Glucose

alpha−D−Glucose

6−phosphate

D−Glyceraldehyde

3−phosphate

Glyceronephosphate

beta−D−Fructose1,6−bisphosphate beta−D−Fructose1,6−bisphosphate

beta−D−Glucose

ATP

beta−D−Glucose6−phosphate

ADP

ATP

ADP

ATP

ADP

(Phosphate)n

(Phosphate)n

ATP

ADP

ATP

ADP

ATP

ADP

2.7.1.1

5.3.1.1

4.1.2.13

4.1.2.13

2.7.1.1

5.1.3.3

2.7.1.1

2.7.1.11

2.7.1.63

2.7.1.63

5.1.3.15

5.3.1.9

5.3.1.9

2.7.1.11

2.7.1.2

2.7.1.2

5.3.1.9

(a) (b)

Figure 20.7 Visualizations of the metabolic pathway shown in Figure 20.5 using (a) a
force-directed algorithm [KK89] and (b) a hierarchical approach [STT81].

brary [WEK01] and the layout of BioJAKE [SMKS99], a tool for the creation, visualization
and manipulation of metabolic pathways, which is based on Graphviz [EGK+01].

Force-directed approaches do not meet the visualization requirements described in the
previous section and visualizations based on this method are very different to the diagrams
in posters and books, see Figure 20.7 (a). Different node sizes, the special placement of
co-substances and enzymes, the partitioning of substances into reactants and products as
well as the general direction of pathways are not considered. A few approaches extend this
layout method to deal with application specific requirements. Advanced approaches are
the algorithms described in [DBD+02, GD06] where directional and rectangular regional
constrains are considered which can be used to enforce different node types (e.g., main
and co-substances), layout directions and subcellular locations (cellular compartments),
and in [SDMW09] where placement, directional, compartmental and other constraints are
considered.

The second layout method for (simplified) metabolic pathways is hierarchical layout.
Tools supporting this layout are largely based on existing libraries. Such solutions show
the main direction of reactions and are sometimes able to deal with different node sizes.
However, there is no specific placement of co-substances, furthermore, open and closed cy-
cles are not emphasized. Figure 20.7 (b) shows a typical example of such a visualization.
For example, PathFinder [GHM+02] is restricted to acyclic pathways which are modeled as

20.4. METABOLIC NETWORKS 633

directed acyclic graphs and drawn using the VCG library [San95]. The hierarchical layout
of BioMiner [SSE+02] is based on yFiles [WEK01]. Some improved approaches consider
cyclic structures within the network or depict pathways of different topology using differ-
ent layouts, e.g., linear, circular and tree structured. Becker and Rojas [BR01] present
a graph layout algorithm for drawing metabolic pathways which emphasizes cyclic struc-
tures. However, these cycles are computed based on the topology of the network and not
on biological knowledge. Therefore pathways may be shown as circles even if they are not
closed cycles and closed cycles may not be emphasized by this method, e.g., if they contain
shortcuts within the cycle. Furthermore, open cycles are not considered. PathDB con-
tains a component for the visualization of metabolic pathways based on hierarchical layout
which allows co-substances to be represented in a smaller font on the side of the reaction
arrow [Men00, MBF+00].

The most advanced algorithms try to consider all the visualization requirements discussed
in Section 20.4.2. The approach of Karp et al. [KP94, KPR02] based on the Grasper-CL
system [KLSW94] depicts pathways of different topology using different layout algorithms
(linear, circular, tree, hierarchical). It places co-substances and enzymes beside reaction
arrows, but has restrictions concerning the order of co-substances or the layout of open
cycles. Another approach [Sch02] extends the hierarchical layout for different node sizes;
consideration of co-substances and enzymes and special layout of open and closed cycles
is implemented in the BioPath system [BFP+04]. The algorithm temporarily builds larger
nodes containing the layout of co-substances and enzymes for each reaction, extends the
layering step of hierarchical layouts by a local layering [FS04] and the crossing reduction
step by constraint crossing reduction [For04]. A drawing produced with this method is
shown in Figure 20.5.

The extensions of layering and crossing reduction are of interest also for other graph
drawing applications. Usually the layering step of hierarchical layouts computes a global
layering, i.e., a layering where nodes belong to a particular layer depending on the topolog-
ical sorting of the graph. Global layering of graphs tends to produce large drawings as the
distance between two layers is determined by the highest node of the layer. An algorithm to
compute a local layering, i.e., a layering where each node may be assigned to its own layer
depending only on the layers of its direct predecessors and their particular heights is shown
in Figure 20.8. It computes the layers from top to bottom. The y-coordinate of a node,
i.e., the upper boundary of the rectangle representing the node, and its layer are computed
together. Nodes can be split such that a high node may belong to a number of consecutive
layers. To reduce the number of layers and dummy nodes layers are joined together if they
are situated in an area starting from the current layer with depth yd. For local and global
layering the final part is the replacement of each edge-layer crossing by a dummy node in
order to compute a so called proper layering. This part is not shown in the algorithm, but
takes O (|V | ∗ |E|) in both the global and the local layering method. This is also the overall
running time for these algorithms.

For constraint crossing reduction Forster [For04] presents a heuristic shown in Algo-
rithm 20.9 which extends the well known barycenter heuristic [DETT99]. It starts with
partitioning the node set V2 into ordered node lists with one singleton list L(v) = 〈v〉 for
each node v. Later these lists are pairwise concatenated according to violated constraints.
Each violated constraint c = (s, t), i.e., a constraint that node s should be placed left of
node t, is removed. The lists containing s and t are concatenated in the required order and
treated as a cluster of vertices. The nodes s and t are replaced by a node vc to represent the
concatenated list L(vc) = L(s) ◦L(t). This node has a barycenter value which is computed
as if all edges incident to a node in L(vc) were incident to vc. After all violated constraints
have been removed the remaining nodes/node lists are sorted according to their barycenter

634 CHAPTER 20. BIOLOGICAL NETWORKS

Input: G = (V,E), height of nodes (h : V → R), minimum node distance d, depth of area
where layers are joint yd

Output: Coordinates y : V → R and layers l : V → N

Data: Min-heap H, counter c : V → N for the nodes
y ← ynext ← 0; l← 0
for all v ∈ V do

c(v)← indegree(v); h(v)← h(v) + d
if c(v) = 0 then

H.insert(v)
end if

end for

while !H.isEmpty() do
{Place nodes on current and consecutive layers within yd in one layer}
l← l + 1; y ← ynext
v ← H.delmin(); l(v)← l; y(v)← y
ynext ← y + h(v)
while (y + h(H.top())) ≤ (ynext + yd) do

v ← H.delmin();
l(v)← l; y(v)← y
for all u ∈ children(v) do

c(u)← c(u)− 1;
end for

end while

ynext := y + h(v);
for all v ∈ H do

{Split large nodes (on this and next layer)}
In G = (V,E) replace v by v1, v2 and the edge (v1, v2);
l(v1)← l; y(v1)← y; h(v1)← ynext − y; h(v2)← h(v)− h(v1)
Replace in heap H node v by node v2

end for

for all v ∈ V do

if v /∈ H and v not already placed and c(v) = 0 then

H.insert(v)
end if

end for

end while

Figure 20.8 Computing a local layering of the nodes

value. The result is a vertex permutation that satisfies all constraints and has few cross-
ings. During the algorithm the violated constraints have to be considered in an order which
avoids the generation of constraint cycles. This is done by the procedure FIND-VIOLATED-
CONSTRAINT(V,C) and with the O (|C|) algorithm for this procedure [For04] the running
time of the complete algorithm is O

(

|V2| log |V2|+ |E|+ |C|
2
)

.

20.5 Phylogenetic Trees

A fundamental issue in biology is the hierarchical classification of organisms in an evolu-
tionary context, i.e., reconstruction of ancestral relationships between different taxons , e.g.,

20.5. PHYLOGENETIC TREES 635

Input: A two-level graph G = (V1, V2, E), acyclic constraints C ⊆ V2 × V2

Output: A permutation of V2 (result in L)
Data: singleton lists L and barycenter b : V → Q+

0 for all nodes
for all v ∈ V2 do

b(v)←
∑

u∈V position(u)/degree(v)
L(v)← 〈v〉

end for

V ← { s, t | (s, t) ∈ C } {constrained vertices}
V ′ ← V2 − V
while (s, t)← FIND-VIOLATED-CONSTRAINT(V,C) 6= ⊥ do

create new vertex vc
degree(vc)← degree(s) + degree(t) {update barycenter value}
b(vc)←

(

b(s) · degree(s) + b(t) · degree(t)
)

/degree(vc)
L(vc)← L(s) ◦ L(t)
for all c ∈ C do

if c is incident to s or t then
make c incident to vc instead of s or t

end if

end for

C ← C − {(vc, vc)} {remove self loops}
V ← V − {s, t}
if vc has incident constraints then

V ← V ∪ {vc}
else

V ′ ← V ′ ∪ {vc}
end if

end while

V ′′ ← V ∪ V ′

sort V ′′ by b()
L← 〈〉 {concatenate vertex lists}
for all v ∈ V ′′ do

L← L ◦ L(v)
end for

Figure 20.9 Computing a constrained crossing reduction

species, genes, or DNA sequences. The common approach for determining such relations is
the construction of a phylogenetic tree.

20.5.1 Definition

For hierarchical classification of a set of taxons A there are two common types of approaches:
The first are the phenetic methods, which have an |A| × |A| distance matrix ∆ assigning
each pair of taxons a quantitative difference as input. The goal is to group (commonly
two) most similar taxons/ancestors and thus to find out how an ancestor of theirs may
look like according to the principle of minimum evolution. This is done recursively until
a common ancestor is reached and a phylogenetic tree is obtained. All these methods are
based on clustering and thus explicitly do not consider evolutionary history. The second
type of approach is the cladistic methods, which have an |A| × |M | characteristic matrix
Γ assigning each taxon |M | characteristics like number of legs, ability to fly, or color of
skin as input. These methods try to find out the actual genealogy according to a model of

636 CHAPTER 20. BIOLOGICAL NETWORKS

the real evolutionary development assuming that identical characteristics of different taxons
indicate a common ancestry.

A phylogenetic tree (in literature also called evolutionary tree) T = (V,E, δ) is a tree
consisting of nodes V (taxons) and edges E (links). Leave nodes, i.e., nodes with exactly one
link, represent species, sequences, or similar entities; they are called operational taxonomical
units (and are represented by A ⊆ V). Internal nodes represent (hypothetical) ancestors
generated from phylogenetic analysis; they are called hypothetical taxonomic units . The
lengths of the edges δ : E → R+

0 quantify the biological divergence between the incident
nodes, e.g., biological time or genetic distance. Phylogenetic trees are often stored in the
Newick file format [Fel95], which makes use of the correspondence between trees and nested
parentheses.

pseudomona

nico-tabac

nico-syl-A

arabidopsi

gylcine---

chara-----

bryopsis--

gonium----

chlamydomo

chlorella-

astasia---

euglena---

raphidonem

ochromonas

cynophora

coscinodis

cyclotella

laminaria-

porphyra--

smithora--

gracilaria

anacystis-

plectonema

gloeobacte

myco-gentl

thermotoga

borrelia-b

ChlamydiaB

Tthermophi

Taquaticus

deinonema-

bacillus--

salmonella

ecoli-----

micrococcu

shewanella

Figure 20.10 An example of a phylogenetic tree (phylogram, redrawn from [DS04]).

A simple phenetic representative for creating a phylogenetic tree T = (V,E, δ) is the
O
(

|A|2 log |A|2
)

time “Unweighted Pair Group Method with Arithmetic Mean” (UPGMA)
[MS57]: Initially define clusters C ← { ci | 1 ≤ i ≤ |A| }, each containing one taxon of A,
set the cluster sizes s(ci) ← 1, and let V ← C. Then iterate until there is only one
cluster left: Find two closest clusters ci 6= cj according to ∆ (with the help of a priority
queue over the |A|2 elements of ∆). Join the clusters ci and cj to a new cluster cp by
C ← C ∪ {cp} − {ci, cj} with s(cp) ← s(ci) + s(cj), and add it to T with V ← V ∪ {cp}.

Introduce new edges E ← E ∪ {(cp, ci), (cp, cj)} with δ ((cp, ci))← δ ((cp, cj))←
∆ij

2 . Then
compute the distances from cp to all clusters ck ∈ C with k 6= i, j:

20.5. PHYLOGENETIC TREES 637

∆pk ← ∆kp ←
s(ci)

s(cp)
·∆ik +

s(cj)

s(cp)
·∆jk (20.1)

At the end of the iteration delete the two columns i and j and the two rows i and j in ∆.
If ∆ is an ultrametric matrix, then UPGMA guarantees for the unique way W between

any two nodes vi, vj ∈ V :
∑

e∈W δ(e) = ∆ij and T is said to be ultrametric, too. Otherwise,
UPGMA is a heuristic.

Another common phenetic approach is theO
(

|A|3
)

time “Neighbor-Joining” (NJ) method
[SN87] which is an enhancement of UPGMA especially for protein and nucleotide data
(DNA does not evolute by accident, but follows some constraints which can be included in
the computation of NJ). The idea of NJ is to join clusters which are not only close to each
other, but also far from the rest. The initialization is the same as in UPGMA, whereas
the iteration for |C| > 2 is the following: For each cluster ci compute the mean distance
to an arbitrary other cluster ck ∈ C by d(ci) ←

∑

k 6=i
∆ik

|C|−2 . Find two closest clusters

ci 6= cj with least ∆ij − (d(ci) + d(cj)). Join the clusters ci and cj to a new cluster cp
by C ← C ∪ {cp} − {ci, cj}, and add it to T with V ← V ∪ {cp}. Introduce new edges
E ← E ∪{(cp, ci), (cp, cj)} with lengths as shown in (20.2) and compute the distances from
cp to all clusters ck ∈ C with k 6= i, j with (20.3).

δ ((cp, ci))←
1

2
∆ij +

1

2
(d(ci)− d(cj)) , δ ((cp, cj))←

1

2
∆ij +

1

2
(d(cj)− d(ci)) (20.2)

∆pk ← ∆kp ←
∆ik +∆jk −∆ij

2
(20.3)

Delete the two columns and the two rows i and j in ∆. If |C| = 2, i.e., C = {cs, ct}, then
connect cs, ct ∈ V by E ← E ∪ {(cs, ct)} with δ ((cs, ct))← ∆st and stop.

A typical representative of the cladistic category is the “Maximum Parsimony” (MP)
method. The idea is to define the (non-unique) tree T as optimal, which posits fewest
mutations as possible. For the “Small Parsimony” problem the topology of T is already
given and only the labels l(v) =

⋃

1≤j≤|M | lj(v) of the inner nodes v ∈ V , i.e., the po-

sition lj(v) of each characteristic mj ∈ M has to be determined. It can be solved in
O (|A||M | ·max { | dom(mj)| | mj ∈M }) time [Fit71], where dom(mj) is the set of all pos-
sible values which a taxon can adopt for mj . A solution is the following algorithm: Assign
each vi ∈ V for each mj ∈ M in a postorder traversal of T a set Sj(vi) ⊆ dom(mj) with
(20.4), where w1, w2 ∈ V are the children of vi.

Sj(vi)←

Γij , if vi is a leaf,

Sj(w1) ∩ Sj(w2), if Sj(v1) ∩ Sj(v2) 6= ∅,

Sj(w1) ∪ Sj(w2), otherwise.

(20.4)

In a subsequent preorder traversal of T for each node v ∈ V which has a parent u with
lj(u) ∈ Sj(v) set lj(v) ← lj(u). If no such u exists or v is a leaf set lj(v) to an arbitrary
element of Sj(v). The number of (independent) mutations in T is equal to how many times
the third item of (20.4) was used.

In the “Weighted Small Parsimony” version the probability of different mutations is not
unique, i.e., pj(a, b) defines the “price” of a change for a characteristic mj ∈M from state
a ∈ dom(mj) to b ∈ dom(mj). The goal is not to minimize the number of mutations, but
the sum of their prizes while the topology of T again is given. For that we present the
O (|A||M | ·max { | dom(mj)| | mj ∈M }) time algorithm [San75], which is a generalization

638 CHAPTER 20. BIOLOGICAL NETWORKS

of [Fit71]: Assign in a postorder traversal of T to each vi ∈ V quantities Sj (vi, tk(mj))
for each mj and all values tk(mj) ∈ dom(mj) with (20.5) for a leaf vi and (20.6) for an
internal node vi, where w1, w2 ∈ V are the children of vi. Considering only mutations of
characteristic mj , then Sj (v, tk(mj)) is the minimum total cost for the subtree rooted at
vi if lj(vi) was set to tk(mj).

Sj (vi, tk(mj))←

{

0, if Γij = tk(mj),

∞, otherwise.
(20.5)

Sj (vi, tk(mj))← min {pj (tk(mj), t) + Sj(w1, t) | tk(mj) 6= t ∈ dom(mj)}

+min {pj (tk(mj), t) + Sj(w2, t) | tk(mj) 6= t ∈ dom(mj)}
(20.6)

The minimum total cost of T with root r is
∑

mj∈M min {Sj(r, t) | t ∈ dom(mj) }. In a
subsequent preorder traversal of T update the labels of each vi ∈ V , where u is the parent
of vi:

lj(vi)←

{

arg min {Sj(r, t) | t ∈ dom(mj) } , if vi = r,

arg min {pj (lj(u), t) + Sj(vi, t) | t ∈ dom(mj)} , otherwise.
(20.7)

In contrast to the above, the “Large Parsimony” problem, where the topology of T is not
given, is NP-hard, regardless if discrete or weighted. However, there are some heuristics,
e.g., [HP82] which uses branch&bound to find the cheapest tree T among all trees. This
approach guarantees to find T , but its time complexity is in the worst case exponential in |A|
(exhaustive search). Another heuristic is “Nearest Neighbor Interchange” (NNI) [MGB73],
which defines a relation between each pair of trees and then uses well-known concepts like
greedy algorithms or simulated annealing to find a (local) optimum.

Given a tree T with known edge lengths δ, the likelihood of T is P (M |T). It is a statistical
measure of how well it describes the biological data. Let Pa→b (δ(e)) be the probability
that character a ∈ dom(mj) will transform to b ∈ dom(mj) within the time δ(e), P (a) be
character frequency of a ∈ dom(mj) fixed throughout biological history, L be the set of all
reconstructions of T , i.e., all full labelings of internal nodes, and r ∈ V be the root of T .
Then [Fel73]:

P (M |T) =
∏

j∈M

∑

l∈L

(P (lj(r)) ·
∏

(u,v)inE

Plj(u)→lj(v) (δ ((u, v)))

 (20.8)

If the character substitution is reversible, i.e., Pa→b (δ(e)) = Pb→a (δ(e)), then T is un-
rooted and r can be chosen arbitrarily without changing P (M |T). The “Maximum Likeli-
hood” method (ML) [Fel73] computes the likelihood of a tree with dynamic programming
in O (|A||M | ·max { | dom(mj)| | mj ∈M }) time, i.e., it computes the likelihood of each
bifurcation and declares the tree with the greatest sum of likelihoods as the best. There are
also statistical methods for computing the optimum edge lengths δ for a given tree T with
regard to a maximum tree likelihood [SL99].

The topology of T is fixed. However, there is in most cases the freedom of permutation
of each node’s children and thus there are 2|V |−1 possible linear leaf orderings consistent
with the structure of a binary T . From a biological view it makes sense to order the leaves
such that similar leaves are close together. Remember, the dissimilarity of each pair of
leaves is stored in the distance matrix ∆. Therefore, the goal is to minimize the sum of
the lengths of the ways from each leaf to each other. In an optimal tree the lengths of

20.5. PHYLOGENETIC TREES 639

all ways correspond exactly to the entries in ∆. Since in the general case no such optimal
tree exists (∆ represents a complete graph and not only a tree), leaf ordering makes sense.
It can be done, e.g., with the dynamic programming approach [BJDG+03] which needs
O
(

4k|V |3
)

time for a k-ary T . There, an optimal leaf ordering consistent with a binary
tree T is determined by a bottom-up computation of subintervals. Define M(u,wl, wr) to
be the cost of the best linear order of the leaves in the subtree T (u) induced by u ∈ V that
begins with leaf wl and ends with leaf wr. If u is a leaf, then M(u, u, u)← 0. Otherwise, let
v1 and v2 be the children of u such that wl ∈ T (v1) and wr ∈ T (v2). Then the optimality
criterion of (20.9) holds. For a k-ary tree, denote the children of u by v1, . . . , vp, 1 ≤ p ≤ k.
If wl ∈ T (v1) and wr ∈ T (vp), any ordering of v2, . . . , vp−1 is possible. Thus for each of the
p! orderings M(u,wl, wr) is computed in the same way as for binary trees by inserting k−1
internal binary dummy nodes while maintaining the current order.

M(u,wl, wr)←

min {M(v1, wl, ai) + ∆ij +M(v2, bj , wr) | leaf ai ∈ T (v1), leaf bj ∈ T (v2) } (20.9)

20.5.2 Visualization Requirements

As seen earlier, the graphs to visualize are directed (and thus rooted) or undirected trees
T = (V,E, δ) with given edge lengths δ. T is either a binary tree or very similar to a
binary tree, i.e., there are view nodes with a degree higher than three. Irrespectively of
edge direction, T should be laid out hierarchically to visualize the ancestral relationships
between taxons. Since the sum over the edge lengths on the unique path from one taxon
to another is the evolutionary distance, it is desirable to reflect this in the lengths of the
curves drawn for the edges. This means in the most simple case that δ(e) is the curve
length of e ∈ E. Traditional algorithms for drawing trees explicitly do not consider given
edge lengths. They follow aesthetic criteria as edges should have the same length and nodes
of the same depth should be drawn on the same y-coordinate [RT81, Wal90, WS79] or
radius [Ead92]. In most cases the nodes as well as the edges contain labels, which should
be drawn non-overlapping. Further a good layout follows common criteria for graph/tree
layout like no unnecessary edge crossings, compactness, and use of the entire available
drawing area.

As we will see in the next section, some layout methods will use the freedom of permuting
children to generate nice drawings. However, if not especially mentioned, we assume to have
already a fixed leave ordering given.

Although there is need to edit layouts dynamically [Car04a], e.g., collapsing and expand-
ing subtrees or editing annotations, for an easy understanding of large trees, we restrict
ourselves to static layouts for the sake of simplicity. Since there is an ongoing trend to
larger trees, which may contain several hundred thousand of nodes, a layout algorithm
must be efficient.

20.5.3 Layout Methods

The most common layouts for phylogenetic trees are vertical or circular dendrograms or
radial drawings [Car04b]. The typical representatives of the first group are the orthogonal
phylograms (see Figure 20.10), where the tree is drawn hierarchically and from left to right
and thus the vertices vertically from top to bottom. Each edge e = (u, v) has exactly one
bend b at the x-coordinate of u and at the y-coordinate v. The length of the horizontal edge
segment (b, v) represents δ(e). A parent node is vertically placed, e.g., in the middle between

640 CHAPTER 20. BIOLOGICAL NETWORKS

its extremal children or in the arithmetic mean of all its children. Since the topology of
the tree, the horizontal edge lengths, and the leave ordering (and thus the y-coordinates
of the leaves) are already fixed, the layout is already fixed and can be computed by the
O (|V |) time algorithm in Figure 20.11. Phylograms are easy to interpret and leave space
for edge annotations [Car04b]. Cladograms and curvograms drawing edges as straight lines
or splines are subtypes of phylograms and thus are not treated separately.

Input: T = (V,E, δ), y-coordinates of leaves
Output: Coordinates x, y : V → R for the nodes and xb, yb : E → R for the bends
Data: Stack S

r ← root(T)
S.push(r)
x(r)← 0
while !S.isEmpty() do
v ← S.top()
if v has an unmarked child w then

mark w; S.push(w)
xb ((v, w))← x(v)
x(w)← x(v) + δ ((v, w))

else

S.pop()
if v is an internal node then

y(v)← 1
2 (min { y(w) | w is a child of v }+max { y(w) | w is a child of v })

end if

if v 6= r then

u← S.top() {the parent of v}
yb ((u, v))← y(v)

end if

end if

end while

Figure 20.11 Computing coordinates for drawing a phylogram.

Another style of dendrograms is the circle layout , which draws the trees concentric around
the root with an unique radius for the leaves. Again, each edge e = (u, v) bends exactly
once at the radius of the parent u. The “vertical” segment is drawn as a segment of a circle,
whereas the “horizontal” one is an interval of a straight line from the root through the child
v, see Figure 20.13. The algorithm for computing a circle layout is similar to Algorithm 20.11
if treating x as levels (x, xb : V → {0, 1, . . . , height(T)}) with x(r) = 0 and y as angles
(y, yb : V → [0, . . . , 2π]). Instead of the Cartesian coordinates, the algorithm needs the
polar angles of the leaves distributed uniformly on a circle as input. Since the radius now is
unique for all leaves, we set x(w)← x(v)+1 instead of x(w)← x(v)+δ ((v, w)) for each edge
(v, w). This ignores edge lengths δ, however. Another approach [BBS05] which considers
edge lengths is to distribute the leaves uniformly on a circle, to set each inner node v on
the weighted Cartesian barycenter of its parent u and its children W as shown in (20.10),
and to draw each edge as a straight line. See Figure 20.13 for an example. The arising
equation system can be solved in O (|V |) time. Algorithm 20.12 shows the computation in
a unit circle. If reordering of the leaves is acceptable, the postorder traversal of the children
w of each node v can be ordered according to ascending height of T (w) (in terms of δ) plus

20.5. PHYLOGENETIC TREES 641

δ ((v, w)). This should support the algorithm to draw edges with their desired length, but
raises the running time to O (|V | log |V |), however. Since even this cannot guarantee exact
lengths, the edges are colored, i.e., blue color means too short and red color too large, such
that the color saturation reflects the multiplicative failure.

((x(v), y(v))←
(x(u), y(u))

δ ((u, v))
+

∑

w∈W

(x(w), y(w))

δ ((v, w)) · |W |
(20.10)

Input: T = (V,E, δ) with δ(e) > 0 for all edges e
Output: Coordinates x, y : V → R for the nodes
Data: Coefficients c : V → R, offsets d : V → R2, and edge weights s : E → R

for each v ∈ V if deg(v) = 1 then l← l + 1
i← 0
postorder traversal(root(T))
preorder traversal(root(T))

procedure postorder traversal(node v)
for each child w of v do postorder traversal(w) {optionally ordered}
if v is a leaf or (v = root(T) and deg(root(T)) = 1) then

c(v)← 0; d(v)←
(

cos
(

2πi
l

)

, sin
(

2πi
l

))

{fix vertex on circle}
i← i+ 1

else

s← 0
for each adjacent edge e← {u, v} do

if v = root(T) or w is the parent of v then s(e)← 1
δ(e)

else s(e)← 1
δ(e)·(deg(v)−1)

s← s+ s(e)
end for

t← t′ ← 0
for each outgoing edge e← (v, w) do t← t+ s(e)

s
· c(w); t′ ← t′ + s(e)

s
· d(w)

if v 6= root(T) then let e be the incoming edge of v; c(v)← s(e)
s·(1−t)

d(v)← t′

1−t

end if

end procedure

procedure preorder traversal(node v)
if v = root(T) do x(v)← d(v)
else let u be the parent of v; x(v)← c(v) · x(u) + d(v)
for each child w of v do preorder traversal(w)

end procedure

Figure 20.12 Cartesian barycenter method for generating a circle layout.

Circle layouts provide the best use of the available space for trees with more than 100
leaves [Car04b]. Dendrograms in general are a good choice to visualize the leaf ordering.

The second type of drawings are the radial tree drawings [BBS05], which are preferred for
visualizing unrooted trees. Their edges are drawn as straight lines. To obtain coordinates
for the vertices, Algorithm 20.14 traverses T in preorder (here, breadth first search) from
a given root to the leaves. Thereby it assigns each subtree a wedge according to its size,

642 CHAPTER 20. BIOLOGICAL NETWORKS

pseudomona

nico-tab
ac

nico-
syl-

A

ara
bid

op
si

gy
lci

ne
---ch

ar
a-
--
--

b
ry

op
si
s-
-

go
n
iu

m
--
--

ch
la

m
y
d
o
m

o

ch
lo

re
ll
a
-

a
st

a
si
a
--
-

eu
gl

en
a-

--

ra
p
h
id

on
em

oc
hr

om
on

as

cy
no

ph
or

a

co
sci

no
dis

cyc
lote

lla

laminaria-

porphyra--

smithora--

gracilaria

anacystis-
plectonem

a

gloeobacte

m
yco-gen

tl

th
erm

otoga

b
o
rrelia

-b

C
h
la

m
y
d
ia

B

T
th

erm
o
p
h
i

T
aq

u
aticu

s

d
ein

on
em

a-
bacillus--

salm
onella

ecoli-----

micrococcu

shewanella

pseudomona

micrococcu

shewanella

salmonella
ecoli-----bacillus--

m
yco-gen

tl

C
h
lam

yd
iaB

th
erm

otoga

b
o
relia

-b

d
ein

o
n
em

a
-

T
th

erm
o
p
h
i

T
a
q
u
a
tiu

s

plectonem
a

gloeobacte

anacystis-

g
ra

ci
la

ri
a

po
rp

hy
ra

--

sm
ith

or
a-
-

lam
ina

ria
-

cosc
inodia

cyclotella

oc
h
ro

m
on

as
cy

n
op

h
or

a

raphidonem

astasia---

euglena---

b
ry

op
si
s-
-

ch
lo

re
ll
a-

g
o
n
iu

m
--
--

ch
la

m
y
d
o
m

o

chara----
-

nico-
tab

ac

nic
o-s

yl-
A

ar
ab

id
op

si gl
yc

in
e-
--

Figure 20.13 Circle layouts with levels and weighted Cartesian barycenter.

i.e., according to its number of leaves (leafcount). Note that here all degree one vertices are
treated as leaves. Since the wedge sizes are independent of the root, rerooting the tree only
results in a different ordering of the children of the new root.

Input: T = (V,E, δ)
Output: Coordinates x, y : V → R for the nodes
Data: Queue Q, leafcount : V → N+ {from a previous postorder traversal}

r ← root(T)
Q.insert(r)
rightborder(r)← 0
wedgesize(r)← 2π
x(r)← y(r)← 0
while !Q.isEmpty() do
v ← Q.delete first()
η ← rightborder(v)
for each child w of v do

Q.insert(w)
rightborder(w)← η

wedgesize(w)← 2π·leafcount(w)
leafcount(r)

α← rightborder(w) + wedgesize(w)
2

x(w)← x(v) + cos(α) · δ ((v, w)); y(w)← y(v) + sin(α) · δ ((v, w))
η ← η +wedgesize(w)

end for

end while

Figure 20.14 Computing coordinates for drawing of radial tree drawings.

Clearly, Algorithm 20.14 has an O (|V |) running time if newly discovered children are
distributed in random order around their parent, e.g., as they occur in the adjacency list.
Advanced versions use the freedom of reordering the children. The first aims to reach a
symmetric layout: For each child v the metric of (20.11) is computed with a postorder

20.5. PHYLOGENETIC TREES 643

traversal of T . It is a measure of how far the biological development goes on in the induced
subtree of v. Alternating, depending on the depth of the parent node, the child with higher
value is drawn on the left or on the right side of the corresponding wedge. If the parent
has more than two children, then the child with highest value is drawn in the middle and
the other children on its left and right side according to descending m. The second method
is to put evolutionary closely related children on near positions. For this (20.12) is used
to order the children ascending according to average distance of the leaves in the induced
subtree to the parent. However, in both cases the running time raises to O (|V | log |V |) and
ordering of children makes no sense for UPGMA-trees, since each child will have the same
m-value.

m(v)←

{

δ ((u, v)) , if v is a leaf,

δ ((u, v)) + max {m(w) | w is a child of v } , otherwise.
(20.11)

m(v)←

{

δ ((u, v)) , if v is a leaf,
∑

(v,w)(δ((u,v))+m(w))

|{w|w is a child of v }| , otherwise.
(20.12)

pseudomona

nic
o-t

ab
ac

nic
o-s

yl-
A

arabidopsigylcine---
ch

ar
a-

-

br
yo

ps
is
--

go
n
iu

m
--
--

ch
la
m

yd
om

o

ch
lo

re
ll
a
-

eu
g
le

n
a
--
-

ra
p
h
id

on
em

oc
h
ro

m
on

as

cy
no

ph
or

a

co
sc
in
od

is

cy
clo

tel
la

lam
inaria

-

porphyra--
smithora--

gracilaria

anacystis-

plectonem
a

gloeobacte

m
yco-gentl

th
erm

o
to

g
a

b
o
rrelia

-b

C
h
lam

yd
iaB

T
th

erm
o
p
h
i

T
a
q
u
a
ticu

s

d
ein

on
em

a-
bacillus--

salm
onella

ecoli-----

micrococcu

shewanella

a
st

a
si

a
--
-

pseudomona

nic
o-t

ab
ac

ni
co

-sy
l-A

arabidopsi

gylcine---

ch
ar

a-
--
--

b
ry

op
si
s-
-

g
o
n
iu

m
--
--

ch
la

m
y
d
o
m

o

ch
lo

re
ll
a
-

a
st

a
si

a
--
-

eu
g
le

n
a
--
-

ra
p
h
id

o
n
em

o
ch

ro
m

o
n
a
s

cy
n
o
p
h
o
ra

co
sc

in
od

is
cy

cl
ot

el
la

la
m

in
ar

ia
-

po
rp

hy
ra

--

sm
it
ho

ra
--

gr
ac

ila
ri
a

an
ac

ys
tis

-

plectonema gloeobacte

myco-gentl

th
erm

otoga

borrelia-b

Chlam
ydiaB

T
th

erm
op

h
i

T
aquaticus

d
ein

on
em

a-

b
acillu

s--

sa
lm

o
n
ella

micrococcu

shewanella

eco
li-----

Figure 20.15 Radial tree layout with the same root as in Figure 20.10 and leaf reordering
for drawing those closely related near. The right drawing is with spreading.

A lot of space is wasted by simply giving the wedge for a child v from the parent u
to v, i.e., the area between the pairwise parallel wedge borders. This can be avoided by
spreading (the subtrees induced by) the children w of v to use the full wedge of v originated
at u and not at v except of a small buffer. Spreading is done in a postprocessing step
and needs O

(

|V |2
)

time. Each label is drawn as an extension of the incoming edge of the
corresponding leaf, i.e., in the corresponding wedge. To leave space for labels in spreaded
layouts, the lengths of the labels are added to the δ values of the respective incoming edges,

644 CHAPTER 20. BIOLOGICAL NETWORKS

for computation only. Another more simple solution is to draw the labels with an angle of a
ray from the root through the leaves. Figure 20.15 shows a standard and a spreaded layout
of our running example. To overcome the problem of zero edge lengths, e.g., incoming edges
of ecoli----- or nico-tabac and nico-syl-A, a user definable minimum edge length is useful to
indicate edges and to simplify the labeling.

20.6 Discussion

In this chapter we discussed the visualization of biological networks. We focused on im-
portant networks closely related to molecular biology: gene regulatory, signal transduction,
protein-protein interaction and metabolic networks. Furthermore, we studied the visualiza-
tion of phylogenetic trees, hierarchies which are often built on information from molecular
biology such as DNA or protein sequences. However, there are many more networks in
biology: ecological networks such as food-webs, biological data analysis networks such as
correlation networks, and neuronal networks to name just a few. Moreover, even for the
networks discussed we presented only some visualization aspects.

Other topics of particular importance in the visualization of biological networks are,
for example, visual network comparison, exploration of network based phylogenetic trees,
visualization of data in the network context, and the exploration of integrated networks.
The same network often has to be compared in different organisms for applications such
as drug discovery and evolutionary studies. Several methods for the visual comparison of
biological networks, especially metabolic pathways, have been already developed [BDS04b,
GHM+02, Sch03], see also Figure 20.16. Differences in the network between different species
can be used to compute phylogenetic trees [MZ04, HS03] and methods for the interactive
visualization and triangulation of this complex structure (a tree built over networks) have
been developed [BDS04a].

Advances in high-throughput methods such as metabolite profiling and automatized en-
zyme assays have increased the need for automatized data analysis and visual exploration

Figure 20.16 Visual comparison of metabolic pathways in 2 1
2 dimensions.

20.6. DISCUSSION 645

techniques to deduct biologically meaningful interpretations from the large amount of ex-
perimental data. The visualization of these data-rich networks provides new challenges
for algorithms such as the consideration of complex graphical elements and of different
node sizes. There is an increasing amount of approaches which look into this area, early
approaches were, for example, [BHK+05, DRS04, JKS06, TSS+05], and a comparison is
given in [KAO+09]. Also, the integration of different networks is increasingly important.
Elements of one biological network often belong to several networks. For example, a pro-
tein of a protein-protein interaction network may be an enzyme of a metabolic network,
an element of a gene regulatory network, or a leaf of a phylogenetic tree. This complex
structure of interwoven networks requires new visualization and exploration methods which
are the topic of current research. Finally, the standardization of the visual representation
of elements of biological networks has been the focus of recent developments. The Systems
Biology Graphical Notation (SBGN) [LHM+09] provides a set of standards for graphically
representing biological information. It can be considered as the biology equivalent of the
circuit diagram in electronics. The standard also contains layout requirements for SBGN
maps.

A detailed presentation of the above-mentioned and newly emerging topics would easily
fill not only another chapter, but a book. Biological network visualization is growing at an
extremely fast pace. However, our sole intention in this chapter was to raise awareness of the
relevance of graph drawing for the area of biological networks and provide an introduction
to this topic. The interested reader is referred to journals such as Bioinformatics and BMC
Bioinformatics as well as newly founded conferences such as VIZBI (since 2010) or IEEE
BioVis (since 2011) for ongoing developments.

646 CHAPTER 20. BIOLOGICAL NETWORKS

References

[ABH94] R. D. Appel, A. Bairoch, and D. F. Hochstrasser. A new generation of
information retrieval tools for biologists: The example of the ExPASy
WWW server. Trends Biochemical Sciences, 19:258–260, 1994.

[Bas99] W. Basalaj. Incremental multidimensional scaling method for database
visualization. In R. F. Erbacher, P. C. Chen, and C. M. Wittenbrink,
editors, Visual Data Exploration and Analysis VI (Proc. SPIE), volume
3643 of Proceedings of SPIE, pages 149–158, 1999.

[Bax03] A. D. Baxevanis. The molecular biology database collection: 2003 up-
date. Nucleic Acids Research, 31(1):1–12, 2003.

[BBS05] C. Bachmaier, U. Brandes, and B. Schlieper. Drawings of phylogenetic
trees (extended abstract). In X. Deng and D. Du, editors, Algorithms
and Computation, Proc. ISAAC 2005, volume 3827 of LNCS, pages 1110–
1121. Springer, 2005.

[BDH03] G. D. Bader, D. Betel D, and C. W. Hogue. BIND: the biomolecular
interaction network database. Nucleic Acids Research, 31(1):248–250,
2003.

[BDS04a] U. Brandes, T. Dwyer, and F. Schreiber. Visual triangulation of network-
based phylogenetic trees. In O. Deussen, C. Hansen, D. Keim, and
D. Saupe, editors, Data Visualization (Proc. VisSym’04), pages 75–84.
Eurographics Association, 2004.

[BDS04b] U. Brandes, T. Dwyer, and F. Schreiber. Visual understanding of
metabolic pathways across organisms using layout in two and a half di-
mensions. Journal of Integrative Bioinformatics, 1:2 (EPub), 2004.

[BE99] W. Basalaj and K. Eilbeck. Straight-line drawings of protein interactions
(system demonstration). In J. Kratochv́ıl, editor, Graph Drawing (Proc.
GD ’99), volume 1731 of Lecture Notes Comput. Sci., pages 259–266.
Springer-Verlag, 1999.

[BFP+04] F. J. Brandenburg, M. Forster, A. Pick, M. Raitner, and F. Schreiber.
Graph Drawing Software, chapter BioPath – Exploration and Visualiza-
tion of Biochemical Pathways, pages 215–236. Springer Mathematics and
Visualization Series, 2004.

[BHK+05] L. Borisjuk, M.-R. Hajirezaei, C. Klukas, H. Rolletschek, and
F. Schreiber. Integrating data from biological experiments into metabolic
networks with the DBE information system. In Silico Biology, 5(2):93–
102, 2005.

[BJDG+03] Z. Bar-Joseph, E. D. Demaine, D. K. Gifford, A. M. Hamel, T. S.
Jaakkola, and N. Srebro. K-ary clustering with optimal leaf ordering
for gene expression data. Bioinformatics, 19(9):1070–1078, 2003.

[BM02] V. Batagelj and A. Mrvar. Pajek – analysis and visualization of large
networks. In P. Mutzel, M. Jünger, and S. Leipert, editors, Graph Draw-
ing (Proc. GD ’01), volume 2265 of Lecture Notes Comput. Sci., pages
477–478, 2002.

[BR01] M. Y. Becker and I. Rojas. A graph layout algorithm for drawing
metabolic pathways. Bioinformatics, 17(5):461–467, 2001.

REFERENCES 647

[Cam96] N. A. Campbell. Biology. The Benjamin-Cummings Publishing Com-
pany, 1996.

[Car04a] S. F. Carrizo. Phylogenetic trees: An information visualization perspec-
tive. In Y.-P. Phoebe Chen, editor, Bioinformatics (Proc. APBC 2004),
volume 29 of Conf. Res. Pract. Inform. Techn., pages 315–320, 2004.

[Car04b] S. F. Carrizo. A survey of phylogenetic researchers: Re-
sults. http://www.cs.usyd.edu.au/~scarrizo/Carrizo_

PhylogeneticsSurveyResults.doc, January 2004.

[CG10] G. R. Cochrane and M. Y. Galperin. The 2010 Nucleic Acids Research
database issue and online database collection: a community of data re-
sources. Nucleic Acids Research, 38:D1–D4, 2010.

[DBD+02] E. Demir, O. Babur, U. Dogrusöz, A. Gürsoy, G. Nisanci, R. Çetin Ata-
lay, and M. Ozturk. PATIKA: an integrated visual environment for col-
laborative construction and analysis of cellular pathways. Bioinformatics,
18(7):996–1003, 2002.

[DETT99] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing.
Prentice Hall, Upper Saddle River, NJ, 1999.

[DRS04] T. Dwyer, H. Rolletschek, and F. Schreiber. Representing experimental
biological data in metabolic networks. In Y. P. Chen, editor, Bioinfor-
matics (Proc. APBC’04), volume 29 of Conf. Res. Pract. Inform. Techn.,
pages 13–20, 2004.

[DS04] T. Dwyer and F. Schreiber. Optimal leaf ordering for two and a
half dimensional phylogenetic tree visualization. In N. Churcher and
C. Churcher, editors, Information Visualisation (Proc. invis.au 2004),
volume 35 of Conf. Res. Pract. Inform. Techn., pages 109–115, 2004.

[Ead84] P. Eades. A heuristic for graph drawing. Congr. Numer., 42:149–160,
1984.

[Ead92] P. D. Eades. Drawing free trees. Bulletin of the Institute for Combina-
torics and its Applications, 5:10–36, 1992.

[EGK+01] J. Ellson, E. R. Gansner, E. Koutsofios, S. C. North, and G. Woodhull.
Graphviz – open source graph drawing tools. In P. Mutzel, M. Jünger,
and S. Leipert, editors, Graph Drawing (Proc. GD’01), volume 2265 of
Lecture Notes Comput. Sci., pages 483–484, 2001.

[EH00] P. Eades and M. L. Huang. Navigating clustered graphs using force-
directed methods. Journal of Graph Algorithms Applications, 4(3):157–
181, 2000.

[EHW00] L. B. Ellis, C. D. Hershberger, and L. P. Wackett. The university of min-
nesota biocatalysis/biodegradation database: Microorganisms, genomics
and prediction. Nucleic Acids Research, 28(1):377–379, 2000.

[Fel73] J. Felsenstein. Maximum likelihood and minimum-steps methods for es-
timating evolutionary trees from data on discrete characters. Systematic
Zoology, 22:240–249, 1973.

[Fel95] J. Felsenstein. The newick tree format. http://evolution.gs.

washington.edu/phylip/newicktree.html, 1995.

[Fit71] W. M. Fitch. Toward defining the course of evolution: Minimum change
for a specified tree topology. Systematic Zoology, 20:406–416, 1971.

648 CHAPTER 20. BIOLOGICAL NETWORKS

[FLM95] A. Frick, A. Ludwig, and H. Mehldau. A fast adaptive layout algorithm
for undirected graphs. In R. Tamassia and I. G. Tollis, editors, Graph
Drawing (Proc. GD ’94), volume 894 of Lecture Notes Comput. Sci.,
pages 388–403. Springer-Verlag, 1995.

[For04] M. Forster. A fast and simple heuristic for constrained two-level crossing
reduction. In Graph Drawing (Proc. GD’04), volume 3383 of Lecture
Notes Comput. Sci., pages 206–216, 2004.

[FR91] T. Fruchterman and E. Reingold. Graph drawing by force-directed place-
ment. Softw. – Pract. Exp., 21(11):1129–1164, 1991.

[FS03] C. Friedrich and F. Schreiber. Visualisation and navigation methods
for typed protein-protein interaction networks. Applied Bioinformatics,
2(S3):19–24, 2003.

[FS04] C. Friedrich and F. Schreiber. Flexible layering in hierarchical drawings
with nodes of arbitrary size. In V. Estivill-Castro, editor, Computer
Science (Proc. ACSC 2004), volume 26 of Conf. Res. Pract. Inform.
Techn., pages 369–376, 2004.

[GBWK+08] E. Grafahrend-Belau, S. Weise, D. Koschützki, U. Scholz, B. H. Junker,
and F. Schreiber. MetaCrop – a detailed database of crop plant
metabolism. Nucleic Acids Research, 36:D954–D958, 2008.

[GD06] B. Genc and U. Dogrusöz. A layout algorithm for signaling pathways.
Information Sciences, 176:135–149, 2006.

[GHM+02] A. Goesmann, M. Haubrock, F. Meyer, J. Kalinowski, and R. Giegerich.
PathFinder: reconstruction and dynamic visualization of metabolic path-
ways. Bioinformatics, 18(1):124–129, 2002.

[HJP02] K. Han, B.-H. Ju, and J. H. Park. InterViewer: Dynamic visualization
of protein-protein interactions. In M. T. Goodrich and S. G. Kobourov,
editors, Graph Drawing (Proc. GD ’02), volume 2528 of Lecture Notes
Comput. Sci., pages 364–365. Springer-Verlag, 2002.

[HMWD04] Z. Hu, J. Mellor, J. Wu, and C. DeLisi. VisANT: an online visualization
and analysis tool for biological interaction data. BMC Bioinformatics,
5(1):17 (EPub), 2004.

[HP82] M. D. Hendy and D. Penny. Branch and bound algorithms to determine
minimal evolutionary trees. Mathematical Bioscience, 60:133–142, 1982.

[HS03] M. Heymans and A. K. Singh. Deriving phylogenetic trees from the simi-
larity analysis of metabolic pathways. Bioinformatics, 19(Suppl. 1):138–
146, 2003.

[HT98] R. Hofestädt and S. Thelen. Qualitative modeling of biochemical net-
works. In Silico Biology, 1(1):39–53, 1998.

[Int92] International Union of Biochemistry and Moleculare Biology, Nomencla-
ture Commitee. Enzyme Nomenclature. Academic Press, 1992.

[JKS06] B. H. Junker, C. Klukas, and F. Schreiber. VANTED: A system for
advanced data analysis and visualization in the context of biological net-
works. BMC Bioinformatics, 7:109, 2006.

[KAO+09] N. Kono, K. Arakawa, R. Ogawa, N. Kido, K. Oshita, K. Ikegami,
S. Tamaki, and M. Tomita. Pathway Projector: Web-based zoomable
pathway browser using KEGG atlas and Google Maps API. PLoS ONE,
4(11):e7710, 2009.

REFERENCES 649

[Kel00] E. F. Keller. The Century of the Gene. Harvard University Press, 2000.

[KGH+06] M. Kanehisa, S. Goto, M. Hattori, K. F. Aoki-Kinoshita, M. Itoh,
S. Kawashima, T. Katayama, M. Araki, and M. Hirakawa. From ge-
nomics to chemical genomics: new developments in KEGG. Nucleic
Acids Research, 34:D354–357, 2006.

[KGKN02] M. Kanehisa, S. Goto, S. Kawashima, and A. Nakaya. The KEGG
databases at GenomeNet. Nucleic Acids Research, 30(1):42–46, 2002.

[KK89] T. Kamada and S. Kawai. An algorithm for drawing general undirected
graphs. Inform. Process. Lett., 31:7–15, 1989.

[KLSW94] P. D. Karp, J. Lowrance, T. Strat, and D. Wilkins. The Grasper-CL
graph management system. LISP and Symbolic Computation, 7:245–282,
1994.

[KN95] E. Koutsofios and S. North. Drawing graphs with dot. Technical report,
AT&T Bell Laboratories, Murray Hill, NJ., 1995. Available from http:

//www.research.bell-labs.com/dist/drawdag.

[KP94] P. D. Karp and S. M. Paley. Automated drawing of metabolic pathways.
In H. Lim, C. Cantor, and R. Bobbins, editors, Proc. of the 3rd In-
ternational Conference on Bioinformatics and Genome Research, pages
225–238, 1994.

[KPR02] P. D. Karp, S. M. Paley, and P. Romero. The pathway tools software.
Bioinformatics, 18(Suppl. 1):S225–S232, 2002.

[KRS+00] P. D. Karp, M. Riley, M. Saier, I. Paulsen, S. M. Paley, and A. Pellegrini-
Toole. The EcoCyc and MetaCyc database. Nucleic Acids Research,
28(1):56–59, 2000.

[KVC+03] M. Krull, N. Voss, C. Choi, S. Pistor, A. Potapov, and E. Wingender.
TRANSPATH: an integrated database on signal transduction and a tool
for array analysis. Nucleic Acids Research, 31:97–100, 2003.

[KWLF01] F. Kose, W. Weckwerth, T. Linke, and O. Fiehn. Visualizing plant
metabolomic correlation networks using clique-metabolite matrices.
Bioinformatics, 17(12):1198–1208, 2001.

[LHM+09] N. Le Novère, M. Hucka, H. Mi, S. Moodie, F. Schreiber, A. Sorokin,
E. Demir, K. Wegner, M. Aladjem, S. M. Wimalaratne, F. T. Bergman,
R. Gauges, P. Ghazal, K. Hideya, L. Li, Y. Matsuoka, A. Villéger, S. E.
Boyd, L. Calzone, M. Courtot, U. Dogrusoz, T. Freeman, A. Funa-
hashi, S. Ghosh, A. Jouraku, S. Kim, F. Kolpakov, A. Luna, S. Sahle,
E. Schmidt, S. Watterson, G. Wu, I. Goryanin, D. B. Kell, C. Sander,
H. Sauro, J. L. Snoep, K. Kohn, and H. Kitano. The Systems Biology
Graphical Notation. Nature Biotechnology, 27:735–741, 2009.

[LNC93] A. L. Lehninger, D. L. Nelson, and M. M. Cox. Principles of Biochem-
istry. Worth Publisher, 1993.

[MBF+00] P. Mendes, D. L. Bulmore, A. D. Farmer, P. A. Steadman, M. E. Waugh,
and S. T. Wlodek. PathDB: a second generation metabolic database. In
J.-H. S. Hofmeyr, J. M. Rohwer, and J. L. Snoep, editors, Proc. of the 9th
International BioThermoKinetics Meeting, pages 207–212. Stellenbosch
University Press, 2000.

[MdRW03] E. Minch, M. de Rinaldis, and S. Weiss. pathSCOUT: exploration and
analysis of biochemical pathways. Bioinformatics, 19(3):431–432, 2003.

650 CHAPTER 20. BIOLOGICAL NETWORKS

[Men00] P. Mendes. Advanced visualization of metabolic pathways in PathDB.
In Proc. of the 8th Conference on Plant and Animal Genome, 2000.

[MGB73] G. W. Moore, M. Goodman, and J. Barnabas. A method for constructing
maximum parsimony ancestral amino acid sequences on a given network.
Journal of Theoretical Biology, 38(3):459–483, 1973.

[Mic93] G. Michal. Biochemical Pathways (Poster). Boehringer Mannheim, 1993.

[Mic98] G. Michal. On representation of metabolic pathways. BioSystems, 47:1–
7, 1998.

[Mic99] G. Michal. Biochemical Pathways. Spektrum Akademischer Verlag, 1999.

[MS57] C. D. Michener and R. R. Sokal. A quantitative approach to a problem
in classification. Evolution, 11:130–162, 1957.

[MZ03] H. Ma and A.-P. Zeng. Reconstruction of metabolic networks from
genome data and analysis of their global structure for various organisims.
Bioinformatics, 19(2):270–277, 2003.

[MZ04] H. W. Ma and A. P. Zeng. Phylogenetic comparison of metabolic capaci-
ties of organisms at genome level. Molecular Phylogenetics and Evolution,
31(1):204–213, 2004.

[NEDM03] A. Nikitin, S. Egorov, N. Daraselia, and I. Mazo. Pathway studio
– the analysis and navigation of molecular networks. Bioinformatics,
19(16):2155–2157, 2003.

[Nic97] D. E. Nicholson. Metabolic Pathways Map (Poster). Sigma Chemical
Co., St. Louis, 1997.

[NIS90] F. C. Neidhardt, J. L. Ingraham, and M. Schaechter. Physiology of the
Bacterial Cell: A Molecular Approach. Sinauer Associates, 1990.

[OLP+00] R. A. Overbeek, N. Larsen, G. D. Pusch, M. D’Souza, E. Selkov Jr.,
N. Kyrpides, M. Fonstein, N. Maltsev, and E. Selkov. WIT: integrated
system for high-throughput genome sequence analysis and metabolic re-
construction. Nucleic Acids Research, 28(1):123–125, 2000.

[RML93] V. N. Reddy, M. L. Mavrovouniotis, and M. N. Liebman. Petri net repre-
sentations of metabolic pathways. In L. Hunter, D. Searls, and J. Shav-
lik, editors, Intelligent Systems for Molecular Biology (Proc. ISMB ’93),
pages 328–336, 1993.

[Roj03] I. Rojdestvenski. Metabolic pathways in three dimensions. Bioinformat-
ics, 19(18):2436–2441, 2003.

[RT81] E. Reingold and J. Tilford. Tidier drawing of trees. IEEE Trans. Softw.
Eng., SE-7(2):223–228, 1981.

[San75] D. D. Sankoff. Minimal mutation trees of sequences. SIAM J. Appl.
Math., 28:35–42, 1975.

[San95] G. Sander. Graph layout through the VCG tool. In R. Tamassia and I. G.
Tollis, editors, Graph Drawing (Proc. GD ’94), volume 894 of Lecture
Notes Comput. Sci., pages 194–205. Springer-Verlag, 1995.

[Sch02] F. Schreiber. High quality visualization of biochemical pathways in
BioPath. In Silico Biology, 2(2):59–73, 2002.

[Sch03] F. Schreiber. Visual comparison of metabolic pathways. Journal of Visual
Languages and Computing, 14(4):327–340, 2003.

REFERENCES 651

[SDMW09] F. Schreiber, T. Dwyer, K. Marriott, and M. Wybrow. A generic al-
gorithm for layout of biological networks. BMC Bioinformatics, 10:375,
2009.

[SL99] G. Shavit and C. Linhart. Algorithms for molecular biology, chap-
ter 9. http://http://www.math.tau.ac.il/~rshamir/algmb/98/

scribe/pdf/lec09.pdf, January 1999.

[SMKS99] W. Salamonsen, K. Y. Mok, P. Kolatkar, and S. Subbiah. BioJAKE: A
tool for the creation, visualization and manipulation of metabolic path-
ways. In Proc. of the 4th Pacific Symposium on Biocomputing, pages
392–400, 1999.

[SMO+03] P. Shannon, A. Markiel, O. Ozier, N. S. Baliga, J. T. Wang, D. Ram-
age, N. Amin, B. Schwikowski, and T. Ideker. Cytoscape: a software
environment for integrated models of biomolecular interaction networks.
Genome Research, 13(11):2498–2504, 2003.

[SN87] N. Saitou and M. Nei. The neighbor-joining method: A new method
for reconstructing phylogenetic trees. Molecular Biology and Evolution,
4(4):406–425, 1987.

[SSE+02] M. Sirava, T. Schäfer, M. Eiglsperger, M. Kaufmann, O. Kohlbacher,
E. Bornberg-Bauer, and H.-P. Lenhof. BioMiner – modeling, analyz-
ing, and visualizing biochemical pathways and networks. Bioinformatics,
18(S2):S219–S230, 2002.

[STT81] K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understanding
of hierarchical systems. IEEE Trans. Syst. Man Cybern., SMC-11(2):109–
125, 1981.

[TSS+05] T. Tokimatsu, N. Sakurai, H. Suzuki, H. Ohta, K. Nishitani, T. Koyama,
T. Umezawa, N. Misawa, K. Saito, and D. Shibatanenell. KaPPA-View. a
web-based analysis tool for integration of transcript and metabolite data
on plant metabolic pathway maps. Plant Physiology, 138:1289–1300,
2005.

[Wal90] J. Q. Walker II. A node-positioning algorithm for general trees. Softw.
– Pract. Exp., 20(7):685–705, 1990.

[Wal02] C. Walshaw. A multilevel algorithm for force-directed graph drawing. In
J. Marks, editor, Graph Drawing (Proc. GD ’01), volume 1984 of Lecture
Notes Comput. Sci., pages 171–182. Springer-Verlag, 2002.

[WB01] U. Wittig and A. De Beuckelaer. Analysis and comparison of metabolic
pathway databases. Briefings in Bioinformatics, 2(2):126–142, 2001.

[WEK01] R. Wiese, M. Eiglsperger, and M. Kaufmann. yFiles: Visualization and
automatic layout of graphs. In P. Mutzel, M. Jünger, and S. Leipert,
editors, Graph Drawing (Proc. GD’01), volume 2265 of Lecture Notes
Comput. Sci., pages 453–454, 2001.

[WS79] C. Wetherell and A. Shannon. Tidy drawing of trees. IEEE Trans. Softw.
Eng., SE-5(5):514–520, 1979.

[XFS+01] I. Xenarios, E. Fernandez, L. Salwinski, X.J. Duan, M. J. Thompson,
E. M. Marcotte, and D. Eisenberg. DIP: The database of interaction
proteins: 2001 update. Nucleic Acids Research, 29(1):239–241, 2001.

21
Computer Security

Olga Ohrimenko
Brown University

Charalampos
Papamanthou
University of California,

Berkeley

Bernardo Palazzi
Brown University and Italian

National Institute of Statistics

21.1 Introduction . 653
Motivation • Chapter Organization

21.2 Network Monitoring . 656
Intrusion Detection • Traffic Analysis • Internal vs. External
Hosts • Similarity Analysis for Traffic Logs and Scans •

Visualization of Address Space • Visualization of Name
Server Migration

21.3 Border Gateway Protocol . 665
Topology of Autonomous Systems • BGP Monitoring • BGP
Evolution

21.4 Access Control . 668
Rule-Based Access Control • File System Access-Control •

Trust Negotiation • Privacy Settings in Social Networks

21.5 Attack Graphs . 672
Model • Tools

21.6 Private Graph Drawing. 673
Compressed Scanning • Data-Oblivious Drawing Algorithms

Acknowledgments . 675
References . 676

21.1 Introduction

As the number of devices connected to the Internet continues to grow rapidly and software
systems are being increasingly deployed on the Web, security and privacy have become
crucial properties for networks and applications. Because of the complexity and subtlety
of cryptographic methods and protocols, software architects and developers often fail to
incorporate security principles in their designs and implementations. Also, most users
have minimal understanding of security threats. While several tools for developers, system
administrators, and security analysts are available, these tools typically provide information
in the form of textual logs or tables, which are cumbersome to analyze. Thus, in recent years,
the field of security visualization has emerged to provide novel ways to display security-
related information, thus making such information easier to understand.

Securing computers and cyberspace is one of today’s grand challenges for science and
engineering. Computers and networks are under continuous threat from attackers who
want to steal credit card numbers, intellectual property, and other sensitive information.
Also, massive distributed denial of service attacks can impair even the largest of companies
and government organizations.

Computer security research aims at developing methods and associated protocols to an-
alyze and defend against a growing number and variety of attacks. The development of

653

654 CHAPTER 21. COMPUTER SECURITY

security tools is a continuous process that keeps on reacting to newly discovered hardware
and software vulnerabilities and newly deployed technologies.

21.1.1 Motivation

Both the discovery of vulnerabilities and the development of security protocols can be
greatly assisted by visualization. For example, network traffic can be naturally displayed as
a graph whose nodes are hosts and whose edges are associated with packets going from one
host to another. Also, a visual representation of a complex multiparty security protocol can
give experts better intuition of its execution and security properties. Traditionally, instead,
computer security analysts read through large logs produced by applications, operating
systems, and network devices. Inspecting such logs is quite cumbersome and often unwieldy,
even for experts. Motivated by the growing need for automated visualization methods and
tools for computer security, the field of security visualization has recently emerged as an
interdisciplinary community of researchers with its own annual meeting (VizSec).

For basic background on computer security, see the textbook by Goodrich and Tamas-
sia [GT11]. The book by Raffael Marty [Mar08] provides an excellent introduction to
methods and tools for visualizing computer networks to analyze their security.

21.1.2 Chapter Organization

In this chapter, we give a survey of approaches to the visualization of computer security
concepts that use graph drawing techniques. We consider a variety of fundamental security
and privacy issues, focusing on network security, access control, and attack strategies. We
show how graphs can be used as an effective modeling tool in computer security and we
give examples of how several classic graph drawing techniques have been used in current
security visualization prototypes. Finally, we mention an approach for privacy-preserving
drawing in a cloud computing scenario.

Thanks to their versatility, graph drawing techniques are one of the main approaches em-
ployed in security visualization. Indeed, not only computer networks are naturally modeled
as graphs, but also data organization (e.g., file systems) and vulnerability models (e.g., at-
tack trees) can be effectively represented by graphs. In particular, we consider the following
security visualization problems:

1. Network monitoring. (Section 21.2) The visualization of network traffic helps
network administrators identify anomalous patterns, such as scans, worm infec-
tions, and hosts trying to gain unauthorized access to the network. Thus, it is
an effective component of intrusion detection systems. Also, traffic visualization
can be used to identify unusually heavy network activity and quickly track down
machines that generate or receive a large volume of packets. Early detection is
crucial when defending against denial of service attacks. It is also interesting to
monitor and visualize the evolution of highly dynamic services on the Internet,
such as the root name servers.

2. Border gateway protocol (BGP). (Section 21.3) This protocol manages reachabil-
ity between hosts in different Autonomous Systems, i.e., networks controlled by
Internet Service Providers. The visualization of BGP-related information is im-
portant to ensure that routing in the Internet has not changed and has not been
tampered with. In particular, displaying the topology of Autonomous Systems
and the evolution of BGP routing patterns can assist the detection of disruptions
in Internet traffic caused by attacks or router configuration errors.

21.1. INTRODUCTION 655

3. Access control. (Section 21.4) Access to resources on a computer system or net-
work is regulated by organizational policies and enforced with technological mech-
anisms for authentication and authorization. Resources need to be protected not
only from malicious activity by outside attackers but also from accidental disclo-
sure to unauthorized legitimate users. Access control mechanisms for file systems,
databases, and distributed applications are complex and tricky to configure. Vi-
sualization helps both users and administrators gain an intuitive understanding
of the vast set of permissions that are in place in the system and allows them to
efficiently spot sensitive resources that are insufficiently protected. Also, visual-
izing flows of information in a system can help keeping sensitive data private and
defend against the leakage of confidential information. Access control is espe-
cially challenging in distributed environments without centralized administrative
control. An aspect of access control that is gaining increasing importance is the
management of privacy settings by users of a social network.

4. Attack graphs. (Section 21.5) Starting with a vulnerable component of a system,
an attacker can compromise other components to reach the desired goal. Attack
graphs are used to describe dependencies between vulnerabilities in a system.
They characterize the paths through the system that can be followed by an
adversary. The visualization of attack graphs helps computer security analysts
identify and remedy vulnerabilities.

Sections 21.2 through 21.5 are organized around the four security topics mentioned above.
For each topic, we overview visualization tools that employ graph drawing techniques.
Table 21.1.2 classifies the papers surveyed in these sections according to the security topic
addressed and the graph drawing method used.

Force Layered Bipartite Circular Treemap or 3D
Directed Drawing Drawing Drawing Gmap

Network Moni-
toring

[MMK07,
TN00,
GB98,
MMB05,
DSN12]

[YYT+04,
BFN04,
Con07]

[Tol] [DSN12,
BvO09]

[XMB+06]

BGP [BMPP04,
TRNC06]

[TRNC06] [OKB06]

Access Control [MLA12] [MFG+06,
Yee06,
YSTW05]

[HPPT08]

Attack Graphs [NJKJ05,
NJ04]

[CIL+10]

Table 21.1 Classification of the papers on security and privacy visualization surveyed in
this chapter according to the security topic addressed and the graph drawing method used.

Finally, in Section 21.6, we take a different perspective and consider the subject of privacy
protection when a client outsources the task of drawing a graph to a server in the cloud.
We present a technique that provides a high level of privacy, going beyond encryption, and
is computationally efficient.

Chapter 24 overviews related work on the visualization of computer networks.

656 CHAPTER 21. COMPUTER SECURITY

21.2 Network Monitoring

In this section, we overview selected papers on graph-based visualization techniques for
network monitoring. Related work includes, e.g., [FMK+08, MFK+09].

21.2.1 Intrusion Detection

In [TN00], the authors use a combination of force-directed drawing, graph clustering, and
regression-based learning in a system for intrusion detection (see Figure 21.1). Their system
consists of the following components:

• a packet collecting module;

• a graph construction and clustering module;

• a visualization module; and

• an event generation module.

Figure 21.1 Force-directed clustered drawing for intrusion detection (thumbnail of image
from [TN00]).

The authors model the computer network with a graph where the nodes are computers
and the edges are communication links with weight proportional to the network traffic on
that link. The clustering of the graph is performed with a simple iterative method. Initially,
every node forms its own cluster. Next, nodes join clusters that already have most of their
neighbors, breaking ties at random. The resulting graph is a simplified version of traffic
exchanges where entities that communicate often are joined into clusters. Two clusters A
and B are connected by an edge if there is at least one edge between some node of cluster
A and some node of cluster B.

The classic force-directed spring embedder method [Ead84, FR91] is used to determine
the layout of the graph of clusters and of the graph within each cluster. Since forces are
proportional to the weights of the edges, if there is a lot of communication between two
hosts, their nodes are placed close to each other.

Various features of the clustered graph (including statistics on the node degrees, number
of clusters, and internal/external connectivity of clusters) are used to describe the current
state of network traffic and are summarized by a feature vector. Using test traffic samples
and a regression-based strategy, the system learns how to map feature vectors to intrusion

21.2. NETWORK MONITORING 657

detection events. The visualization of the clustered graph can help a security analyst in
assessing the severity of the intrusion detection events generated by the system.

21.2.2 Traffic Analysis

A tool for visualizing the evolution over time of the volume and type of network traffic
using force-directed graph drawing techniques is described in [MMK07] (see Figure 21.2).
Since there are different types of traffic protocols (HTTP, FTP, SMTP, SSH, etc.) and
multiple time periods, this multidimensional data set is modeled by a graph with two types
of nodes: dimension nodes represent traffic protocols and observation nodes represent the
state of a certain host in a given time interval. Edges are also of two types: trace edges link
observation nodes of consecutive time intervals and attraction edges link observation nodes
with dimension nodes and have weight proportional to the traffic of that type.

The layout of the above graph is computed starting with a fixed placement of the di-
mension nodes and then executing a modified version of the Fruchterman-Reingold force-
directed algorithm [FR91] that aims at achieving uniform edge lengths. The authors show
how intrusion detection alerts can be associated with visual patterns in the layout of the
graph.

Figure 21.2 Evolution of network traffic over time (thumbnail of image from [MMK07]):
dimension nodes represent types of traffic and observation nodes represent the state of a
host at a given time.

EtherApe [Tol] shows traffic captured on the network via the pcap interface (Figure 21.3).
A simple circular layout places the hosts around a circle and represents network traffic
between hosts by straight-line edges between them. Each protocol is distinguished by a
different color and the width of an edge shows the amount of traffic. This tool allows to
quickly understand the role of a host in the network and the changes in traffic patterns
over time. Beyond the graphical representation, it is also possible to display detailed traffic
statistics of active ports.

658 CHAPTER 21. COMPUTER SECURITY

Figure 21.3 Traffic monitoring with Etherape (thumbnail of image from [Tol]). The size
of the nodes and the thickness of the edges are proportional to the traffic volume. The color
of an edge denotes the prevalent protocol of the associated traffic.

RUMINT [Con07] system (named after RUMor INTelligence) is a free tool for network
and security visualization (Figure 21.4). It takes captured traffic as input and visualizes it
in various unconventional ways. The most interesting visualization related to graph drawing
is a parallel plot that allows one to see at a glance how multiple packet fields are related.
An animation feature allows to analyze various trends over time.

Figure 21.4 Visualization of an NMAP scan with RUMINT (thumbnail of image
from [Con07]).

21.2. NETWORK MONITORING 659

21.2.3 Internal vs. External Hosts

In [YYT+04], the authors apply a simple bipartite drawing technique to provide a visu-
alization solution for network monitoring and intrusion detection (see Figure 21.5). The
nodes, representing internal hosts and external domains, are placed on three vertical lines.
The external domains that send traffic to some internal host are placed on the left line.
The domains of the internal hosts are placed on the middle line. The external domains that
receive traffic from some internal host are placed on the right line. Each edge represents a
network flow, which is a sequence of related packets transmitted from one host to another
host (e.g., a TCP packet stream). Basically, the layout represents a tripartite graph. The
vertical ordering of the domains along each line is computed by the drawing algorithm with
the goal of minimizing crossings.

The tool uses a slider to display network flows at various time intervals and provides
three views. In the global view, the entire tripartite graph is displayed to show all the
communication between internal and external hosts. In the internal view and domain view,
the tool isolates certain parts of the network, such as internal senders and internal receivers,
and correspondingly displays a bipartite graph. The domain view and internal view are
easier to analyze and provide more details on the network activity being visualized but on
the other hand, the global view produces a high-level overview of the network flows. The
authors apply the tool in various security-related scenarios, such as virus outbreaks and
denial-of-service attacks.

In [BFN04], the authors use a matrix display combined with a simple graph drawing
method in order to visualize the traffic between domains in network and external domains
(see Figure 21.6). To visualize the internal network, the authors use a square matrix: each
entry of the matrix corresponds to a host of the internal network. External hosts are
represented by squares placed outside the matrix, with size proportional to the traffic sent
or received.

Straight-line edges represent traffic between internal and external hosts and can be colored
to denote the predominant direction of the traffic (outgoing, incoming, or bidirectional).
The placement of the squares arranges hosts from subnets of the same size along the same
vertical line and attempts to reduce the number of edge crossings. Further details on the
type of traffic can be also displayed in this tool. For example, vertical lines inside each
square indicate ports with active traffic. This system can be used to visually identify traffic
patterns associated with common attacks, such as virus outbreaks and network scans.

21.2.4 Similarity Analysis for Traffic Logs and Scans

In [GB98], the authors present a technique to visualize log entries obtained by monitoring
network traffic. Each log entry stores a multidimensional vector whose elements correspond
to features of the network traffic, including origin IP, destination IP, and traffic volume. The
authors build a weighted similarity graph for the log entries using a simple distance metric
for two entries given by the sum of the differences of the respective elements. The force-
directed drawing algorithm of [Cha96] is used to compute a 2D drawing of the similarity
graph of the entries, which shows clusters of similar entries (see Figure 21.7). For example,
this visualization allows to focus on entries associated with small clusters, which denote
unusual events that could be associated with anomalous behavior of the network or a security
breach.

The work by [MMB05] considers network scans, often used as the preliminary phase of
an attack. The authors develop a visualization system that shows the relationships between
different network scans (see Figure 21.8). The authors set up a graph where each node

660 CHAPTER 21. COMPUTER SECURITY

Figure 21.5 Global view of network flows using a tripartite graph layout: nodes rep-
resent external domains (on the left and right) and internal domains (in the middle)
and edges represent network flows (packet streams) between domains (thumbnail of im-
age from [YYT+04]).

Figure 21.6 Visualization of internal vs. external hosts using a matrix combined with a
straight-line drawing. Internal hosts correspond to entries of the matrix while external hosts
are drawn as squares placed around the matrix. The size of the square for an external host is
proportional to the amount of traffic from/to that host (thumbnail of image from [BFN04]).

represents a scan and the connection between them is weighted according to some metric
(similarity measure) that is defined for the two scans. Features taken into consideration for
the definition of the similarity measure include the origin IP, the destination IP, and the
time of the connection. To avoid displaying a complete graph, the authors define a minimum
weight threshold, below which edges are removed. The LinLog force-directed layout method
[Noa04] is used for the visualization of this graph. In the drawing produced, sets of similar
scans are grouped together, thus facilitating the visual identification of malicious scans.

21.2. NETWORK MONITORING 661

Figure 21.7 Similarity graph of traffic log entries (thumbnail of image from [GB98]).

Figure 21.8 Similarity graph of network scans (thumbnail of image from [MMB05]).
Nodes represents scans. Only edges with weight (similarity) above a certain threshold are
displayed.

662 CHAPTER 21. COMPUTER SECURITY

21.2.5 Visualization of Address Space

The shift in the address space from IPv4 to IPv6 requires new visualization tools for viewing
network activity [BvO09]. The authors of [BvO09] observe that interesting information can
be drawn from patterns in the number of IPv6 packets that go between same source and
destination addresses. Since the size of each address is 128 bits, it is not trivial to visualize
this information. However, IPv6 addresses are allocated in a standardized hierarchical
manner in order to keep global routing tables efficient. The work of [BvO09] exploits this
assignment pattern to visualize packet information from 4.5 hours of network traffic using
treemaps.

In Figure 21.9, the destination addresses of IPv6 packets are displayed. Each rectangle
is split into levels that represent the hierarchical nature of the addresses. The size of every
rectangle is determined by the number of packets routed to this address. The protocols of
the packets are distinguished with colors, e.g., dark gray represents TCP. This visualization
of the address space can be used to find frequent destinations, sources that have similar
destination behavior, as well as patterns in the type of traffic routed.

Figure 21.9 A treemap visualization of IPv6 source addresses, destination ports, and
packet count of network traces. The colors are used to display the protocol of each packet
(thumbnail of image from [BvO09]).

21.2.6 Visualization of Name Server Migration

Recall that a name server finds the IP address of a domain name queried by a computer. To
find this IP address, a name server queries other name servers, including root servers. A root

21.2. NETWORK MONITORING 663

server is responsible for the root zone of the domain name space. Specifically, root servers
keep a database of the authoritative name servers for the top-level domains (e.g., .com, .edu,
.net, .org, etc.). Since the number of root servers is small and their role is very important
in resolving domain names, each of them is implemented via a number of computers, called
instances, that provide efficiency and resilience for that root server. Hence, when a name
server is trying to answer a query, its request is sent to one of the instances depending
on the status of the routing. Migration happens when the same name server is served by
different instances of the same root server across time.

The authors of [DSN12] describe an animated visualization of migration of name servers
between instances of a single root server, the K-root server. We refer to name servers that
query the K-root server as clients. The migration process is visualized between instances
by measuring the number of clients served and the total number of queries received by
each instance. This information allows to monitor changes in migration patterns and in the
workload of each instance over time. Moreover, it also helps to observe any anomalies in
changes. For example, one instance is suddenly flooded by requests or clients of a specific
Internet Service Provider change root servers in a suspicious pattern.

Two interesting animated visualization techniques are proposed to observe migration
between the instances. Both visualizations are based on a migration graph G where each
node is an instance of the root server and two nodes are connected if migration between
the two is considered to be usual. The first visualization technique, country map, uses a
geography-based layout to show the migration of clients (see Figure 21.10(a)). Each instance
is represented as a bounded region of a distinct color, and its size is proportional to the
number of clients that it currently serves. If two instances are exchanging clients, then they
are adjacent on the map. Unusual migration of clients is represented via a flow traversed
by bubbles with size proportional to the amount of flow. The second visualization, octopus
map, represents instances as circles connected by “tentacles” to show the flow of usual
migration (see Figure 21.10 (b)). The width of a tentacle is proportional to the amount
of flow between the two instances it connects, while the color is related to the colors of
the corresponding instances. Unusual changes are represented by arrows connecting non-
adjacent instances.

Drawing of the first visualization consists of constructing a planar graph from the migra-
tion graph G (if G is not planar already) as a backbone for the final graph. A straight-line
drawing of the backbone preserving its planar topology is drawn in such a way that each
vertex has enough area around it to fit the average number of the clients that it serves in a
given time period. This is achieved by using a spring embedder algorithm [DETT99] where
the charge and the lengths depend on the number of clients an instance and its adjacent
instances serve. For smoother visual transition between time intervals in the animation,
the drawing of the backbone is modified to maximize the angles between adjacent edges.
This step is done by adding new edges to the drawing and using constrained Delaunay
triangulation. The skeleton obtained from this step is then adjusted for each specific time
interval during animation.

Octopus map drawing involves computing a topology for the migration graph G such
that the number of crossings between its edges is minimized. Then a straight-line drawing
for G respecting the computed topology is built. During the animation steps, the vertices
and edges of G are substituted by circles and tentacles, respectively, and any intersections
between the shapes are removed. The challenge is then to scale the drawing to fit into an area
where the animation is projected. For this purpose, a constrained spring embedder [DLR11]
is used to preserve the original planar topology and ensure that no intersections between
the shapes appear.

664 CHAPTER 21. COMPUTER SECURITY

(a)

(b)

Figure 21.10 Snapshots of animations of client migration between instances of the K-
root server. (a) A country map drawing where instances are represented as shapes of
distinct colors and borders signify usual exchanges of clients between the instances. Unusual
migration is displayed via a flow traversed by bubbles of size proportional to the number
of clients migrated. (b) An octopus map drawing of the same data as in the country map
drawing above. Each circle is an instance of the K-root server, a tentacle represents an
expected migration and its width is proportional to the number of clients exchanged, while
a gray arrow shows an unusual migration (thumbnails of images from [DSN12]).

21.3. BORDER GATEWAY PROTOCOL 665

21.3 Border Gateway Protocol

The Border Gateway Protocol (BGP) manages the routing of IP packets across different
Autonomous Systems (AS), which can be informally viewed as collections of hosts under
the same administrative control. In this section, we survey selected visualization methods
for the Border Gateway Protocol that can be used to discover attacks, anomalies, and faults
in the routing network.

21.3.1 Topology of Autonomous Systems

VAST (Visualizing Autonomous System Topology) [OKB06] is a tool that uses 3D straight-
line drawings to display the BGP interconnection topology of Autonomous Systems (see
Figure 21.11). The goal of the tool is to allow security researchers to quickly extract
relevant information from raw routing datasets.

Figure 21.11 Some large autonomous systems in the Internet visualized with VAST
(thumbnail of image from [OKB06]).

VAST employs a quad-tree to show information about an Autonomous System and an
octo-tree to represent relationships between multiple Autonomous Systems. The visualiza-
tion allows users to efficiently detect routing malfunctions and sensitive points, including
the following ones:

• address-space hijacking attacks, where an Autonomous System maliciously sends
routing announcements crafted to attract to itself traffic destined to IP addresses
that belong to a different Autonomous System, e.g., to create alternative versions
of popular websites;

• anomalous routing announcements, which accidentally cause portions of the In-
ternet to become temporarily unreachable; and

• critical portions of the Internet topology, which are essential for its reliable op-
eration.

666 CHAPTER 21. COMPUTER SECURITY

The authors have also developed another tool, called Flamingo, that uses the same graphical
engine as VAST but is used for real-time visualization of network traffic.

21.3.2 BGP Monitoring

BGP Eye [TRNC06] visualizes in real time the status of BGP activity with easy-to-read
layouts (see Figure 21.12) and supports root-cause analysis of BGP anomalies. Its main
objective is to track the healthiness of BGP activity, raise an alert when an anomaly is
detected, and indicate its most likely cause. In particular, the authors show how BGP Eye
can be used to analyze two Internet anomalies. First, they use the tool to study a worm
outbreak, detecting the ASes that contributed the most to the spread of the infection. In the
second use case, BGP Eye visualizes how prefix hijacking affects various ASes and routing
tables over time.

BGP Eye provides two different types of visualization of BGP dynamics:

• The Internet-centric view uses layered straight-line drawings to display the in-
teraction between Autonomous Systems (AS) in terms of BGP announcements
exchanged. The colors indicate the deviation of current values in the system from
the historic ones, allowing to notice any anomalies. Displaying the global view
also helps to track the propagation of a problem through the entire Internet, e.g.,
its growing rate and spreading.

• The Home-centric view, which uses a radial drawing, is designed to present BGP
activity from the perspective of a specific Autonomous System. In this visualiza-
tion, the granularity is increased to the router level. The inner ring contains the
routers of an Autonomous System and the outer ring contains their peer routers,
belonging to other Autonomous Systems. In the outer ring, the layout method
groups together routers belonging to the same Autonomous System and uses a
placement algorithm that reduces the distance between connected nodes.
In Figure 21.12 (b) the size of each AS represents the moving average of the num-
ber of BGP events originated by the AS. The thickness of AS-AS links represents
the number of BGP events traversing this link. The color of lines and nodes gives
information on the deviation of the current sample from its historical trend. The
minimum deviation value is shown with a blue color while red is the maximum
deviation.

21.3.3 BGP Evolution

BGPlay [BMPP04] and iBGPlay provide animated graphs of the BGP routing announce-
ments for a certain IP prefix within a specified time interval (see Figure 21.13). Both
visualization tools are targeted to Internet Service Providers. Each node represents an Au-
tonomous System, and paths are used to indicate the sequence of Autonomous Systems
needed to be traversed to reach a given destination according to a given announcement.
The resulting graphs can be used to discover faults in the links traversed by the traffic flows
and to check the consistency of router configurations.

BGPlay shows the paths to the chosen destination (prefix) that appear in announcements
collected by observation points spread over the Internet. iBGPlay shows data privately
collected by one ISP. The ISP can obtain from iBGPlay visualizations of outgoing paths
from itself to any destination. The drawing algorithm is a modification of the force-directed
approach that aims at optimizing the layout of the paths.

21.3. BORDER GATEWAY PROTOCOL 667

(a)

(b)

Figure 21.12 Visualizations in BGP Eye: (a) Internet-centric view; and (b) Home-centric
view (thumbnails of images from [TRNC06]).

668 CHAPTER 21. COMPUTER SECURITY

Figure 21.13 In BGPlay, nodes represent Autonomous Systems, and paths are sequences
of Autonomous Systems to be traversed to reach the destination (thumbnail of image
from [BMPP04]).

21.4 Access Control

This section considers selected graph-based visualization techniques for several aspects of
access control.

21.4.1 Rule-Based Access Control

The RubaViz system [MFG+06] is a graphical tool for managing and querying rule-based
access control systems (see Figure 21.14). RubaViz makes it easy to answer questions like

“What group has access to which files during a given time span?”

The system constructs a graph whose nodes are subjects (people or processes), groups,
resources, and rules. Directed edges go from subjects/groups to rules and from rules to
resources to display allowed accesses. The layout is straight-line and upward.

21.4.2 File System Access-Control

TrACE [HPPT08] is a tool for visualizing file permissions in the NTFS file system (Fig-
ure 21.15). TrACE allows a user or administrator to gain a global view of the permissions
in a file system, thus simplifying the detection and repair of incorrect configurations leading
to unauthorized accesses.

21.4. ACCESS CONTROL 669

Figure 21.14 The RubaViz system for rule-based access control (thumbnail of image
from [MFG+06]).

Figure 21.15 Visualization of permissions in the NTFS file system with TrACE (thumb-
nail of image from [HPPT08]).

In the NTFS file system, there are three types of permissions:

• explicit permissions are set by each user or members of a group;

• inherited permissions are dynamically inherited from the explicit permissions of
the ancestor folders; and

• effective permissions are obtained by combining the explicit and inherited per-
missions.

670 CHAPTER 21. COMPUTER SECURITY

TrACE uses a treemap layout [JS91] to draw the file system tree and colors the tiles with a
palette denoting various access levels. The size of a tile indicates how much the permissions
of a folder/file differ from those of its parent and children. Advanced properties, such as a
break of inheritance at some folder, are also graphically displayed. The tool makes it easy to
figure out explicit and inherited permissions of which nodes affect the effective permissions
of a given node in the file system tree.

21.4.3 Trust Negotiation

Using a Web service requires an initial setup phase where the client and server enter into a
negotiation to determine the service parameters and the cost by exchanging credentials and
policies. Trust negotiation is a protocol that protects the privacy of the client and server
by enabling the incremental disclosure of credentials and policies. Planning and executing
an effective trust negotiation strategy can be greatly aided by tools that explore alternative
scenarios and show the consequences of possible moves.

In [YSTW05], the authors use a layered upward drawing to visualize automated trust
negotiation (ATN) (Figure 21.16). In a typical ATN session, the client and the server
engage in a protocol that results in the collaborative and incremental construction of a
directed acyclic graph, called trust-target graph. This graph represents credentials (e.g., a
proof that a party has a certain role in an organization) and policies indicating that the
disclosure of a credential by one party is subject to the prior disclosure of a set of credentials
by the other party [WL02]. A tool based on the Grappa system [BML97], a Java port of
Graphviz [EGK+04], is used to generate successive drawings of the trust-target graph being
constructed in an ATN session.

Figure 21.16 Drawing of the trust-target graph generated by a trust negotiation session
(thumbnail of image from [YSTW05]).

21.4. ACCESS CONTROL 671

21.4.4 Privacy Settings in Social Networks

User privacy in social networks is of concern to the users and companies providing this
service. To this end, social networking companies are creating more and more tools to
help users manage their privacy settings. The authors of [MLA12] describe a visual tool
for users of social networks to assess the visibility of their data among their friends in a
more accessible way. The tool parses the data of the user and creates a graph of groups
and subgroups from a list of friends of the user, where friends are split into groups using
modularity optimization. Hence, a node in the final graph represents a group of friends.
The user can then query this graph via zooming or direct queries to see the visibility of his
data among his friends. Authors chose a force-directed approach to display nodes in the
graph, and the color of the nodes represents the privacy level (see Figure 21.17).

(a)

(b)

Figure 21.17 Visualization of privacy settings in a social network. (a) Circles represent
groups of friends that have the same visibility of user’s data and the color shows the pri-
vacy level. (b) The granularity is increased to the level of specific information of a user,
e.g., a phone number, and its visibility among the user’s friends (thumbnails of images
from [MLA12]).

672 CHAPTER 21. COMPUTER SECURITY

21.5 Attack Graphs

21.5.1 Model

Given a network and a database of known vulnerabilities that apply to certain machines of
the network, one can construct a directed graph where each node is a machine (or group
of machines) and an edge denotes how a successful attack on the source machine allows to
exploit a vulnerability on the destination machine. This graph, called attack graph, can be
rather large and complex. Thus, it is essential to use automated tools to analyze attack
graphs.

21.5.2 Tools

A tool for visualizing attack graphs is described in [NJKJ05] (Figure 21.18). The system
clusters machines in order to reduce the complexity of the attack graph (e.g., machines
that belong to the same subnet may be susceptible to the same attack). The Graphviz
tool [EGK+04] is used to produce a layered drawing of the clustered attack graph. Similar
layered drawings for attack graphs are proposed in [NJ04].

Figure 21.18 Visualization of an attack graph (thumbnail of image from [NJKJ05]).

The authors of [CIL+10] describe Navigator, another tool for visualizing attack graphs for
displaying server-side, client-side, credential-based, and trust-based attacks in the network.
Navigator groups machines from the same subnet based on similar vulnerabilities but also
gives an “asset value” to each host that represents the importance level of this host in the
network. To display this information the authors use a modification of the strip treemap
algorithm by [BSW02] (see Figure 21.19). Navigator can display different types of attacks
that can be brought from one entity of the network to another. In Figure 21.19, rectangles
represent host groups of the same subnet and arrows show the steps that the attacker could
take to progress through the network. The background colors of the entities represent the
compromise levels achievable in the displayed attack scenarios. For example, red means that
the root is compromised while green stands for no compromise. The color of the arrows
shows the depth of the attack. The visualization tool can also show how the attack from
one subnet affects the rest of the network.

21.6. PRIVATE GRAPH DRAWING 673

(a)

(b)

Figure 21.19 Visualization of (a) an attack graph with importance levels of the hosts, (b)
multiple attacks between subnets, displayed as a hybrid edge of multiple colors (thumbnails
of images from [CIL+10]).

Given that there are multiple attacks and that the type and the depth of these attacks
can vary, the authors propose a way to aggregate this information into hybrid edges to
avoid clutter (see Figure 21.19(b)). For example, the solid part of an edge shows server-side
attacks, while client-side attacks are displayed as dashed segments.

The authors of [CIL+10] have modified the strip treemap algorithm to achieve visualiza-
tions that are aesthetically pleasing and easier to navigate. Their algorithm sets minimum
width and height for the hosts within a subnet to avoid very long and thin or very short
and wide host representations. Any extra space that is accumulated due to the minimum
rectangle requirements is then propagated and scaled to top layers. The modification also
preserves the order of the hosts when the user zooms in a host group.

21.6 Private Graph Drawing

In previous sections, graph drawing was used to visualize the data in a way that can help
to observe any anomalies in the network, privacy settings, or access control to a filesystem.
The authors of [GOT12] raise instead a privacy concern related to the process of drawing
a graph. With the recent shift of data storage to a cloud-based storage, one can no longer
assume that the input data for a graph drawing algorithm is stored locally. Hence, to draw
a graph, one accesses the data remotely. This raises concerns about the privacy of the
outsourced data. In [GOT12], a new model for graph drawing algorithms is proposed that
fits the cloud computing paradigm and preserves data privacy and its access pattern.

674 CHAPTER 21. COMPUTER SECURITY

Figure 21.20 (a) Input graph and (b) its treemap drawing. (c) Execution of a privacy-
preserving treemap drawing algorithm in the cloud storage model. The algorithm performs
the computation required for the drawing during an Euler tour of the graph. The edge
representation of an Euler tour is stored encrypted remotely. Each edge contains information
about its adjacent nodes, its direction in the Euler tour of the tree (up or down); and a link
to the next edge in the tour (e.g., edge a-b). During the traversal, the algorithm maintains
several variables: unit, the unit length of current rectangle; prevP and prevQ, location of
a previously drawn rectangle; and axis, the direction of the drawing which takes a value
of x or y. When the traversal is going down the tree, each node on the way is assigned x
and y coordinates of its corresponding rectangle, variables P and Q. After reaching a leaf
node the algorithm follows the Euler tour up the tree. The algorithm cannot reveal when
it sees the nodes it has already assigned since it would expose the height and the width of
the tree. Hence, it writes dummy coordinates for all nodes it encounters when going up the
tree, dummy.P and dummy.Q in the figure. (thumbnails of images from [GOT12]).

21.6.1 Compressed Scanning

In the compressed-scanning model, data is stored encrypted on the cloud and is permuted
using a pseudo-random permutation. A graph drawing algorithm is then split into rounds.
During each round, the algorithm scans remotely-stored data related to the graph. For
example, a data item can be a node or an edge of the graph. Once the data item is
retrieved, a small computation, which could potentially modify the item, is performed in
local private memory. The item is then re-encrypted and written back. A small private
memory is used to store information during each round. After each round, the data is
re-permuted according to a new permutation.

The number of rounds is specific to the graph drawing algorithm and does not depend
on the data. The privacy of the model comes from using data encryption and accessing
data in a nonrevealing manner. Note that during each round every data item is read only
once, and a new permutation is created so that nobody observing the access pattern of the
algorithm can deduce information about the graph, including its layout and depth. Hence,
the only information that is leaked from running a graph drawing algorithm is the size of
the graph, but not its topology. An algorithm satisfying this privacy property is said to be
data-oblivious.

21.6. PRIVATE GRAPH DRAWING 675

21.6.2 Data-Oblivious Drawing Algorithms

The authors show how to modify four classical graph drawing algorithms to fit the compressed-
scanning model, including symmetric straight-line drawings and treemaps [JS91], drawings
of trees, dominance drawings of planar acyclic digraphs [DTT92], and ∆-drawings of series-
parallel graphs [BCD+94]. These algorithms work over trees or construct a tree represen-
tation, e.g., spanning trees for acyclic digraphs.

The main technique is based on representing the graph via an Euler tour of the tree,
hence every edge is stored twice and traversal of the tree involves accessing each edge only
once. If the number of nodes in the graph is n, then three algorithms in [GOT12] use
only a constant amount of private storage during each round. While drawing a tree with
bounding rectangles uses log n private memory. For an illustration of the technique applied
to treemap drawings, see the examples in Figure 21.20.

The authors show that graph drawing methods that fit the compressed-scanning model
require T (A)sort(n) accesses to remote data storage. T (A) is the number of rounds specific
to the graph drawing algorithm A and does not depend on n. The factor sort(n) is the
number of rounds that is required to securely order the data according to a new permutation
after each round.

The work of [GS12] expands this line of work and shows how to simulate parallel al-
gorithms data-obliviously using the compresses-scanning model. Given a CRCW PRAM
algorithm B that runs in T (B) steps using a memory of size M and P ≤ M processors, the
authors show how to simulate B sequentially in a data-oblivious fashion in O(T (B)M logM)
accesses to remote data storage. This result can be used to obliviously compute st-
numberings, visibility representations, upward grid drawings, and orthogonal grid drawings
of planar graphs that are stored remotely.

Acknowledgments

This chapter is an extended version of a conference paper on graph drawing methods for
security visualization [TPP09]. Charalampos Papamanthou contributed to this chapter
while he was at Brown University. This work was supported in part by the U.S. National
Science Foundation under grant OCI–0724806. We are indebted to Massimo Rimondini
for detailed comments on an earlier version of this chapter. We also thank Giuseppe Di
Battista, Michael Goodrich, and Ioannis Tollis for useful suggestions.

676 CHAPTER 21. COMPUTER SECURITY

References

[BCD+94] P. Bertolazzi, R. F. Cohen, G. Di Battista, R. Tamassia, and I. G. Tollis.
How to draw a series-parallel digraph. International Journal of Computa-
tional Geometry and Applications, 4:385–402, 1994.

[BFN04] R. Ball, G. A. Fink, and C. North. Home-centric visualization of net-
work traffic for security administration. In Proceedings of the 2004
ACM Workshop on Visualization and Data Mining for Computer Security,
VizSEC/DMSEC ’04, pages 55–64, New York, NY, USA, 2004. ACM.

[BML97] N. Barghouti, J. Mocenigo, and W. Lee. Grappa: A GRAPh Package in
JAVA. In Giuseppe Di Battista, editor, Graph Drawing, volume 1353 of
Lecture Notes in Computer Science, pages 336–343. Springer Berlin Hei-
delberg, 1997.

[BMPP04] G. Battista, F. Mariani, M. Patrignani, and M. Pizzonia. iBGPlay: A sys-
tem for visualizing the interdomain routing evolution. In Giuseppe Liotta,
editor, Graph Drawing, volume 2912 of Lecture Notes in Computer Science,
pages 295–306. Springer Berlin Heidelberg, 2004.

[BSW02] B. B. Bederson, B. Shneiderman, and M. Wattenberg. Ordered and quan-
tum treemaps: Making effective use of 2D space to display hierarchies.
ACM Transactions on Graphics, 21(4):833–854, 2002.

[BvO09] D. Barrera and P. C. van Oorschot. Security visualization tools and IPv6
addresses. In Proceedings of the 6th International Workshop on Visualiza-
tion for Computer Security, VizSec ’09, pages 21–26, 2009.

[Cha96] M. Chalmers. A linear iteration time layout algorithm for visualising high-
dimensional data. In Proceedings of the 7th conference on Visualization,
VIS ’96, pages 127–ff., Los Alamitos, CA, USA, 1996. IEEE Computer
Society Press.

[CIL+10] M. Chu, K. Ingols, R. Lippmann, S. Webster, and S. Boyer. Visualizing
attack graphs, reachability, and trust relationships with NAVIGATOR. In
Proceedings of the 7th International Symposium on Visualization for Cyber
Security, VizSec ’10, pages 22–33, New York, NY, USA, 2010. ACM.

[Con07] G. Conti. Security Data Visualization. No Starch Press, San Francisco,
CA, USA, 2007.

[DETT99] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing.
Prentice Hall, Upper Saddle River, NJ, 1999.

[DLR11] W. Didimo, G. Liotta, and S. A. Romeo. Topology-driven force-directed
algorithms. In Ulrik Brandes and Sabine Cornelsen, editors, Graph Draw-
ing, volume 6502 of Lecture Notes in Computer Science, pages 165–176.
Springer Berlin Heidelberg, 2011.

[DSN12] G. Di Battista, C. Squarcella, and W. Nagele. How to visualize the K-Root
name server. Journal of Graph Algorithms and Applications, 2012. In print.

[DTT92] G. Di Battista, R. Tamassia, and I. G. Tollis. Area requirement and sym-
metry display of planar upward drawings. Discrete & Computational Ge-
ometry, 7:381–401, 1992.

[Ead84] P. Eades. A heuristic for graph drawing. Congressus Numerantium, 42:149–
160, 1984.

REFERENCES 677

[EGK+04] J. Ellson, E.R. Gansner, E. Koutsofios, S.C. North, and G. Woodhull.
Graphviz and dynagraph – static and dynamic graph drawing tools. In
Michael Jünger and Petra Mutzel, editors, Graph Drawing Software, Math-
ematics and Visualization, pages 127–148. Springer Berlin Heidelberg,
2004.

[FMK+08] F. Fischer, F. Mansmann, D. A. Keim, S. Pietzko, and M. Waldvogel.
Large-scale network monitoring for visual analysis of attacks. In Proceed-
ings of the 5th International Workshop on Visualization for Computer Se-
curity, VizSec, pages 111–118, Berlin, Heidelberg, 2008. Springer-Verlag.

[FR91] T. Fruchterman and E. Reingold. Graph drawing by force-directed place-
ment. Software: Practice and Experience, 21(11):1129–1164, November
1991.

[GB98] L. Girardin and D. Brodbeck. A visual approach for monitoring logs. In
Proceedings of the 12th Conference on Systems Administration, LISA ’98,
pages 299–308, Berkeley, CA, USA, 1998. USENIX Association.

[GOT12] M. Goodrich, O. Ohrimenko, and R. Tamassia. Graph drawing in the cloud:
Privately visualizing relational data using small working storage. In Graph
Drawing, 2012. To appear.

[GS12] M. Goodrich and J. Simons. More graph drawing in the cloud: Data-
oblivious st-numbering, visibility representations, and orthogonal drawing
of biconnected planar graphs. In Graph Drawing, 2012. Poster.

[GT11] M. Goodrich and R. Tamassia. Introduction to Computer Security.
Addison-Wesley, 2011.

[HPPT08] A. Heitzmann, B. Palazzi, C. Papamanthou, and R. Tamassia. Effective
visualization of file system access-control. In Proceedings of the 5th In-
ternational Workshop on Visualization for Computer Security, VizSec ’08,
pages 18–25, Berlin, Heidelberg, 2008. Springer-Verlag.

[JS91] B. Johnson and B. Shneiderman. Tree-maps: A space-filling approach to
the visualization of hierarchical information structures. In IEEE Visual-
ization, pages 284–291, 1991.

[Mar08] R. Marty. Applied Security Visualization. Addison-Wesley, 2008.

[MFG+06] J. Montemayor, A. Freeman, J. Gersh, T. Llanso, and D. Patrone. Infor-
mation visualization for rule-based resource access control. In Proceedings
of the 2nd Symposium on Usable Privacy and Security, SOUPS ’06, 2006.

[MFK+09] Florian Mansmann, Fabian Fischer, Daniel A. Keim, Stephan Pietzko, and
Marcel Waldvogel. Interactive analysis of netflows for misuse detection
in large IP networks. In DFN-Forum Kommunikationstechnologien, pages
115–124, 2009.

[MLA12] A. Mazzia, K. LeFevre, and E. Adar. The PViz comprehension tool for
social network privacy settings. In Proceedings of the 8th Symposium on
Usable Privacy and Security, SOUPS ’12, pages 13:1–13:12, New York, NY,
USA, 2012. ACM.

[MMB05] C. Muelder, K. Ma, and T. Bartoletti. A visualization methodology for
characterization of network scans. In Proceedings of the IEEE Workshops
on Visualization for Computer Security, VIZSEC ’05, pages 4–, Washing-
ton, DC, USA, 2005. IEEE Computer Society.

678 CHAPTER 21. COMPUTER SECURITY

[MMK07] F. Mansmann, L. Meier, and D. Keim. Graph-based monitoring of host
behavior for network security. In Proceedings of the 4th International Work-
shop on Visualization for Computer Security, VizSec ’07, 2007.

[NJ04] S. Noel and S. Jajodia. Managing attack graph complexity through visual
hierarchical aggregation. In Proceedings of the 2004 ACM workshop on
Visualization and data mining for computer security, VizSEC/DMSEC ’04,
pages 109–118, New York, NY, USA, 2004. ACM.

[NJKJ05] S. Noel, M. Jacobs, P. Kalapa, and S. Jajodia. Multiple coordinated views
for network attack graphs. In Proceedings of the IEEE Workshops on Vi-
sualization for Computer Security, VIZSEC ’05, pages 12–, Washington,
DC, USA, 2005. IEEE Computer Society.

[Noa04] A. Noack. An energy model for visual graph clustering. In Giuseppe Liotta,
editor, Graph Drawing, volume 2912 of Lecture Notes in Computer Science,
pages 425–436. Springer Berlin Heidelberg, 2004.

[OKB06] J. Oberheide, M. Karir, and D. Blazakis. VAST: visualizing autonomous
system topology. In Proceedings of the 3rd International Workshop on
Visualization for Computer Security, VizSec ’06, pages 71–80, New York,
NY, USA, 2006. ACM.

[TN00] J. Tölle and O. Niggemann. Supporting intrusion detection by graph clus-
tering and graph drawing. In Proceedings of 3rd International Workshop
on Recent Advances in Intrusion Detection, RAID ’00, Toulouse, France,
2000.

[Tol] J. Toledo. EtherApe a live graphical network monitor tool.
http://etherape.sourceforge.net/.

[TPP09] R. Tamassia, B. Palazzi, and C. Papamanthou. Graph drawing for security
visualization. In Ioannis G. Tollis and Maurizio Patrignani, editors, Graph
Drawing, volume 5417 of Lecture Notes in Computer Science, pages 2–13.
Springer Berlin Heidelberg, 2009.

[TRNC06] S. T. Teoh, S. Ranjan, A. Nucci, and C. Chuah. BGP eye: a new visu-
alization tool for real-time detection and analysis of BGP anomalies. In
Proceedings of the 3rd International Workshop on Visualization for Com-
puter Security, VizSec ’06, pages 81–90, New York, NY, USA, 2006. ACM.

[WL02] W. H. Winsborough and N. Li. Towards practical automated trust ne-
gotiation. In Proceedings of the 3rd International Workshop on Policies
for Distributed Systems and Networks, POLICY ’02, pages 92–103. IEEE
Computer Society Press, June 2002.

[XMB+06] I. Xydas, G. Miaoulis, P.-F. Bonnefoi, D. Plemenos, and D. Ghazanfar-
pour. 3D graph visualization prototype system for intrusion detection: A
surveillance aid to security analysts. In Proceedings of the 9th International
Conference on Computer Graphics and Artificial Intelligence, 3IA, pages
153–165, 2006.

[Yee06] G. Yee. Visualization for privacy compliance. In Proceedings of the 3rd
International Workshop on Visualization for Computer Security, VizSec
’06, pages 117–122, New York, NY, USA, 2006. ACM.

[YSTW05] D. Yao, M. Shin, R. Tamassia, and W. H. Winsborough. Visualization of
automated trust negotiation. In Proceedings of the IEEE Workshops on
Visualization for Computer Security, VIZSEC ’05, pages 8–, Washington,
DC, USA, 2005. IEEE Computer Society.

REFERENCES 679

[YYT+04] X. Yin, W. Yurcik, M. Treaster, Y. Li, and K. Lakkaraju. VisFlowCon-
nect: netflow visualizations of link relationships for security situational
awareness. In Proceedings of the 2004 ACM Workshop on Visualization
and Data Mining for Computer Security, VizSEC/DMSEC ’04, pages 26–
34, New York, NY, USA, 2004. ACM.

22
Graph Drawing for Data Analytics

Stephen G. Eick
VisTracks and U. Illinois at

Chicago

22.1 Introduction . 681
22.2 Where Network Visualization Creates High Value 682

User Interface • Visual Presentation and Branding •

Executive Dashboards • Real-Time Visual Reports • Visual
Discovery for Deep Analysis • Searching and Exploration •

Domain Task-Specific Visualizations

22.3 Network Visualization Sweet Spot . 688
22.4 Customers for Network Visualization Software 691
22.5 Business Models for Network Visualization 691

Custom Software • Enterprise Software • Shrink-Wrapped
Software • Open Source Software • Cloud Computing •

Network Visualization Deployments

22.6 Thin-client Network Visualization . 693
22.7 Discussion and Summary. 695
References . 696

22.1 Introduction

Over the last decade graph drawing and network visualization has emerged as an exciting
research area that is addressing a significant problem: how to make sense of the ever
increasing amounts of relational information that has become widely available. With the
growth of networking and decreasing cost of storage it has become technically feasible and
cost effective to store and access vast sets of information. The academic, business, and
government challenge is how to make sense of this information and translate the insights
into value-producing activities.

As a new emerging field, there will certainly be opportunities for network visualization
and graph drawing technology. There have already been some early successes and also
many prototypes that have been research successes but have not led to successful deploy-
ments. Unfortunately, not all network visualizations create enough value so that users will
switch over from conventional user interfaces to adopt new visual interfaces. The goal for
this chapter is to present a simple framework that predicts problem areas where network
visualization will achieve utilization and result in successful business applications—that is,
be useful enough so that users will adapt new visual interfaces. For our academic colleagues
our framework is not intended to identify what network problems are interesting for re-
search nor is it intended to identify high-quality results. Rather it attempts to predict
which application areas might lead to commercially successful applications.

Network visualizations are exciting and the demos inevitably generate interest among
potential users. Unfortunately, however, visualization, as exciting as it is, only involves the

681

682 CHAPTER 22. GRAPH DRAWING FOR DATA ANALYTICS

user interface or presentation layer in a technology stack. Useful network applications solve
problems that involve collecting relational data, manipulating it, organizing it, performing
calculations, and finally presenting the results to users. The value of the application is cap-
tured by the complete system. It is often the case that each system component individually
is not particularly useful. For example, tires are not useful without a car, but better tires
improve a car’s performance. The presentation layer, like beauty, is only “skin deep” and
the usefulness of the application comes from the whole solution and not just the “lipstick.”
Thus, by itself, network visualization is naturally a feature of system and rarely is a

complete application by itself. This, unfortunately, makes commercial utilization of a new
technique or novel method difficult. With a few exceptions, the technology must be part of
an application to capture sustainable value. Network visualization “makes it better” but,
except in rare situations, does not make it. The network visualization value stack challenge
is to find applications where network visualization creates enough value, either by itself or as
part of an applications, to support utilization where it is a key part of the value proposition.
Throughout this chapter, the term network visualization refers to methods for visualizing

graphs and networks that make use of graph drawing techniques.

22.2 Where Network Visualization Creates High Value

At its most basic level, network visualization is a technique for helping analysts under-
stand structure and relationships. This section describes seven broad classes of information
problems, illustrated by examples, where network visualizations create significant value.

22.2.1 User Interface

In certain cases, the user interface is essentially a complete application. The canonical
example of this is computer games which are innovative and sophisticated user interfaces
that involve, relatively speaking, little computation and no data integration. Successful
games must have a great user interface that challenges and engages prospective players
within the first few seconds.

Perhaps the closest network visualization application where the interface is the application
involves graph drawing and layout. Arguably, the most successful application in this space
is Microsoft’s Visio

TM

. Visio is perhaps the most widely used graph drawing package and
is distributed as part of Microsoft Office.

22.2.2 Visual Presentation and Branding

Visual presentation and branding involves creating custom 3D displays of networks for
presentations that are visually exciting. It frequently incorporates aspects of branding and
has a high glitz and wow factor. Typical presentation and branding techniques include
animation, colorful 3D networks, and visualization that have a high “wow” factors.

Figures 22.1 and 22.2 show two visually exciting examples of network visualizations for
presentation and branding. The visualization on the left shows worldwide Internet traffic
and the image on the right shows Internet traffic betwen countries. These images have
been used on the covers of multiple books, magazines, and as raw material for art work.
Their use is really for branding. See, for example, Praba Pilar’s network visualization art
gallery [Pil05].

22.2. WHERE NETWORK VISUALIZATION CREATES HIGH VALUE 683

Figure 22.1 3D Internet Network visualizations for presentation and branding.

Figure 22.2 Internet traffic flows between countries used for presentation and branding.

684 CHAPTER 22. GRAPH DRAWING FOR DATA ANALYTICS

22.2.3 Executive Dashboards

Executive dashboards provide decision-makers with instant access to key metrics that are
relevant for particular tasks. Much of the intellectual content in dashboards is in the
choices of metrics, organization of information on the screen, and access to supporting,
more detailed information. Network visualization techniques can improve this presentation,
as shown in Figure 22.3. Executive dashboards may include the ability to export result-sets
to other tools for deeper analysis.

State-of-the-art implementations of active executive dashboards are web-based, interac-
tive, dynamic, involve no client-side software to install, and often include action alerts that
fire when pre-defined events occur. End user customizations include sorting, subsetting,
rearranging layouts on the screen, and the ability to include or exclude various metrics. It
is common for visual reports to be distributed via email, published on a corporate intranet,
or distributed through the internet.

Figure 22.3 Executive dashboard showing a network superimposed on a geospatial map.

22.2. WHERE NETWORK VISUALIZATION CREATES HIGH VALUE 685

22.2.4 Real-Time Visual Reports

Real-time visual reports are related to executive dashboards but provide an active presenta-
tion of an information set consumable at a glance. Although the distinction is subtle, visual
reports usually involve fat client-side software and thus can provide richer presentations of
the information. Visual reports exploit the idea that a picture is worth a thousand words
and, in particular, for many tasks a picture is more useful than a large table of numbers.

Visual reporting systems are:

1. Easy to use for both sophisticated and non-sophisticated user communities;

2. Suitable for broad deployments; and

3. Provide capabilities for flexible customization;

Figure 22.4 Real-time 3D visual report.

Visual reports, as with all reports, are a tool for assumptive-based analysis. Reports
answer “point questions”: How much of a particular item is in stock? Where is it? How
long will it take to get more? Reports are ideal for operational tasks, but do not provide
full analytics, or enable an analyst to automatically discover new information that a user
has not thought to ask about.

This is a well-known characteristic of all report-based analytical solutions. The reports
pre-assume relationships that are reported upon. The difficulty with this approach is that
most environments are too complex for a pre-defined report or query to be exactly right.
The important issues will undoubtedly be slightly, but significantly different. This is partic-
ularly true for complex, turbulent, environments where the future is uncertain. There are
two common solutions to this problem. The first is to create literally hundreds of reports

686 CHAPTER 22. GRAPH DRAWING FOR DATA ANALYTICS

that are distributed out to an organization, either using a push distribution mechanism such
as email or a pull mechanism involving a web-based interface. The second involves adding a
rich customization capability to the reporting interface that increase UI complexity. Unfor-
tunately, neither works particularly well. Although a report containing novel information
might exist, finding it is like finding a needle in a haystack. Adding UI features makes the
reporting system difficult to use for non specialists.

22.2.5 Visual Discovery for Deep Analysis

Visual discovery-based analysis addresses the shortcomings of assumptive-based analytics
by providing a rich environment to support novel discovery. Systems supporting visual
discovery are used by analysts and frequently combine data mining, aspects of statistics,
and also predictive analytics. Visual discovery is domain specific and iterative. Network
visualization improves visual discovery by enabling discoveries to often “jump” out and
may lead to “why” questions. For example, in a supply chain management analysis, visual
discovery might identify an unusual inventory condition that would lead to a subsequent
investigation into why it occurred and how to fix it.

NicheWorks and its successor StarGraph are examples of general purpose information
visualization system for visual discovery [Eic00] (see Figure 22.5).

Figure 22.5 Network visual discovery and analysis tool. The linked histograms function
as interactive filters to control display complexity.

22.2. WHERE NETWORK VISUALIZATION CREATES HIGH VALUE 687

It consisted of a workspace with standard data acquisition capabilities, and a set of visual
metaphors, e.g., views, each of which showed data in a particular way. Some of the views
were conventional, (e.g., geographical networks, abstract networks, barcharts, linecharts,
piecharts) and some were novel (Data Constellations, Multiscape, Data Sheet). For visual
analysis, the views could be combined into fixed arrangements called perspectives. Within
any perspective the views could be linked in four ways: by color, focus, selection and
exclusion. Components linked by color used common color scales and those linked by focus,
selection and exclusion were tied by data table row state using a case-based model [EW95].
There are three important ideas in this general class of visual discovery and analysis tools.

First, perspectives extend general linked view analysis systems by reducing complexity for
non-expert users. Perspectives are “authored” by “power users” who are experts. Analysts
who are domain experts, but not power users, use the perspectives as a starting point for
analysis and as a guiding framework. The output from their analysis, visual reports, may
be published and distributed for use by casual users, executives, and decision-makers. The
user model is similar to that employed by spreadsheets where there are spreadsheet authors,
users, and consumers.

Second, visual design patterns are recurring patterns within perspectives that are broadly
useful and apply to many similar problems. Following the object-oriented programming
community [GHJV95], recognizing, cataloging, and reusing design patterns have the poten-
tial for significantly improving network visualizations.

Examples of design patterns are Shneiderman’s information-seeking mantra:

overview first, zoom and filter, then details on demand [CMS99]

The overview shows the entire dataset, e.g., all movies in the dataset, and supports the
ability to zoom in on interesting movies and query the display with the mouse to extract
additional details. This design pattern incorporates interactive filters, frequently bar and
pie charts, that enable you to filter out uninteresting folders so that you display only the
data that is interesting. Filtering might be by category, numeric range, or even selected
value.

Another design pattern, called linked bar charts , is particularly strong for data tables
containing categorical data. Categorical data, sometimes called contingency tables, involves
counts of the number of data items organized in various bins or subcategories. This design
pattern employs one bar plot for each categorical column with the height of the bar tied to
the number of rows having that particular value. In statistical terms each of the bar charts
shows a marginal distribution. As the user selects an individual bar, the display recalculates
to show one-way interactions. Using exclusion and selection shows two-way interactions.

Third, details on demand is a feature set where the system provides tooltips and other
details when the user mouses over any particular item on the screen. The idea is to pro-
vide immediate access to fine-grain information when it is needed without unnecessarily
cluttering the interface.

22.2.6 Searching and Exploration

Network visualizations focused on visual searching involves undirected knowledge discovery

against massive quantities of uncategorized, heterogeneous relationship data with varying
complexity. This scenario is typical of web searching where users recognize information
when they find it. Searches are iterative, intuitive, and involve successive refinements.

The key measures for the performance visual searching systems revolve around the amount
of information per unit of search effort expended. The search effort may be measured in
user time, number searches, personal energy, etc. The results, or information found, may

688 CHAPTER 22. GRAPH DRAWING FOR DATA ANALYTICS

be measured in articles, references, relevance, novelty, ease of understanding, etc. Different
systems exploit various design points trading off these factors.

22.2.7 Domain Task-Specific Visualizations

Task-specific visualizations help users solve critical, high-value tasks. Examples include
visualizations to:

1. Design and layout complex circuits;

2. Identify relationships in product purchases;

3. Trace calling patterns among subscribers (Figures 22.6 and 22.7);

4. Manage huge communications networks (Figure 22.8); and

5. Study relationships in a complex social network.

These visualizations are tuned to particular problems often delivered as part of a complex
system. They are highly valuable, frequently involve fusing of a large number of information
streams, and serve both as an output presentation for information display and also control
panel and input interface for user operations.

22.3 Network Visualization Sweet Spot

One very simply way to characterize network visualization problems uses three dimensions:

1. Dataset size is a measure of the total amount of data to be analyzed. Al-
though some might disagree, sophisticated network visualization techniques are
not needed for small datasets containing tens of observations. In these cases re-
ports, spreadsheet graphics, and standard techniques work fine. More powerful
techniques are unneeded.
Conversely, network visualization techniques do not scale to analyze massive
datasets containing gigabytes of information. The basic problem is that network
visualization is a technique that makes human analysts more efficient and human
scalability is quite limited. The exact scalability limits of network visualization
are subject to debate and are an active research area [EK02, Eic04]. Most re-
searchers would agree, however, that massive datasets containing hundreds of
thousands to millions of observations are too big and need to be subdivided,
aggregated, or in some way reduced before the information can be presented
visually. Network visualization, it would seem, cannot be applied to analyze
massive image databases containing millions of images, but might be applied to
meta data associated with the images.

2. Dataset complexity can be measured by the number of dimensions, structure,
or richness of the data. Network visualizations are not needed for (even large)
simple datasets with low-dimensional complexity. Statistical reduction tools such
as regression work fine and are sufficient in this situation.
Conversely, datasets of massive complexity containing thousands of dimensions
are too complex for humans and thus for network visualizations. Some have
argued that network visualizations can cope with as many as fifty dimensions,
although a more practical upper limit is say half to a dozen dimensions.

3. Dataset change rate is a measure of how frequently the underlying problem
changes. Static problems, even for very complex problems, can eventually be
solved by developing an algorithmic solution. The algorithmic solution has a

22.3. NETWORK VISUALIZATION SWEET SPOT 689

Figure 22.6 Calling patterns among subscribers in a massive international network.

Figure 22.7 Relationship and calling patterns among subscribers in a network.

690 CHAPTER 22. GRAPH DRAWING FOR DATA ANALYTICS

Figure 22.8 Network visualization showing traffic patterns after California earthquake.

huge advantage over an information visualization-based solution since the algo-
rithm can be applied repeatedly without the need for expensive human analysts.
Conversely, analysis problems involving change or other dynamic characteristics
are extremely difficult to automate because the problem keeps moving. In these
cases, human insight is essential. Humans, however, cannot cope with problems
that change too quickly. We are incapable of instantaneous responses. Human
analytical problem solving occurs on a time scale of minutes to months. We must
automate problems needing faster response and partition problem those involving
longer time scales.

As shown in Table 22.1 the application sweet spot for network visualization involves
analysis problems of moderate data sizes, rich, but not overwhelming, dimensional structure,
that change, are not easily automated, or for some reason need human involvement.
Examples of prototypical applications include:

• Network management for complex networks where the system is dynamic, con-
stantly changing with new protocols, new devices, and new applications. The
systems are instrumented and collect alarms with complex dimensional struc-
ture. It is frequently the case that the number of events (alarms) exceeds the
capacity of network visualizations and must be algorithmically reduced.

22.4. CUSTOMERS FOR NETWORK VISUALIZATION SOFTWARE 691

Attribute Low Value High Value

Dataset size 101 to 102 104 to 106

Dataset complexity 2 or 3 dimensions 50 dimensions
Dataset change rate minutes months

Table 22.1 Dimensions and bounding ranges for network visualization sweet spot.

• Customer behavior involving human buying patterns and transaction analysis is
an ideal candidate for network visualizations. Human behavior is complex, unpre-
dictable, and dynamic. Furthermore, although aggregate numbers of transactions
are large, for any individual or set of individuals the numbers of transactions are
not overwhelming and easily suitable for analysis.

• Intelligence analysis is an ideal candidate for network visualization. It is difficult
to automate, involves complex dimensional data, is dynamic, and necessarily
involves human analysts.

22.4 Customers for Network Visualization Software

There are three broad classes of potential network visualization users: scientists, analysts
(including both intelligence and commercial analysts), and business users.

• Scientists have deep needs for network visualization, are extremely technical, and
work on the most significant problems. They want powerful tools for cutting-edge
analyses.

• Analysts, particularly in commercial companies, also have a strong need for net-
work visualization, but tend to have specialized needs. They are not as sophisti-
cated as scientists and will not tolerate raw software packages.

• Business users need simple network visualizations and are easily frustrated by
complex software. Business users are numerous, have budget, but need solu-
tions to problems and are not inherently interested in the complexly that excites
scientists and analysts.

These three classes of users have different needs and varying tolerances for complex soft-
ware. As a scientists and analysts want complex rich software that is full featured. Scientists
are often willing to use flaky software that is cutting edge and incorporates the latest fea-
tures. However, there are not many scientists and analysts, and they tend not to have large
budgets. Thus the addressable market is not particularly large. Business users, however,
have budget, have problems, but do not have patience for leading-edge software that is not
robust. The business challenge is to create software that is sophisticated enough to solve
scientific problems and yet easy to use for business users. These dynamics shape the market
for network visualziation software.

22.5 Business Models for Network Visualization

Successfully deploying network visualizations involves solving a technical problem and cre-
ating a business model that supports widespread utilization. Broadly speaking, there are
several classes of business models for software companies, as discussed below.

692 CHAPTER 22. GRAPH DRAWING FOR DATA ANALYTICS

22.5.1 Custom Software

Custom software is written to solve a specific problem, usually for a single customer.
The problem being addressed must be significant, valuable, important, and yet specialized
enough so that general solutions do not exist. The projects often involve next generation
technology and new approaches to problems.

Typical price points for custom software projects usually start at $250K. Custom software
is sold directly by the vendor with six months to two year sales cycle. The sales team is
highly specialized and the sales process frequently involves company executives.

Organizations involved with customer software include universities, government labs,
large commercial organizations, and boutique specialty shops. Although it might seem
surprising to some, research universities and government labs act as custom software de-
velopers where the funding agencies effectively hire university principal investigators using
BAAs and solicitations to solve important custom problems. In this setting, the princi-
pal investigators function as both sales professionals and also lead fulfillment efforts with
“graduate student” development teams.

In the large organizations that sponsor customer software development there are com-
monly multiple roles. It is often the case, particularly with government-sponsored projects,
that the funding organization is not the organization that will eventually use the software
and the users of the software may not receive the value from its use. These separate orga-
nizational roles complicate the software sales process. For example, the National Science
Foundation funds research to build software for scientists to use. The scientists use the
software to solve important national problems. Thus, citizens are the ultimate beneficiary.
In the commercial environment, the CFO (Chief Financial Officer) funds a project that
is implemented by the CIO (Chief Information Officer) for a business unit. Thus, three
organizations are involved.

22.5.2 Enterprise Software

Enterprise software, sold by commercial companies, is essentially a flexible template that is
“implemented” on site, either by the vendor or a “business partner.” In the implementation
phase, the template is customized for a particular customer by means of tasks that include
connecting up data sources, defining the specific reports a company needs, and populating
tables (e.g., inserting employee names into a payroll file). For an enterprise application,
data integration is essential. Since enterprise software is reusable, it can be sold more
economically than custom software. Generally price points for enterprise software range
from $25K to $250K. The sales model for enterprise software may be direct at the higher
price points, e.g., SAP, or through local business partners who are “certified” by the vendor.

22.5.3 Shrink-Wrapped Software

Shrink-wrapped software is highly functional software that solves a specific problem very
well. The software usually is customer installed and provides for little or no customization.
Customer support, if provided, is usually self-serve via a web site or perhaps with limited
help desk support.

Shrink-wrap software is almost always sold by distributors or OEMed to the hardware
vendors and sold as part of a bundle. For example, Microsoft, the largest producer of shrink-
wrap software, sells essentially all of its software through distributors. As a mass-market
item, the price point for shrink-wrap software is less than $25K and more frequently less
than $1K.

22.6. THIN-CLIENT NETWORK VISUALIZATION 693

22.5.4 Open Source Software

Open source network visuazliation software supported by services is one of the newer emerg-
ing software business models. In the open source model software is developed by volunteers
working on donated time and made available at no charge through the internet. However,
support and other customizations are offered as service by companies using the open source
model. For operating systems and major applications this model appears viable. It is too
soon, however, to predict how well the open source model will do for targeted applica-
tions and specialized technologies such as network visualization software. In general, the
open source experience for visualization software has been mixed. There have been a few
successes but many other projects have not gotten widespread traction.

22.5.5 Cloud Computing

Cloud computing solutions via Web portals and network visualization services are another
possible business and distribution model for network visualization software. There is a
strong push in corporations away from client software because of its high cost of ownership.
As a result an increasing number of applications are moving toward a cloud computing
model.

22.5.6 Network Visualization Deployments

Relating the business models back to the visualization deployments, most of the demand
for network visualization has been met with custom research software built by universities,
government labs, and large communications companies. The customers are the military,
intelligence community, biomedical researchers, and other highly specialized users. Demand
for network visualization within the research community is healthy.

Within the enterprise category we might expect network visualization-enabled applica-
tions to emerge. In this category the value is provided by the whole application and a
network visualization presentation layer could be described as a software feature or add-on
product.

In a related field, Business Intelligence, there have been some early successes for visualization-
enabled applications. Perhaps the most notable success has been Cognos Visualizer. Cognos
sold 300K1 units of Cognos Visualizer, an add-on for Cognos PowerPlay, at $695 per unit
and some of the other “Business Intelligence” software vendors have had similar experiences.

The “Gorilla” analytic application within shrink-wrap category for network visualization
is Microsoft Visio. It is generally considered to be good enough for 90% of problems and
essentially everybody has it.

22.6 Thin-client Network Visualization

One of the challenges in creating a successful business model for network visualization soft-
ware involves deployment. The problem is that rich network visualization clients run on
desktop machines which means that they are deployed and managed through IT organi-
zations for many institutions. The cost of maintaining and deploying desktop software

1For comparison, a software application that sold 2,000 to 5,000 units would generally be considered

successful.

694 CHAPTER 22. GRAPH DRAWING FOR DATA ANALYTICS

restricts their use and potential application to all but the most important problems. One
way around this involves web-based deployment.

The advantage of web-based interfaces is that they are simple to deploy, have proliferated
rapidly, and are quickly becoming the de facto standard for accessing information. The
disadvantage of web-based interfaces is that desktop applications have a richness and re-
sponsiveness that has not been possible on the web. Recently, several new web applications
have appeared that provide a rich user experience on the web that previously was only avail-
able in desktop applications. Examples include Google Maps, Microsoft Virtual Earth, and
Google Suggest. The applications are examples of a new approach to web development that
combines Asynchronous JavaScript, XML, and DHTML and represents a fundamental shift
in what is possible on the web. On Microsoft’s Virtual Earth, for example, you use your
cursor to grab the map and scroll it around. On Google Suggest the system automatically
attempts to complete your search query. This all occurs almost instantly, without waiting
for pages to reload. This programming paradigm is often called Web 2.0 or AJAX in the
popular press.

There are several technologies, each flourishing in its own right, that can be combined in
powerful new ways to create the next generation web-based visualization capability. These
are:

• Standards-based presentation using XHTML and CSS;

• Web-based 2D graphics using Scalar Vector Graphics (SVG);

• Dynamic display and interaction using JavaScript to manipulate the Document
Object Model (DOM);

• Data interchange and manipulation using XML and XSLT;

• Asynchronous data retrieval using JavaScript’s XMLHttpRequest;

• DHTML (JavaScript) binding everything together.

Traditional web applications work on a client-server model. The client, a web browser,
issues an http request to a server for a new page when the user clicks on a link. The
web server, usually Apache or IIS, does some processing, retrieves information from legacy
systems, does some crunching, and sends a formatted page of hypertext back to the client
for display. This approach is the simplest technically, but does not make much sense from
the user perspective. The problem is that the user waits while the server does its thing for
the next page to reload.

The new model enabled by these new technologies eliminates start-stop-start-stop nature
of web applications. Instead, information is asynchronously downloaded to the client in
using XML. JavaScript code in the browser caches this information when it is received from
the server and displays it upon user request. Since the information is cache, the system
can provide instantaneous responses. JavaScript code in the browser also handles other
interactions with the user such as panning, zooming, scaling, and data validation. The
advantage of the asynchronous requests for XML data is that users can continue working
with the application while data is downloading.

The application shown in Figure 22.3 is an example of a thin-client interactive geospatial
network visualization. It is written using SVG and interaction is done via manipulating
each page’s DOM. Although the programming is quite difficult, the result is stunning. It is
able to provide the richness of a desktop application without the hassles of desktop software
with the flexibility and rich hyperlinking that is only possible in browsers.

22.7. DISCUSSION AND SUMMARY 695

22.7 Discussion and Summary

This chapter attempts to define opportunities where network visualizations create significant
business value. Network visualization involves the presentation layer with is naturally a
feature of many products. By itself, it usually has insufficient value to support widespread
usage and deployment. It is generally a feature of an application and a critical component
of a solution.

The chapter identifies various types of network applications and develops a simple model
that characterizes an opportunity space for an application. The target for the model is to
help identify commercial opportunities network visualization applications.

Although this chapter is not expected to be particularly exciting for researchers or sci-
entists who are interested in pushing the state-of-the-art, it should help practitioners iden-
tify opportunities for successful applications. Unfortunately, business and other pragmatic
issues often dominate the technical issues when it comes to determining which network
visualization applications will achieve commercial success.

696 CHAPTER 22. GRAPH DRAWING FOR DATA ANALYTICS

References

[CMS99] Stuart K. Card, Jock D. Mackinlay, and Ben Shneiderman. Readings in

Information Visualiation: Using Vision to Think. Morgan Kaufman, San
Francisco, California, 1999.

[Eic00] Stephen G. Eick. Visual discovery and analysis. IEEE Transactions on

Computer Graphics and Visualization, 6(1):44–59, January–March 2000.

[Eic04] Stephen G. Eick. Scalable network visualization. In Christopher R. Johnson
and Charles D. Hansen, editors, Visualization Handbook, pages 819–831.
Academic Press, 2004.

[EK02] Stephen G. Eick and Alan F. Karr. Visual scalability. Journal of Compu-

tational Graphics and Statistics, 11(1):22–43, March 2002.

[EW95] Stephen G. Eick and Graham J. Wills. High interaction graphics. European
Journal of Operational Research, 81:445–459, 1995.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design

Patterns. Addison-Wesley, 1995.

[Pil05] Monica Praba Pilar. Cyber.Labia: Gendered Thoughts and Con-

versations on Cyber Space. Tela Press, 2005. Available at
http://www.prabapilar.com/pages/projects/cyberlabia.htm.

23
Graph Drawing and Cartography

Alexander Wolff
University of Würzburg

23.1 Introduction . 697
23.2 Paths . 699

Simplifying and Schematizing Polygonal Paths • Continuous
Generalization for Polygonal Lines

23.3 Matchings . 703
Boundary Labeling with Type-s Leaders • Boundary
Labeling with Type-po Leaders

23.4 Trees . 709
23.5 Plane and Near-Plane Graphs . 711

Schematic Road Maps • Metro Maps • Street Maps with
Focus Regions • Cable Plans

23.6 Other Graphs . 724
Timetable Graphs • Internet Traffic • Social Networks

References . 730

23.1 Introduction

Graph drawing and cartography come together when networks whose elements have geo-
graphic locations, that is, geometric networks, have to be visualized. Examples of such
networks are street, subway, river, or cable networks. Often it helps to visualize the un-
derlying network for analyzing certain network parameters. For example, traffic on a road
network can be visualized by drawing each road as a rectangle whose width is proportional
to the amount of traffic going through that road.

One of the main problems in map production is a process called generalization. Given
cartographic data that has been collected at large scale, this data must be simplified in order
to produce maps at small scale. In order to obtain readable maps, detail must be reduced
and spacing must be enlarged. Traditionally this has been done manually by cartographers,
but increasingly semi-automated and even automated methods are in use, particularly in
conjunction with geographic information systems (GIS) [Ass96]. Cartographers have iden-
tified a number of generalization operators such as displacement, size exaggeration, size
reduction, and deletion in order to cope with the many constraints that govern the gener-
alization process. The main difficulty in automating generalization is the interdependency
of these operators.

Saalfeld [Saa95], both geodetic and computer scientist, pointed out (in one of the first
editions of the graph drawing conference) that map generalization can be seen as a graph
drawing problem—if one accepts that a cartographic map is but a straight-line drawing of a
graph in the plane. Then the process of redrawing a map at smaller scale can be interpreted
as a sequence of modifications of both the graph and its drawing. Graph elements must be

697

698 CHAPTER 23. GRAPH DRAWING AND CARTOGRAPHY

contracted or removed, and the drawing must be modified to reflect the graph reductions.
Moreover, the drawing must be modified in that “old” graph elements must be moved, for
example, due to distance constraints. Saalfeld is an early advocate of continuous gener-
alization: his ultimate goal is a map with a slider bar for scale. (For a rather restricted
continuous generalization problem, see Section 23.2.2.) Saalfeld points to the key issue:
address the “big picture”—take feature interaction into account. He challenges the graph
drawing community to “design and implement an efficient and effective automated map
generalization system for the line network of a digital map.”

Note that general graph-drawing algorithms cannot be used ad hoc for drawing geometric
networks since they do not respect the geometry that comes with the vertices and edges.
A good drawing of a geometric network must reflect geometry since a user typically has an
intuitive notion of the underlying geometry, in other words, a mental map [ELMS91]. For
example, the user of a metro system expects stations in the north to appear on the top
of maps that depict the metro system. Thus the “art” of drawing geometric networks is
to find a good compromise between distorting geometry and maximizing aesthetics. This
will be the leitmotif of this chapter, which also explains why we will not touch point-set
embeddability problems. Recall that, in a point-set embeddability problem, one is given
not just a graph but also a set of points in the plane (or on a line) and the aim is to
find a mapping between vertices and points such that the edges can be drawn under some
drawing convention. For example, Gritzmann et al. [GMPP91] showed that any n-vertex
outerplanar graph can be embedded on any set of n points in the plane (in general position)
such that edges are represented by straight-line segments connecting the respective points
and no two edge representations cross. In the type of problem we are interested here, in
contrast, the mapping between vertices and points is part of the input and, in many cases,
we may move the points to some extent.

We focus on node-link representations of geometric networks, that is, we insist on repre-
senting vertices by points or small icons such as disks or squares and edges by some linear
features (Jordan curves, in general). This excludes contact or intersection representations
(such as rectangular cartograms) where edges are represented implicitly; by the contact or
intersection behavior of the “large” geometric objects that represent the vertices. For such
representations, see Chapter 10 on rectangular drawings and Chapter 11 on simultaneous
drawings.

Note, however, that additional requirements come into play in a geographic context. For
example, the relative position or the relative sizes of the geometric objects representing the
vertices are often prescribed by the user. As an example for this additional difficulty, take
Koebe’s beautiful theorem [Koe36] that says that every planar graph can be represented
as a coin graph, that is, as a set of interior-disjoint disks, two of which touch if and only
if the corresponding vertices are adjacent in the given graph. If one now introduces geo-
metric constraints by prescribing a set of “anchor” points and a bijection between points
and vertices (and, hence, disks), and by insisting that each disk contains its point, then
realizability of a given planar graph as a cover contact graph becomes NP-hard [AdCC+12].

In this chapter, we give an overview of the main types of geometric networks that are
being visualized in an automated fashion, using node-link diagrams. For each network
type, we consider the application-dependent aesthetic constraints. We group the network
types according to the graph class to which they belong: paths (simplified, schematized and
generalized in Section 23.2), matchings (used in boundary labeling in Section 23.3), trees
(as in flow maps; see Section 23.4), (near-) plane graphs (such as street or metro maps; see
Section 23.5), and other graphs (such as timetable graphs, the Internet multicast backbone,
or social networks; see Section 23.6). Note that we use the term plane to stress that the

23.2. PATHS 699

graphs are given with a planar embedding. For example, a self-intersecting polygonal line
can be considered a path and hence a planar graph, but it is not a plane graph.

23.2 Paths

When drawing paths nicely, the main problem is data reduction: which points can be
dropped while maintaining the important features of a polygonal line? Due to its many ap-
plications, polygonal line simplification has been identified as an important problem both
in cartography and in computational geometry. Since Douglas and Peucker [DP73] pre-
sented a simple and frequently used algorithm, cartographers have devised solutions of
higher cartographic quality [VW93, Saa99, LL99], while geometers have given a more ef-
ficient implementation of the Douglas-Peucker algorithm [HS94] and have designed new
algorithms for specialized error criteria [AV00, BCC+06] or for a restricted number of ori-
entations [Ney99, MG07, DHM08]. Still, finding a near-linear time solution for polygonal
line simplification is listed as problem 24 in the Open Problems Project [MO01].

23.2.1 Simplifying and Schematizing Polygonal Paths

The path-drawing problem that Agrawala and Stolte [AS01] considered has more of a graph-
drawing flavour. Their route maps help car drivers to get from A to B. While most route
planners draw routes using a fixed-scale map as background, Agrawala and Stolte suggested
to draw edges of the path (that is, roads between turns) as straight-line segments which are
usually not to scale. Instead, their system LineDrive exaggerates the length of short road
segments in order to label them properly with street name and real length, see Figure 23.1.

(a) map generated with LineDrives (b) constant-scale map (for comparison)

Figure 23.1 LineDrives generates driving directions. Sketches taken from [AS01].

700 CHAPTER 23. GRAPH DRAWING AND CARTOGRAPHY

In the resulting drawings, angles at turns are mostly kept, except at very sharp turns.
Roads that are close to being vertical or horizontal are usually made vertical or horizonatal,
respectively. The LineDrive system, which is based on simulated annealing, was publicly
available for some period of time and received very positive response from most users.

Later on, the path-drawing problem of Agrawala and Stolte [AS01] inspired research
in the graph-drawing community. Brandes and Pampel [BP13] showed, by reduction from
Monotone3Sat, that the rectilinear (orthogonal) case is NP-hard; more precisely, it is NP-
hard to decide whether a given polygonal path has a simplification that consists exclusively
of horizontal and vertical segments and preserves the orthogonal order (that is, horizontal
and vertical order) of the vertices along the path. The ordering constraint is meant to help
the user maintain his mental map.

On the positive side, Delling et al. [DGNP10] showed that, given an polygonal path and
a set C of directions, they can efficiently compute a simplification such that (a) all edge
directions are in C and (b) the orthogonal order of the vertices is preserved—if the input
path is x-monotone. Their algorithm finds a simplification of minimum cost, which they
define to be the sum over the costs of all edges. The cost of an edge, in turn, is defined to
be the angle between the edge in the output and the direction in C that is closest to the
direction of the edge in the input. The algorithm is based on a clever characterization of
optimum solutions and on dynamic programming. When the number of directions, |C|, is
considered a constant, their algorithm runs in O(n2) time and uses O(n) space, where n
is the number of vertices of the input path. Using a linear-programming formulation (of
linear size), Delling et al. can even find, among all simplifications with a fixed direction for
each edge, one of minimum total length. In addition, they present a heuristic for dealing
with the non-monotone case.

A natural generalization of the rectilinear case considered by Brandes and Pampel [BP13]
is the d-regular case, where the set of directions consists of multiples of 90◦/d. Delling et
al. [DGNP10] established their positive result for x-monotone paths for any set of direc-
tions (actually, any set containing the multiples of 90◦); in particular, their result holds
for the d-regular case for any d ≥ 1. Gemsa et al. [GNPR11] generalized the negative
result of Brandes and Pampel from d = 1 to any d ≥ 1, using a different reduction (from
MonotonePlanar3Sat). On the other hand, they presented a mixed-integer linear pro-
gramming (MIP) formulation for d-regular path simplification (for any d ≥ 1) and evaluated
it on real-world instances (quickest routes between random destinations in the German road
network). They concluded that the MIP runs fast enough if the road geometry is prepro-
cessed with a conventional path simplification method (such as Douglas-Peucker [DP73]).
They suggested that d = 3 is a good compromise between accuracy and abstraction.

23.2.2 Continuous Generalization for Polygonal Lines

A path simplification problem of a rather different flavor was investigated by Merrick et
al. [MNWB08]. They assumed that both a detailed and a less detailed drawing of a path
are given; they are interested in how to get from one to the other in a continuous fashion.
In computer graphics, such a transition is called a morph. From a cartographic point of
view, their problem is a continuous generalization problem: given two linear objects (such
as streets or rivers) on maps of different scale, deform one representation continuously into
the other such that intermediate representations are valid generalizations for their scale.

The problem naturally decomposes into two subproblems: first, find a correspondence
between parts of one path and parts of the other path; second, define a movement that
moves the parts of one path onto the corresponding parts of the other path. Merrick et
al. focused on the first subproblem and solve the second subproblem by simply moving the

23.2. PATHS 701

vertices of one path on linear trajectories to their counterparts. The first subproblem can
again be subdivided into two tasks: first, find characteristic points on both paths; second,
find a good correspondence between the subpaths defined by consecutive corresponding
points. The idea behind the characteristic points is not only data reduction, but detecting
such points and treating them with special care makes it more probable that the viewers of
the resulting morph keep their mental map during the animation.

For the first task, Merrick et al. incrementally fitted cubic Bézier curves to a growing
part of the given polygonal path. When the distance between the current subpath and the
curve surpasses a pre-specified error bound ε > 0, Merrick et al. viewed the point added last
as a characteristic point, and repeat the fitting process with the subpath starting at that
point. The distance between subpath and curve is approximated by sampling both with
a relatively large number of points, measuring the distances only between corresponding
points and taking the maximum over these point-to-point distances.

Figure 23.2 shows a mountain road in the French Alps and the characteristic points that
were detected using the Bézier-fitting method of Merrick et al. for two different values of
the error bound ε; 1 and 25. Subfigure (c) shows the same road with manually selected
characteristic points. The automatically detected set of characteristic points for ε = 25 and
the manually detected set are quite similar.

For the second task, Merrick et al. presented a dynamic program that computes a cor-
respondence between the two paths, in O(nm) time, where n and m are the numbers of
subpaths of the first and second path, respectively. The correspondence is optimal with re-
spect to the distance function defined by the user; the authors make a number of suggestions
for such functions.

Figure 23.3 shows snapshots morphs between two representations of the road in Fig-
ure 23.2. The more detailed representation is from a BD(R) Carto map at scale 1:50,000;
the less detailed, generalized representation of the same road at scale 1:100,000 is from an
IGN Carto2001 TOP100 map. The example road was chosen because it is represented by
three serpentines on the detailed scale but only by two serpentines in the less detailed scale.
Each morph is based on a different choice of characteristic points; linear interpolation (vari-
ant (c)) is a simple ad-hoc method that matches each point on one polyline to the point
at the same relative distance from the start on the other polyline. The middle snapshot
produced by this method shows its weakness, especially in the part of the polyline labeled
“Region A.” While the two other morphs (in subfigures (a) and (b)) keep the “amplitude” of
the serpentines while merging the first two, linear interpolation first reduces the amplitude
and then increases it again.

(a) ε = 1 (72 points) (b) ε = 25 (28 points) (c) manual (26 points)

Figure 23.2 Selection of characteristic points according to Merrick et al. [MNWB08].
The polyline is a mountain road from the French Alps; it consists of 155 vertices.

702 CHAPTER 23. GRAPH DRAWING AND CARTOGRAPHY

Region A

(a) ε = 25 (b) manual (c) linear interpolation

Figure 23.3 Morphs generated by Merrick et al. [MNWB08] depending on the method for
selecting characteristic points. In each snapshot, previous frames are shown in increasingly
light shades of gray to assist perception of the animation.

23.3. MATCHINGS 703

For this road, which has 190 and 155 vertices on the 1:50K and the 1:100K maps, re-
spectively, it took less than 0.01 seconds to compute the characteristic points, 1.39 seconds
to compute the optimal correspondence for ε = 1, and 0.59 seconds for ε = 25. The road
is part of a map sheet with 382 roads consisting of 13345 and 10869 vertices on the two
maps, which were reduced (for ε = 25) to 2742 and 2387 characteristic points, respectively.
For the whole 1:50K map sheet, this reduction took 0.69 seconds; computing the corre-
spondence then took 13.17 seconds. The experiments were performed on an AMD Athlon
XP 2600+ PC with 1.5 GB main memory running under SuSE Linux 10.1. These run-
ning times are acceptable since tasks can be considered pre-processing. Only the resulting
simple linear morph needs to be executed in real time. In order to solve the continuous
generalization problem for complete street or river networks across large scale intervals, the
line-simplification algorithm sketched here must be combined with a topology-simplification
algorithm, which yet has to be devised.

23.3 Matchings

Matchings do not appear to be an exciting graph class for graph drawing, but they have
an interesting application that brings cartography and graph drawing together: so-called
boundary labeling. In boundary labeling, one is given a set of point sites on a rectangular
map and, for each site, a rectangular label that contains, for example, textual information
about the site. Other than in normal point labeling, labels are not placed next to the
site they label, either because the point set is too dense with respect to the label sizes or
because the map background must not be covered by the labels. Instead, labels are placed
outside the map such that they touch the map boundary with one side. In order to visualize
the mapping between sites and labels, each site is connected to its label with a polygonal
line, the so-called leader. For three real-world examples with different leader types, see
Figure 23.4.

The boundary labeling problem was introduced by Bekos et al. [BKSW07]. For a given
rectangle R (for example, a cartographic map), a set P of point sites in R and, for each
site s in S, a rectangular label Ls, Bekos et al. define a feasible leader-label placement to be a
placement of the labels and a drawing of the leaders that fulfills the following requirements:

(a) parts of a hamburger (b) parts of a pair of scissors (c) districts of Würzburg

Figure 23.4 Examples of boundary labeling.

704 CHAPTER 23. GRAPH DRAWING AND CARTOGRAPHY

(B1) Labels are disjoint.

(B2) Labels lie outside (the interior of) R such that, for each label, one of its edges is
contained in one of the edges of R.

(B3) Each point is connected to its unique label by a leader.

(B4) Leaders may not intersect other leaders, points or labels.

(B5) The point where a leader touches a label is called port ; ports may be fixed (for
example, to the centers of the label edges) or sliding (that is, arbitrary).

(B6) Labels either have fixed positions or can slide along an edge of R.

(B7) Labels can be attached to one, two or all four edges of R. The resulting problems
are called one-side, two-side and four-side leader-label placements.

In addition to feasible leader-label placements, mainly the following objective functions
have been considered:

(O1) small ink consumption (minimize total leader length),

(O2) straightness (minimize number of bends).

These are typical graph drawing objectives; they help to keep the visual complexity of the
resulting drawing low.

Several types of leaders have been considered; until now all of them are polygonal with
up to two bends. Generally, a leader type is denoted by a word from the set {s, {p, o, d}∗};
the letters refer to the direction of the line segments that form the leader, starting at the
point to be labeled and ending at the port that lies on some edge e of R. The leader type s
refers to straight-line leaders; their direction is arbitrary. Leader segments labeled p are
parallel with e, segments labeled o are orthogonal to e, and segments labeled d are diagonal,
that is, they form an angle of 45◦ or −45◦ degrees with e.

Two-sided boundary labeling with labels of non-uniform height is NP-hard; the reduction
from Partition is obvious. Therefore, most references focus on uniform labels, that is, all
labels are unit-height rectangles. In Table 23.1, we summarize the running times of the
best known algorithms (in big-Oh-Notation) for various versions of the boundary labeling
problem.

The following variants and extensions of the boundary labeling problem have been con-
sidered:

• boundary labeling with octilinear leaders, that is, leaders whose segments are
horizontal, vertical, or diagonal at ±45◦ [BKNS10],

• multi-criteria boundary labeling [BHKN09],

• boundary labeling for area features [BKPS10],

• boundary labeling under rotations [NPS10],

• text annotation [LWY09],

• multi-stack boundary labeling [BKPS06],

• many-to-one boundary labeling [Lin10, LKY08],

• one-and-a-half-side boundary labeling [LPT+11],

• boundary labeling combined with traditional map labeling [BKPS11], and

• boundary labeling for panorama images [GHN11].

In order to give the reader at least a flavor of this variety of results, we review some of the
early algorithms for type-s and type-po leaders. In the case of one- and two-side problems,
we attach labels to the right edge and both vertical edges of R, respectively.

23.3. MATCHINGS 705

length-minimal solution

le
ad

er
ty

p
e

#
m

ap
ed

ge
s

w
it

h
la

b
el

s

feasible
solution

bend-
minimal
solution

fixed
ports

sliding
ports

reference

s 1 n log n N/A n2+ε n3 [BKSW07]
s 4 n log n N/A n2+ε n3 [BKSW07]

po 1 n3 n log n n log n [BHKN09]
po 2 n2 n2 [BKSW07]
po 2 n8 [BHKN09]

opo 1 [n log n] [n2] n log n [n2] [BKSW07]
opo 2 open n2 [nH2]? n2 [BKSW07]

opo 4 n log n open n2 log3 n n3 [BKSW07]

do 1 n5 n2 n2 [BHKN09]
do 2 n14 [BHKN09]

{do, pd} 1 open n3 [—]? n3 [BKNS10]
{od, pd} 1 n log n open n3 n3 [BKNS10]
{do, pd} 2 open n3 n3 [BKNS10]
{od, pd} 2 n log n open n3 n3 [BKNS10]
{od, pd} 4 n log n open n3 n3 [BKNS10]

Table 23.1 Running times of the best known algorithms (in big-Oh-Notation) for various
versions of boundary labeling, where ε is an arbitrarily small positive constant and n is the
number of sites. The time bounds in square parentheses refer to the case of non-uniform
labels. The problems marked by ? are NP-hard. The pseudo-polynomial algorithm for
2-sided opo-type leader-label placement assumes that label heights and the height H of
the bounding rectangle are integers. N/A stands for non-applicable. Entries in column
“Feasible solution” are filled only if there is a feasible solution that is asymptotically faster
than a bend- or length-optimal solution.

23.3.1 Boundary Labeling with Type-s Leaders

In the case of fixed ports and fixed labels, a type-s label-leader placement or total length L
corresponds to a Euclidean perfect bipartite matching of cost L. For the case of sliding
ports (and fixed labels), the problem can also be reduced to a matching problem, albeit at
a somewhat higher computational cost.

Theorem 23.1 [[BKSW07]] Given a set S of n point sites, a one-side type-s leader-label
placement of minimum total leader length for fixed labels can be computed in O(n2+ε) time
for any ε > 0 in the case of fixed ports and in O(n3) time in the case of sliding ports.

Proof: In the case of fixed ports, we have a set P of n ports. Then a Euclidean minimum-
cost perfect bipartite matching in the set S ∪ P yields a feasible leader-label placement of
minimum total leader length. Feasibility follows from two properties of the Euclidean plane;
the triangle inequality and the fact that the distances from the endpoints of a line segment
to a point on the segment add up to the length of the segment. Indeed, suppose that
two leaders would intersect then swapping the matching locally would decrease its cost;
see Figure 23.5. (For the same reason, any solution to the Euclidean traveling salesperson

706 CHAPTER 23. GRAPH DRAWING AND CARTOGRAPHY

p

p′

s′

s

x

R

Figure 23.5 A minimum-length Eu-
clidean matching is plane.

pn

p2

R

p1

s1
s2

p3s3

Figure 23.6 Feasible type-s leader layout
via dynamic convex-hull.

problem forms a simple polygon unless all points lie on a line.) A Euclidean minimum-cost
perfect bipartite matching can be computed O(n2+ε) time for any ε > 0 [AES99].

For the case of sliding ports, the time complexity increases since we now need a general
minimum-cost perfect bipartite matching in the complete bipartite graph on the set S of
n points and the set L of the n label positions; the weight of an edge (s, `) ∈ S × L is the
Euclidean distance of s to its closest point on `. Since we assume that labels are attached
to the right edge e of R, the point on ` closest to s is either the top or bottom point of `
or the orthogonal projection of s on e. A general minimum-cost perfect bipartite matching
can be computed in O(n3) time [Law76]. 2

If we content ourselves with a feasible leader-label placement, we can, in the case of fixed
labels with fixed ports, speed up the computation.

Theorem 23.2 [[BKSW07]] Given a set S of n point sites, a feasible one-side type-s
leader-label placement for fixed labels with fixed ports can be computed in O(n log n) time.

Proof: We assume that the set of ports, P = {p1, . . . , pn}, is sorted according to increas-
ing y-coordinate. Let H be the convex hull of the set S ∪ P . Consider the edge of H that
connects the bottommost point p1 in P to a site. Call this site s1 and make the line segment
s1p1 a leader; see Figure 23.6. Remove s1 from S and p1 from P . Repeat until each site is
matched to a port. Since no two ports have the same y-coordinate, in each step, the convex
hull of the diminished set S ∪ P is disjoint from the line segment connecting the site and
the port that were removed last. Hence, the resulting leader-label placement is feasible.

To make our algorithm run in O(n log n) time, we just need a semi-dynamic convex-hull
data structure that preprocesses a set of n points in O(n log n) time to allow for neighbor
queries and point deletions in O(log n) time. Hershberger and Suri [HS92] provided such a
data structure. 2

23.3.2 Boundary Labeling with Type-po Leaders

We start with the simplest possible variant of the problem; the algorithm for this variant
is illustrated in Figure 23.7. The idea behind the algorithm will turn out to be useful for
two generalizations.

Theorem 23.3 [[BKSW07]] Given a set S of n point sites, a feasible one-side type-po
leader-label placement for fixed labels with fixed ports can be computed in O(n2) time.

23.3. MATCHINGS 707

si

sj

sj′
pi

pj

pj′

ci

cj′

cj

si

sj

sj′
pi

pj

pj′

ci

cj′

cj

si

sj

sj′
pi

pj

pj′

ci
cj

cj′

(a) after inserting ci (b) after rerouting ci and cj (c) after rerouting ci and cj′

Figure 23.7 Rerouting type-po leaders.

Proof: We first sort sites and ports such that s1, . . . , sn and p1, . . . , pn are indexed in
order of non-decreasing y-coordinates. For i = 1, . . . , n, we connect si to pi by a po-leader ci
that consists of a (possibly zero-length) vertical line segment incident to si and a horizontal
line segment incident to pi. We assume that the previously placed leaders c1, . . . , ci−1 are
pairwise disjoint, and we show that we can add ci such that this assumption continues to
hold.

In the following, we treat the case that si lies above pi; the other case can be analyzed
analogously. If ci does not intersect any of the (pairwise disjoint) leaders c1, . . . , ci−1, we
are done. Otherwise, let sj be the rightmost site with j < i whose leader intersects ci; see
Figure 23.7(a). We reroute the leaders such that sj is connected to pi and si to pj ; see
Figure 23.7(b).

After the rerouting, the new leader cj does not intersect any other leader since (i) its
vertical segment is shorter than before and (ii) its horizontal segment used to belong to ci,
which—due to the choice of sj—did not intersect any other leader to the right of sj . Hence,
in this process, we remove the intersections of other leaders with the horizontal segment
of ci one by one, even if new intersections occur, as in the step from Figure 23.7(a) to
Figure 23.7(b).

It remains to observe that the growing vertical segment of ci never intersects other lead-
ers. This is true since, initially, ci goes to the top-most port pi and, after each rerouting
operation, ci is prolonged by a vertical sub-segment that used to “belong” to a leader to the
right of ci; the sub-segments move within the gray horizontal strips in Figure 23.7. Thus, if
a leader was to intersect the new vertical sub-segment of ci, it would have earlier intersected
one of the other leaders, contradicting our above assumption. 2

As it turns out, the feasible leader layout that the algorithm in the proof of Theorem 23.6
computes is already length-minimal.

Theorem 23.4 [[BKSW07]] Given a set S of n point sites, a minimum-length one-side
type-po leader-label placement for fixed labels with fixed ports can be computed in O(n2)
time.

Proof: Consider the site–port correspondence that we used in proof of Theorem 23.6:
going through sites and ports from bottom to top, we connected the i-th site si to the
i-th port pi. We claim that the type-po leader layout induced by this correspondence
has minimum total length among all type-po leader layouts (including the layouts with
crossings). Combining this claim with the simple observation that rerouting does not change
the total length of the leaders (see Figure 23.7), yields the theorem.

708 CHAPTER 23. GRAPH DRAWING AND CARTOGRAPHY

In order to prove the claim, we observe that, in all type-po leader-label placements, the
total length of the horizontal leader segments is the same. We convert our type-po instance
to a type-s instance by moving the sites to the right so that they all lie on a vertical
line infinitesimally close to the right side of the boundary rectangle R. Then the vertical
segments of a given type-po leader layout become (nearly) type-s leaders. Note that the
above site–port correspondence is the only one that induces a plane type-s leader layout.
Every other correspondence induces a layout with at least one pair of crossing leaders. If
we untangle such a pair, the total leader length does not increase. (The only case where it
remains the “same” is in the degenerate case that one of the two leaders is horizontal.) We
used basically the same observation in the proof of Theorem 23.1. 2

The same result holds if labels are attached to two (opposite) sides of the bounding
rectangle R.

Theorem 23.5 [[BKSW07]] Given a set S of n point sites, a minimum-length two-side
type-po leader-label placement for fixed labels with fixed ports can be computed in O(n2)
time.

Proof: As in the proofs of Theorems 23.3 and 23.4, we first compute a minimum-length
layout without caring about crossings. For the one-side case, this was trivial; for the two-
side case, we employ a simple dynamic program. Specifically, we use a two-dimensional
table; table entry (l, r) contains the minimum total leader length for the l + r lowest sites
under the condition that l are connected to labels at the left side of R and the remaining r
to labels at the right side. Since each entry in the table can be filled in constant time, the
dynamic program runs in O(n2) total time.

Again, as in the proofs of the two preceding theorems, we then apply our rerouting scheme
in order to remove all crossings. Recall that this does not change the total leader length. It
remains to observe that leaders going to different sides of R never cross in this process; if
they did cross, rerouting them would decrease the total leader length. This, in turn, would
contradict the minimality of the total leader length of the original layout. 2

For the one-sided case, Benkert et al. [BHKN09] have observed that a length-minimal
leader layout has a structure that can be exploited in order to speed-up its computation.
The rectangular map R can be partitioned in horizontal strips such that all sites within
a strip have horizontal leaders, have upward-going leaders (as in Figure 23.7(c)), or have
downward-going leaders. Strips of upward- or downward-going leaders are always separated
by strips with horizontal leaders, which can be detected easily. (In the case of fixed ports,
“horizontal” means here that, as in the case of sliding ports, the site lies in the vertical
range of the label.) Benkert et al. determine these strips in a first pass through the instance.
Then, in a second pass, they determine the leader layout for the sites within a strip using a
sweep-line algorithm. In total, their algorithm takes O(n log n) time. They show that this
running time is worst-case optimal; sorting reduces to length-minimal leader layout. All in
all, Benkert et al. have the following result.

Theorem 23.6 [[BHKN09]] Given a set S of n point sites, a minimum-length one-side
type-po leader-label placement for fixed labels with fixed or sliding ports can be computed in
Θ(n log n) time.

23.4. TREES 709

23.4 Trees

In economy and social sciences, a common problem is to visualize the flow of goods or
people from or into a specific destination. It makes sense to require that the flow between
two nodes of the underlying network is depicted by curves whose width is proportional to
the amount of flow. Usually these curves are drawn on the background of a regular map.
For visualization purposes, the network is drawn as a tree—although, in general, the actual
flow network is a rooted directed acyclic graph. The drawing of such a network is called a
flow map.

Henry Drury Harness [Har38] is being cited [Rob55, FD01] for having created the first
flow maps; in an atlas accompanying a report of the Railway Commissioners concerning
population and movement of goods in Ireland in 1837. A few years later, Charles Joseph
Minard, a French civil engineer, made flow maps mostly on economic topics, depicting, for
example, the amount of wine export from France, but also, in 1869, the location and size
of Napoleon’s army during its 1812/13 Russian campaign; see Figure 23.8. Tufte [Tuf01,
p. 40] says that this map “may well be the best statistical graphic ever drawn.”

Drawing flow maps automatically was first studied by Tobler [Tob87] who used straight-
line arrows of appropriate width. The restriction to straight-line edges causes a lot of visual
clutter; see Figure 23.9(a).

Nearly twenty years later, Phan et al. [PXY+05] set out to improve on Tobler’s result by
taking advantage of clustering and curved edges. Given the positions of the network nodes,
they first compute an agglomerative hierarchical clustering—independent of the position of
the root. The binary tree that corresponds to the clustering captures the spacial distribution
of the input. Then, they transform this unrooted binary tree into a tree rooted at the given
root node. In this process, the root can get several children. The layout of the flow tree
follows this tree recursively. A tree edge connecting a node to its child is routed from the
position of the node to the closest corner of the bounding box of the cluster that corresponds
to the child. The routing detours boxes containing sibling clusters. To make the final
layout of the flow map more aesthetically pleasing, the polygonal paths that represent the
edges are drawn as Catmull–Rom splines, that is, as special cubic curves that go through
the given points. For the resulting layout, see Figure 23.9(b). Under the (rather strong)

Figure 23.8 Minard’s map of Napoleon’s Russian campaign of 1812/13 [Min69].

710 CHAPTER 23. GRAPH DRAWING AND CARTOGRAPHY

(a) Tobler [Tob87]

(c) Verbeek et al. [VBS11] (b) Phan et al. [PXY+05]

(d) Cui et al. [CZQ+08] (e) Holten and van Wijk [HVW09]

Figure 23.9 Flow maps showing migration leaving California in the years 1995–2000.

assumption that the boxes of child clusters are pairwise disjoint, the (polyline) tree layout
is crossing-free. The complete (non-optimized) algorithm runs in quadratic worst-case time;
the authors report that the examples they computed took their Java implementation a few
seconds on a 1.4-GHz laptop.

Recently, Verbeek et al. [VBS11] presented a method for drawing flow maps that is based
on so-called (approximate) spiral trees. Given a set of points (one being labeled as root)
and an angle, a spiral tree is a directed angle-restricted Steiner tree of minimum length.
A directed angle-restricted Steiner tree for an angle α is a tree where each edge is drawn
as a curve with the property that, in every point p on the curve, the angle between the
vector from p to the root and the tangent in p (pointing backward) is bounded by α; see
Figure 23.10(a). The same set of authors [BSV11] showed that it is NP-hard to compute
spiral trees but that 2-approximations (in terms of length) can be computed, even in the
presence of obstacles, in O(n log n) time. Edges of (approximate) spiral trees are logarithmic
spirals.

Starting from such an approximate spiral tree for the given point set (with all leaves
being obstacles; see Figure 23.10(b)) and a user-chosen value of α (roughly in the range
between 15◦ and 35◦), Verbeek et al. compute a tree layout with edges of prescribed thickness
by subdividing the original edges (see Figure 23.10(c)) and then improving a set of aesthetic

23.5. PLANE AND NEAR-PLANE GRAPHS 711

(a) (b) (c) (d)

p
root α

Figure 23.10 From spiral tree to tree map [VBS11]: (a) defining a directed angle-
restricted Steiner tree. Workflow: (b) (approximate) spiral tree, (c) thickening and subdi-
viding edges, (d) optimizing aesthetic criteria using the method of deepest descent.

parameters in order to smooth and straighten the tree, to avoid obstacles, to balance and to
maintain its original angles (see Figure 23.10(d)). The authors model these parameters by
defining cost functions; they apply the method of deepest descent in order to minimize the
global cost function, which is the weighted sum of the individual cost functions. In order to
ensure that no crossings are introduced in the optimization process, the algorithm checks for
intersections before each move. In case an intersection would occur, the movement vector
is repeatedly divided by 2 until the movement is safe. The edges are drawn as a new type
of cubic Hermite splines that approximates logarithmic spirals well.

For an example output of the method of Verbeek et al., see Figure 23.9(c). For compar-
ison, the results of two other, more general methods (by Cui et al. [CZQ+08] and Holten
and van Wijk [HVW09]) are also depicted; see Figures 23.9(d) and (e). The input to these
methods is a graph (with vertex positions) rather than a tree; in the output, the curved
edges are bundled in order to better reflect the structure of the graph. Concerning run-
ning time, Verbeek et al. report that their algorithm drew most flow maps in less than a
minute on a (dual-core) Pentium-D 3-GHz processor with 1 GB of RAM, whereas world
maps required a few minutes.

23.5 Plane and Near-Plane Graphs

There are a number of applications where plane or near-plane graphs have to be drawn.
We differentiate between four different types of applications. In all four types, the original
embedding can be made planar by introducing few extra nodes where roads or tracks cross,
for example, at bridges. The topology of the original embedding must be preserved and
edges are drawn as polygonal lines. In most cases it is desirable to keep vertices roughly in
the same place as in the original embedding or to at least preserve the relative position of
vertices (for example, left/right, above/below). This helps the user to keep his mental map.

The application types that we consider in this section are as follows.

Schematic road maps are used for road or transportation networks. They try to
keep vertices (that is, cities or junctions) at or close to their original location.
Edges (that is, roads or tracks) can have diagonal segments.

Metro maps also use diagonals, but other than schematic maps they use very differ-
ent scales for downtown versus suburban areas. Relative position is important.
Another special feature of metro maps is that they usually have many degree-2
nodes.

Street maps with focus regions do not restrict edge directions but allow the user
to select a region that is displayed at larger scale. This is different from the

712 CHAPTER 23. GRAPH DRAWING AND CARTOGRAPHY

usual zoom operation where the user sees only a fraction of the original map
and, hence, loses overview. The difficulty lies in squeezing the remaining part of
the map such that distortion is acceptable.

Cable plans are used for documenting the layout of communication networks. They
are drawn orthogonally and try to preserve the angles, but not the distances of
the original embedding.

Compared to the orthogonal drawing of (embedded) graphs [Tam87], the introduction of
diagonals yields drawings that are more similar to the original embedding. In addition, the
maximum node degree increases from 4 to 8. In a sense, however, the problem becomes
more difficult as Bodlaender and Tel [BT04] point out. They define a planar graph to be
d-linear if it can be embedded such that all angles are multiples of 2π/d. The angular
resolution of a plane straight-line drawing is the minimum angle between edges incident to
a common vertex, over all vertices. Bodlaender and Tel show that, for d = 4, an angular
resolution of 2π/d implies d-linearity and that this is not true for any d > 4.

In what follows, we refer to the set of directions that are given by the two coordinate
axes and their two bisectors as the octilinear directions.

23.5.1 Schematic Road Maps

Schematic maps usually try to preserve the position of vertices as much as possible while
simplifying the polygonal lines that represent edges without changing the topology of the
original drawing. Edges are drawn as x- and y-monotone paths that consist of usually no
more than three horizontal (H), diagonal (D), and vertical (V) line segments. Cabello et
al. [CdBvD+01] have given an algorithm that decides in O(n log n) time whether a node-
embedded graph can be drawn such that each edge follows one of a given set of allowed
segment sequences (such as {HVH,VDV}, for example). If an edge embedding of the
required type exists, the algorithm finds it.

While Avelar and Müller [AM00] also try to make edges octilinear, they use a very
different method that moves vertices based on local decisions. They guarantee that the
topology of the original network is kept, but they do not guarantee that every edge in the
final layout is actually octilinear. They first use a polygonal line simplification method to
simplify all edges (that is, polygonal lines) of the original embedding. In order to preserve
topology, a more involved method like Saalfeld’s [Saa99] must be used instead of the classical
method of Douglas and Peucker [DP73] mentioned above.

After the simplification, each street junction and each bend of a street is considered a
vertex. Hence, edges are straight-line segments. Avelar and Müller iteratively go through
all vertices and compute new destinations based on the current (imperfect) directions of the
incident edges. They do this as follows. For each vertex v and each vertex w incident to v,
they compute an offset for v that would make the edge vw confirm to one of the allowed
directions. The arithmetic mean of these offsets yields a tentative new position for v. Before
actually moving a vertex, Avelar and Müller check the topology of the resulting embedding.
If topology would change, they restrict the vertex movement accordingly. They continue to
change vertex positions until all edges follow one of the desired four directions or until the
number of iterations has reached a fixed threshold.

23.5.2 Metro Maps

The problem of drawing maps of subways and other means of public transportation is an
interesting compromise between schematic maps where vertex positions are (mostly) fixed

23.5. PLANE AND NEAR-PLANE GRAPHS 713

and “conventional” graph drawing where vertices can go anywhere. The first approach
maximizes (user) orientation, the second aesthetics.

We now define the problem in graph-drawing terms. Let G = (V,E) be the input graph.
We assume that G is plane, that is, G comes with a planar embedding. We actually assume
that we know the geographic location Π(v) of each vertex v ∈ V in the plane and that the
straight-line embedding induced by the vertex locations is plane. In case some edges cross
others, we simply introduce dummy vertices that represent the crossings. Let L be a line
cover of G, that is, a set of paths of G such that each edge of G belongs to at least one
element of L. An element L ∈ L is called a line and corresponds to a metro line of the
underlying transport network. We refer to the pair (G,L) as the metro graph. The task is
now to find a drawing Γ of (G,L) according to a set of rules (which we will discuss later).

In the last few years, a number of methods for automating the drawing of metro maps
have been suggested. The author [Wol07] surveyed the area earlier, with an emphasis on
experimental comparison. Our treatment here is more compact, but adds some recent
development. Before we go into the methods, let us quickly turn to the origins of the
problem.

History. While metro networks were small in size, it made perfect sense to draw
them geographically. This was easy for the graphic designers and gave map users a sense
of distance, for example, between stations that are close to each other in the above-ground
street network but far in the underground metro network: sometimes it is indeed faster
to walk a little more than to reach the metro stop closest to one’s destination. Electrical
draftsman Henry Beck was the first to draw a metro network in a schematic way. His
rationale was that connection information and the number of stops on a line are more
important information for the network user than geographic distances. His design was so
revolutionary that the London Transport Authority, in 1931, rejected his first proposal and
only in 1933 dared to print and sell Beck’s map. Therefore, Berlin got the honor of having
the first printed schematic metro map (in 1931). While the Nazis in Berlin soon moved
back to a geographic layout [Pol06], Beck’s tube map was an instant success and became
the basis of all subsequent official maps of the London Underground. In 2006, his original
map was elected, right after the supersonic airplane Concorde, the second-most popular
British design icon of the twentieth century [Wik12]; it has an interesting history in its
own right [Gar94]. In the meantime, graphic designers have invented different layout styles
all over the world (see the book of Ovenden [Ove03]), but the use of the octilinear set of
directions for drawing is still prevailing.

Complexity. Using eight edge directions seems to be a good compromise between
an unrestricted drawing and the restriction to the four orthogonal (or rectilinear) edge direc-
tions predominant in circuit diagrams, VLSI layout, and—traditionally—in graph drawing.
As it turns out, the additional freedom that an octilinear layout gives the designer com-
pared to a rectilinear layout comes at a price. Nöllenburg [Nöl05b] proved, by means of a
visually very appealing reduction from Planar3Sat, that it is NP-hard to decide whether
a plane graph has an octilinear drawing. This is in sharp contrast to the rectilinear case, for
which Tamassia [Tam87] showed that the same question can in fact be answered efficiently.
In his seminal paper, the theoretical foundation of orthogonal graph drawing, Tamassia
reduced the problem to a network flow problem, which yields an orthogonal drawing with
the minimum number of bends and small area.

Curve evolution. The first attempt to automate the drawing of metro maps was
made by Barkowsky et al. [BLR00]. They use an algorithm for polygonal line simplification,
which they call discrete curve evolution [LL99], to treat the lines of the Hamburg subway
system. Their algorithm, however, neither restricts edge directions nor does it increase

714 CHAPTER 23. GRAPH DRAWING AND CARTOGRAPHY

station distances in the crowded downtown area. Stations are labeled but no effort is made
to avoid label overlap.

Force-directed layout. Hong et al. [HMdN06] give five methods for the metro-
map layout problem. The most refined of these methods modifies PrEd [Ber99], a topology-
preserving spring embedder, such that edge weights are taken into account and such that
additional magnetic forces draw edges toward the closest octilinear direction. Edges are
drawn as straight-line segments connecting the corresponding vertices. Relative position is
only taken into account implicitly by using the original embedding as initial layout.

In a preprocessing step, Hong et al. simplify the metro graph by contracting each edge
that is incident to a degree-2 vertices. After performing all contractions, the weight of each
remaining edge is set to the number of original edges it replaces. After the final layout
has been computed, all degree-2 vertices are re-inserted into the corresponding edges in an
equidistant manner. Due to this preprocessing the numbers of vertices and edges decrease
by a factor of 3 to 8, and all networks (with 22 to 92 vertices and 32 to 317 edges after
contraction) were solved within 0.2 to 22 seconds. Station labels are placed in one out of
eight directions using the interactive LabelHints system [dNE03]. While label–label overlaps
are avoided, diagonally placed labels sometimes intersect network edges.

The results of Hong et al. [HMdN06] are clearly superior to those of Barkowsky et al.
[BLR00]. However, they are still not very similar to commercial maps drawn by graphic
designers. The main deficiency is that most edges in the final layouts are close to, but not
quite octilinear. This seems to be due to the fact that the magnetic forces that determine
the layout are the sum of many conflicting terms.

Local optimization. Stott et al. [SRMW11] draw metro maps using multicriteria
optimization based on hill climbing. For a given layout they define metrics for evaluating the
octilinearity and the length of edges, the angular resolution at vertices and the straightness
of metro lines. The quality of a layout is the sum over these four metrics. Their optimization
process is iterative. They start with a layout on the integer grid that is obtained from the
original embedding. In each iteration they go through all vertices. For each vertex they
consider alternative grid positions within a certain radius that shrinks with each iteration.
For each of these grid positions they compute the quality of the modified layout. If any of
the positions improves the quality of the layout, they move the current vertex to the position
with the largest improvement among those positions where the topology of the layout does
not change. After implementing their algorithm they observed a typical problem of local
optimization: overlong edges are often not shortened since this would need moving several
vertices at the same time. For a bridge, that is, an edge whose removal disconnects the
graph, this can easily be fixed by moving all nodes of the smaller component closer to the
larger component. They run this fix after each iteration for all bridges.

Stott et al. have experimented with enforcing relative position, but report that the results
were disappointing as there were many situations where a better layout could only be found
by violating the relative position of some vertices. They can label stations, but do not
check for overlaps other than with the edges incident to the current station. They use the
same contraction method as Hong et al. [HMdN06] to preprocess the input graph. Even
with this preprocessing their algorithm is much slower. For example, an earlier version of
their algorithm [SR05] drew the simplified Sydney CityRail network in about 4 minutes
and the unsimplified network in 28 minutes; the new algorithm (in Java 1.6 on a 1.4-GHz
Celeron M machine with 1.5 GB RAM under Windows XP) needs about two hours for
the labeled network. This compares with the 7.6 seconds that Hong et al. need for the
simplified, but labeled network. The drastic increase in running time, however, is worth
it—in the resulting maps nearly all edges are octilinear, which makes the maps more legible.

23.5. PLANE AND NEAR-PLANE GRAPHS 715

Global optimization. Nöllenburg and Wolff [NW11] draw metro maps using the
toolbox of mathematical programming. They approach the problem by setting up the
following list of design rules which are based on the design of real-world metro maps.

(R1) Restrict the drawing of edges to the octilinear directions.

(R2) Do not change the geographical network topology. This is crucial to support the
mental map of the passengers.

(R3) Avoid bends along individual metro lines, especially in interchange stations, to
keep them easy to follow for map readers. If bends cannot be avoided, obtuse
angles are preferred over acute angles.

(R4) Preserve the relative position between stations to avoid confusion with the mental
map. For example, a station being north of some other station in reality should
not be placed south of it in the metro map.

(R5) Keep edge lengths between adjacent stations as uniform as possible with a strict
minimum length. This usually implies enlarging the city center at the expense
of the periphery.

(R6) Stations must be labeled and station names should not obscure other labels or
parts of the network. Horizontal labels are preferred and labels along the track
between two interchanges should use the same side of the corresponding path if
possible.

(R7) Use distinctive colors to denote the different metro lines. This means that edges
used by multiple lines are drawn thicker and use colored copies for each line.

A subset of these rules has also been listed by Hong et al. [HMdN06].
Nöllenburg and Wolff divide their rules into strict requirements, also called hard con-

straints, and into aesthetic optimization criteria, also called soft constraints. Their hard
constraints are:

(H1) Octilinearity: For each edge e, the line segment Γ(e) in the output drawing must
be octilinear.

(H2) Topology preservation: For each vertex v, the circular order of its neighbors must
agree in Γ and the input embedding.

(H3) Minimum length: For each edge e, the line segment Γ(e) must have length at
least `e.

(H4) Minimum distance: Each edge e must have distance at least dmin > 0 from each
non-incident edge in Γ.

Constraint (H1) models the octilinearity requirement (R1). It is this constraint that makes
the problem NP-hard [Nöl05a], see the discussion in the paragraph on complexity above.
Constraint (H2) models the topology requirement (R2), (H3) models the minimum edge
length in (R5), and (H4) avoids introducing additional edge crossings and thus also models
a part of (R2). This is because two intersecting edges would have distance 0 < dmin.

The soft constraints should hold as tightly as possible. They determine the quality of Γ
and are as follows:

(S1) Straightness: The lines in L should have few bends in Γ, and the bend angles
(< 180°) should be as large as possible.

(S2) Geographic accuracy: For each pair of adjacent vertices (u, v), their relative po-
sition should be preserved, that is, the angle ∠(Γ(u),Γ(v)) should be similar to
the angle ∠(Π(u),Π(v)), where ∠(a, b) is the angle between the x-axis and the
line through a and b.

716 CHAPTER 23. GRAPH DRAWING AND CARTOGRAPHY

(S3) Size: The total edge length of Γ should be small.

Clearly, constraint (S1) models minimizing the number and “strength” of the bends (R3)
and (S2) models preserving the relative position (R4). The uniform edge length rule (R5)
is realized by the combination of a strict lower bound of unit length (H3) and a soft upper
bound (S3) for the edge lengths. Rule (R4) for the relative position can be interpreted as
both a soft and a hard constraint, for example, by restricting the angular deviation to at
most 90° as a hard constraint and charging costs for smaller deviations as a soft constraint.

Nöllenburg and Wolff then show that the existence of a drawing that fulfills the hard con-
straints (H2)–(H4) and optimizes a weighted sum of the soft constraints can be formulated
as a mixed-integer linear program (MIP). The basic idea behind their formulation is as fol-
lows. Each edge has a number of binary variables that correspond to its feasible octilinear
directions. Exactly one of these variables must be 1. All other constraints regarding an
edge, such as its minimum length and minimum distance from other edges, are expressed
for each feasible direction. The constraints are designed such that they are trivially fulfilled
if the edge has a different direction. Angles are “measured” in multiples of 45°, for example,
in soft constraint (S 1), an angle is punished proportionally to its degree of acuteness: the
bend of the edges uv and vw incident to a vertex v can be of size 180°, 135°, 90°, or 45°. The
bend cost of this bend is 0, 1, 2, or 3, respectively. Expressing this with linear constraints
is somewhat tricky, but it can be done using the directions of the edges uv and vw and two
new binary variables per bend.

In general it is NP-hard to solve a MIP, but highly optimized commercial solvers such as
Cplex or Gurobi can solve relatively large MIPs relatively quickly. Consider a medium-sized
metro system such as the CityRail network of Sydney with 10 lines and 174 stations. For
this network, the MIP of Nöllenburg and Wolff as sketched above consists of roughly 38,000
variables and 150,000 constraints—assuming that one applies the obvious data reduction
trick of replacing each path of k degree-2 vertices by a single edge of length at least k ·dmin.
Actually, Nöllenburg and Wolff proposed to keep up to two vertices between each pair of
neighboring interchange stations so as to have some flexibility for making bends; this helps
to be more accurate in terms of relative position (geographic accuracy). Solving such a MIP
to optimality can take days.

Therefore, Nöllenburg and Wolff described a number of ways in order to further reduce
the size of the MIP. Their fastest approach is based on the so-called callback function of the
Cplex solver. It allows them to set up the MIP without any planarity constraints accord-
ing to hard constraint (H4), check any intermediate feasible solution for crossings and then
add constraints needed to forbid the specific crossings at hand. For the reduced Sydney
example, this yields a MIP with roughly 4800 variables and 3500 constraints; constraints
for just three edge pairs were added during optimization. Still, computing the layout in Fig-
ure 23.11(c) from the geographic input depicted in Figure 23.11(a) took about 23 minutes.
For a comparison with the work of a professional graphic designer, see Figure 23.11(b).

Things get worse when drawing maps with station labels that can change sides with
respect to metro lines. Even when aggregating all labels between two interchanges into
one big label (that is then modeled as a dummy metro line) and taking advantage of
the callback functionality, the MIP ends up having nearly 93,000 variables and 22,000
constraints. Computing the layout in Figure 23.11(d) took 10.5 hours; in both cases an
optimality gap of about 16% remained, that is, the solver knows that the unknown objective
value of an optimal solution is at most 16% less than that of the layouts in Figures 23.11(c)
and 23.11(d).

Least squares. Wang and Chi [WC11] presented a system for octilinear on-
demand focus-and-context metro maps that highlight routes returned by a route planning

23.5. PLANE AND NEAR-PLANE GRAPHS 7171 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1716 18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1716 18

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

19 20

19 20

0

0

Sydney Harbour

Hawkesbury River

Central Coast

Hunter

City
Circle

Blue
Mountains

Botany Bay

Sydney Suburban Area

South Coast

Southern Highlands

Blackalls
Park

Toronto

Burrawang Robertson

Colo Vale
Hill Top

Balmoral

Buxton

Couridjah

Thirlmere

Mount Lambie
Meadow Flat

Yetholme

Raglan

Kelso

Bathurst

Wallerawang

Lochinvar

Greta

Wynyard

Meadowbank

Vineyard

Riverstone

Schofields

Mittagong

Burradoo

Exeter
Bundanoon

Penrose
Wingello

Tallong
Marulan

Goulburn

Bowral

Picton

Menangle Park

Menangle

Douglas Park

Tahmoor

Bargo

Yerrinbool

Berry
Bomaderry (Nowra)

Gerringong

Dapto

Unanderra
Kembla Grange Racecourse

Albion Park
Oak Flats
Dunmore (Shellharbour)

Kiama

Minnamurra
Bombo

Po
rt

 K
em

bla

Ly
sa

ghts

Otford
Stanwell Park
Coalcliff
Scarborough
Wombarra
Coledale
Austinmer
Thirroul
Bulli
Woonona
Bellambi
Corrimal
Towradgi
Fairy Meadow
North Wollongong

Coniston Crin
gila

Po
rt

Kem
bla

North

Helensburgh

Wollongong

Car
in

gbah

W
oolo

owar
e

M
ira

nda

Cro
nulla

Wolli Creek

Penshurst
Mortdale
Oatley

Como
Jannali

Gym
ea

Loftus
Engadine
Heathcote

Arncliffe
Banksia

Carlton

Rockdale

Hurstville

Waterfall

Kirr
aw

ee

Allawah

Kogarah

Sutherland

Macquarie Fields

Ingleburn

Minto

Leumeah

Macarthur

Campbelltown

Glenfield

Tu
rre

lla

Holsw
orth

y

Ea
st

Hills

Rev
es

by

Pa
nan

ia

Pa
dsto

w

Rive
rw

ood

Nar
wee

Bev
er

ly
Hills

Kin
gsg

ro
ve

Bex
ley

 N
orth

Bar
dwell

 Pa
rk

Tempe Domestic Airport

Mascot

Belm
ore

W
ile

y P
ar

k

Pu
nch

bowl

Dulw
ich

 H
ill

M
ar

ric
kv

ille

Hurls
to

ne P
ar

k

Can
te

rb
ury

Cam
psie

La
ke

m
ba

Yag
oona

Birr
ong

Ban
ks

to
wnCabramatta

Warwick Farm

Casula

Liverpool

Le
ig

hto
nfie

ld

Ches
te

r H
ill

Se
fto

n

Car
ra

m
ar

Villa
wood

Yennora

Guildford

Merrylands

Canley Vale

Fairfield

Harris Park

Pendle Hill

Wentworthville

Westmead
Parramatta

Marayong

Doonsid
e

Rooty
 H

ill

W
er

rin
gto

n

Kin
gsw

ood

Toongabbie
Seven Hills

M
ount D

ru
itt

St
 M

ar
ys

Quakers Hill

Em
u P

la
in

s

Pe
nrit

h

Berala
Regents Park

Green SquareSt
an

m
ore

Pe
te

rsh
am

Le
wish

am

Su
m

m
er

 H
ill

Ash
fie

ld

Cro
yd

on

Hom
eb

ush

Fle
m

in
gto

n

Burw
ood

St
ra

th
fie

ld

Clyde

Rosehill

Li
dco

m
be

Gra
nvi

lle

Auburn

Olympic
Park

Camellia Concord West

North Strathfield

Rhodes

Redfern

Town Hall
St James

Museum

Kings Cross

Edgecliff

Bondi
Junction

Martin Place

Milsons Point
Circular Quay

North Sydney
Waverton

Artarmon

Wollstonecraft
St LeonardsCarlingford

Telopea

Rydalmere

Dundas
Blacktown

Cheltenham

West Ryde

Denistone

Eastwood

Lapstone
Glenbrook

Blaxland
Warrimoo

Valley Heights

Springwood

Faulconbridge
Linden

Woodford

Hazelbrook
Lawson

Bullaburra

Wentworth Falls
Leura

Katoomba
Medlow Bath

Blackheath
Mount Victoria

Bell

Zig Zag

Lithgow

Richmond

East Richmond

Windsor

Mulgrave

Clarendon

Chatswood

Epping

M
ac

quar
ie

Pa
rk

M
ac

quar
ie

Unive
rsi

ty

North
 R

yd
e

Gordon
Killara

Roseville
Lindfield

Pennant Hills

Normanhurst

Beecroft

Thornleigh

Hornsby

Wahroonga
Warrawee

Pymble
Turramurra

Waitara
Asquith

Mount Colah
Mount Kuring-gai

Berowra
Cowan

W
ondab

yn
e

Koolewong
Tascott

Gosford

Woy Woy

Haw
ke

sb
ury

 R
ive

r

Point Clare

Dora Creek

Awaba

Morisset

Warnervale

Wyee

Wyong
Tuggerah

Ourimbah
Lisarow

Niagara Park
Narara

Fa
ss

ife
rn

Boora
gul

Cock
le

Cre
ek

Car
diff

Kota
ra

Adam
sto

wn

Te
ra

lb
a

Bro
ad

m
ea

dow

Ham
ilt

on

Civi
c

W
ick

ham

New
ca

st
leSc

one

Bra
nxt

on

Sin
glet

on

M
usw

ell
bro

ok

Aber
dee

n

W
ar

at
ah

W
ar

ab
ro

ok (
Unive

rsi
ty

)

Ber
es

fie
ld

Th
orn

to
n

M
et

fo
rd

Vict
oria

 St
re

et

Ea
st

M
ait

lan
d

Hig
h St

re
et

M
ai

tla
nd

Dungog

W
irr

ag
ulla

Te
lar

ah

M
in

dar
ib

ba

Pa
te

rso
n

M
ar

tin
s C

re
ek

Hilld
ale

W
all

ar
obba

Hex
ham

Ta
rro

Sa
ndgat

e

International
Airport

New
to

wn

Sydenham

Moss Vale

Line under construction

M
ac

donald
to

wn

St Peters

Erskineville

Some Southern Highlands services
operate directly to and from Central.

Central

Wheelchair access
(staffed for all train services)

Stations with wheelchair access

Wheelchair access
(not staffed for all train services)

South Coast to Southern Highlands*
and Bowral to Picton (Loop Line)

Bus services

Bathurst to Lithgow*

Toronto to Fassifern

Inner West Line

Bankstown Line

Cumberland Line

Airport & East Hills Line

South Line

North Shore and Western Lines

Carlingford Line

Olympic Park Sprint
and special event services

Suburban lines

Intercity lines

South Coast Line

Southern Highlands Line

Blue Mountains Line

Newcastle & Central Coast Line

Hunter Line

Interchange between CityRail services

Buses (including bus transitways)

Ferries

Monorail

Trams

Transport interchanges

Peak hours only

Peak hours only

Northern Line

Regional line

Car parks near stations

Assisted access
(May be accessible with help
from a friend or carer.
Please check prior to travel.)

N

Eastern Suburbs & Illawarra Line

* Bookings are essential for these services (ph 13 22 32)

www.cityrail.info
Transport Infoline 131 500

© Copyright RailCorp October 2006

CityRail network

Aberdeen....................................C11
AdamstownD17
Airport - DomesticP15
Airport - InternationalP14
Albion ParkX12
AllawahR12
ArncliffeQ12
ArtarmonJ14
AshfieldN12

AsquithH12
Auburn..N9
AustinmerU12
Awaba ..C14

BalmoralW5
BanksiaQ12
BankstownO9
Bardwell ParkQ11

Bargo ..V6
Bathurst ..E2
BeecroftI10
Bell ..G2
BellambiV12
Belmore......................................O11
Berala ..O9
Beresfield....................................B14
Berowra......................................G12

Berry ..Y12
Beverly HillsQ10
Bexley NorthQ11
Birrong..O8
Blackalls ParkD15
BlackheathG2
BlacktownK6
Blaxland..K3
Bomaderry (Nowra)Y12

Please turn over for remaining desitinations

(a) geographic layout (by John Shadbolt) (b) corresponding clipping of the official
map [Syd08]

Doo
ns

ide

Roo
ty

Hill

Mt D
rui

tt

St M
ary

s

W
err

ing
ton

King
sw

oo
d

Pen
rith

Emu P
lai

ns

Canley Vale

Fairfield

Yennora

Guildford

Berala

Loftus

Engadine

Heathcote

Waterfall

Wynyard

Glenfield

Town Hall

North Sydney

Circ
ula

r Q
ua

y

Seven Hills

Toongabbie

Pendle Hill

Wentworthville

Westmead

Parramatta

Hornsby

Central

Kirra
wee

Gym
ea

Mira
nd

a

Cari
ng

ba
h

W
oo

loo
ware

Cron
ull

a

Normanhurst

Thornleigh

Pennant Hills

Beecroft

Cheltenham

Epping

Eastwood

Denistone

West Ryde

Meadowbank

Rhodes

Concord West

North Strathfield

Tempe

Cabramatta

Sutherland

Wolli Creek

Milsons Point

Asquith

Mt Colah

Mt Kuring−gai

Berowra

Waverton

Wollstonecraft

St Leonards

Artarmon

Chatswood

Roseville

Lindfield

Killara

Gordon

Pymble

Turramurra

Warrawee

Wahroonga

Waitara

Mac
do

na
ldt

ow
n

New
tow

n

Stan
more

Pete
rsh

am

Le
wish

am

Sum
mer

Hill

Ash
fie

ld

Croy
do

n

Burw
oo

d

Liverpool

Seft
on

Rosehill

Camellia

Rydalmere

Dundas

Telopea

Carlingford

St James

Merrylands

Museum

Erskineville

St Peters

Arncliffe

Banksia

Rockdale

Kogarah

Carlton

Allawah

Hurstville

Penshurst

Mortdale

Oatley

Como

Jannali

Hols
wort

hy

Eas
t H

ills

Pan
an

ia

Rev
es

by

Pad
sto

w

Rive
rw

oo
d

Narw
ee

Bev
erl

y H
ills

King
sg

rov
e

Bex
ley

 N
ort

h

Bard
well

 P
ark

Turr
ell

a

Clyde

Olympic Park

Granville

Casula

Leumeah

Minto

Ingleburn

Macquarie Fields

Harris Park

Martin Place

Strathfield

Campbelltown

Flemington

International

Domestic

Mascot

Green Square
Regents Park

Birrong

Marr
ick

vil
le

Dulw
ich

 H
ill

Hurl
sto

ne
 P

ark

Can
ter

bu
ry

Cam
ps

ie

Belm
ore

La
ke

mba

W
ile

y P
ark

Pun
ch

bo
wl

Ban
ks

tow
n

Yag
oo

na

King
s C

ros
s

Edg
ec

liff

Bon
di

Ju
nc

tio
n

Carr
am

ar

Villa
woo

d

Le
igh

ton
fie

ld

Che
ste

r H
ill

Lidcombe

Blacktown

Hom
eb

us
h

Warwick Farm

Auburn

Marayong

Quakers Hill

Schofields

Riverstone

Vineyard

Mulgrave

Windsor

Clarendon

East Richmond

Richmond

Macarthur

Syd
en

ha
m

Redfern

(c) unlabeled layout of Nöllenburg and Wolff (d) labeled layout of Nöllenburg and Wolff

Figure 23.11 The Sydney CityRail network.

718 CHAPTER 23. GRAPH DRAWING AND CARTOGRAPHY

system while showing the rest of the network as less important context information. It can
also be used to draw non-focused metro maps. They deform the given geographic map by
the conjugate gradient method [HS52] in a least-squares sense, minimizing a set of energy
terms that model the aesthetic constraints. Labeling is performed independently. Their
method is both fast and creates good layouts, e.g., for mobile devices.

Metaphor. Sandvad et al. [SGSK01] and Nesbitt [Nes04] use the metro-map
metaphor as a way to visualize abstract information. A particularily nice example is the
map that shows the O’Reilly open source product lines [O’R03], see Figure 23.12.

Research of the metro-map layout problem triggered the investigation of a new subprob-
lem, metro-map line crossing minimization. In that problem, one assumes that the layout of
the underlying metro graph is known; the aim is to order the metro lines on each edge such
that the number of line crossings is minimized [BNUW07]. We do not treat the problem
here since its nature is purely combinatorial, not geometric.

Beyond Henry Beck Recently, a completely different style for drawing metro
maps has attracted considerable attention: the curvilinear style. Roberts et al. [RNL+11]
did user studies to compare (hand-drawn) schematized maps to (hand-drawn) maps where
the Metro lines are represented by Beziér curves. Surprisingly, users were up to 50 % faster
in completing certain planning tasks with the new and unfamiliar Beziér maps rather than
with schematized maps. Still, being used to schematized maps, they liked them better.

These findings prompted Fink et al. [FHN+13] to investigate ways to automate the process
of drawing metro maps with Bézier curves; see Figure 23.13. They use a force-directed
approach. Starting with a straight-line or octilinear input drawing (see Figure 23.13(a)),

2003 OPEN SOURCE ROUTE MAP

Perl/Tk
Pocket Reference

Perl für
System-

Administration

Perl in a Nutshell

Web

Netzwerk-
& System-
Administration

Nutshell &
Taschen-
bibliothek
(kurz & gut)

Nutshell &
Taschenbibliothek

(kurz & gut)

Unix

MacOSX

Netzwerk- & System-
Administration

Unix

Perl Linux

WebPerl Linux

Programming Web
Services with Perl

LPI Linux
Certification
in a Nutshell

Linux in a
Nutshell

Perl
kurz & gut XML in a

Nutshell

Web, Graphics & Perl/Tk:
Best of The Perl Journal

Python in
a Nutshell

Python & XML

Java™ & XML

Programmieren von
Grafiken mit Perl

Perl & LWP

Programmieren mit Perl DBI

Free as in
Freedom

Peer-to-Peer

The Cathedral
& The Bazaar

Open Sources Database
Nation

Beyond Contact

Linux – Wegweiser für Netzwerker

Tcl/Tk
in a Nutshell

AppleScript
in a Nutshell

Mac OS X
kurz & gut

Advanced Perl
Programming

Algorithmen
mit Perl

Reguläre Ausdrücke

Mastering Perl/Tk

Perl Kochbuch

Programmieren mit PHP

PHP Kochbuch

Web Services Essentials

PHP kurz & gut

Running Weblogs
with Slash

DocBook: The Definitive Guide

SVG Essentials

Einführung in XML

XML Schema

HTML &XHTML –
Das umfassende
Referenzwerk

Creating Applications
with Mozilla

Einführung in Perl

Computer Science & Perl Programming:
Best of The Perl Journal

Games, Diversions & Perl Culture:
Best of The Perl Journal

Einführung in Perl
für Bioinformatik

Programmieren
mit PerlLearning the Korn Shell

Programming Python

Apache
kurz & gut

Understanding
the Linux Kernel

Linux Gerätetreiber

Linux – Wegweiser zur
Installation & Konfiguration

Linux Security Cookbook

Managing RAID on Linux

Samba kurz & gut

Unix System-
Administration

Programming
with Qt

MySQL –
Einsatz &
Programmierung

Jython
Essentials

Webdatenbank-
applikationen mit

PHP & MySQL

Programming
with GNU
Software

Learning GNU Emacs

Writing GNU Emacs
Extensions

sed & awk

Effective awk
Programming

Textverarbeitung mit
den vi-Editor

Unix – Ein praktischer
Einstieg

MySQL Reference Manual

MySQL Cookbook

Learning
the bash
Shell

Practical
PostgreSQL

Unix
Power
Tools

GNU Emacs
kurz & gut

vi kurz & gut

sed & awk
kurz & gut

Exploring
Expect

Samba

Writing Apache Modules
with Perl and C

Exim: The Mail
Transfer Agent sendmail

Sichere Server mit Linux

Python Cookbook

Python Standard-Bibliothek

Einführung in Python

Python kurz & gut

Learning Perl on
Win 32 Systems

Python
Programming
on Win32

Perl für Website-
Management

Practical mod_perl

Perl & XML

Mason

Technologie &
Gesellschaft Technologie & Gesellschaft

Apache –
Das umfassende

Referenzwerk

SSH – Das
umfassende
Handbuch

Network
Security
with
OpenSSL

Java™

Ant: The
Definitive
Guide

NetBeans:
The Definitive
Guide

SAX2

Einführung in
Unix für MacOSX

Mac OS X:
The Missing

Manual

Mac OS X
for Unix

Developers
Using csh
& tcsh

Developing Bioinformatics Computer Skills

Java™

O’REILLY ®

Web

Perl

Unix

XML

Linux

Nutshell & Taschen-
bibliothek (kurz & gut)

Netzwerk- & System-
Administration

Technologie & Gesellschaft

Java™

Bioinformatik

Python

Mac OS X

L E G E N D E

Die Grübelei hat ein Ende!
Bücher von O’Reilly

&
LINUX

KONSORTEN

Learning Red Hat Linux

Building Embedded
Linux Systems

Linux
Server Hacks

www.oreilly.de

Python
XML

Figure 23.12 O’Reilly’s open source product lines 2003.

23.5. PLANE AND NEAR-PLANE GRAPHS 719

(a) octilinear input drawing, (b) drawing without virtual vertices

(c) drawing with virtual degree-2 vertices (d) additionally, with virtual degree-4 vertices

Figure 23.13 Metro network of Vienna drawn using Bézier curves [FHN+13].

the authors go through each metro line and replace each line segment by a nearly-straight
cubic Bézier curve that shares tangents with its predecessor and successor. Then they apply
attracting and repulsive forces to vertices, but also to tangents. The aim is to merge as
many consecutive Bézier curves on each metro line as possible in order to reduce the visual
complexity; compare Figures 23.13(b), (c), and (d). Vertices that are incident to merged
edges only are called virtual ; forces can no longer be applied to them. In all but the last
iteration, merges happen only at degree-2 vertices. In the final iteration, degree-4 vertices
are handled, too.

Whereas the results are quite nice for small networks (such as Montreal or Vienna), long

720 CHAPTER 23. GRAPH DRAWING AND CARTOGRAPHY

metro lines in complex networks (such as London) remain too wiggly. A number of Bézier
curves could not be merged due to contradicting constraints. The Java implementation of
Fink et al. drew the London Underground (20 metro lines with 200 stations, 150 of which
are degree-2 vertices) in 224 seconds on a 3-GHz dual-core computer with 4 GB RAM.

23.5.3 Street Maps with Focus Regions

Metro maps quite heavily distort distances in order to show more details in crowded down-
town areas, independently of the style used for drawing the edges. The same idea is used
in city maps, for example, by the German map maker Falk-Verlag who, in 1945, published
its first map of Hamburg with a very mild kind of fisheye view with scale varying from
1:16.000 in the downtown area to 1:18.500 in the suburbs. Interestingly enough, the idea to
use a non-uniform scale was due to the fact that the post-war military government allotted
only paper of size 60 cm × 40 cm to the newly founded four-man company [Hol95]. That
size would not have been enough to cover the intended part of the city and display the
downtown in enough detail.

A major difference between metro maps and Falk-style city maps (that is, fisheye-based
map representations) is the fact that in a schematic metro map not just scale, but also
the change in scale is (highly) non-uniform. Jenny [Jen06] has analyzed and visualized
distortion in metro maps, arguing that less distorted maps are to be preferred.

An idea more similar to the metro-map approach has been used by Haunert and Sering
[HS11] in order to draw street networks with focus regions. Their aim is to redraw a street
map within the same view frame as the original map, but such that a region specified by the
user is enlarged by a given factor. Haunert and Sering model their problem as a quadratic
program (QP), that is, a mathematical program consisting of real-valued variables, a set
of quadratic constraints, and a quadratic objective function. Their QP has the additional
property that both the objective function and the feasible region, that is, the set of variable
vectors that fulfill all constraints, are convex. Such a convex QP can be solved efficiently.

Since the core of their QP formulation is quite simple, we present it here. We assume that
we are given a plane graph G = (V,E) with an input drawing that is completely determined
by the positions of the vertices, that is, for each vertex v ∈ V , we know its coordinates Xv

and Yv. Moreover, we are given a subset V ′ ⊆ V representing the focus region that is to be
scaled up by a zoom factor Z > 1. Now, for each node u ∈ V , we introduce three variables:
the unknown coordinates xu, yu ∈ R of u in the output drawing and an unknown scale
factor su ∈ R+. We now impose constraints on these variables.

First, we define a constraint to ensure that the output drawing remains within the bound-
ing box of the input drawing.

min
v∈V
{Xv} ≤ xu ≤ max

v∈V
{Xv}

min
v∈V
{Yv} ≤ yu ≤ max

v∈V
{Yv}

for each u ∈ V (23.1)

Second, we fix the scale factor for each node in the focus region:

su = Z for each u ∈ F (23.2)

23.5. PLANE AND NEAR-PLANE GRAPHS 721

For a node u 6∈ F , we don’t know its scale factor su; we will determine it through the
optimization, together with the coordinates of u in the output map. It remains to ensure
that the scale factor su is valid for the neighborhood of u.

Suppose that we would express the idea of a locally valid scale factor with the constraint

su(Xv −Xu) = (xv − xu)
su(Yv − Yu) = (yv − yu)

for each u ∈ V, v ∈ Adj(u), (23.3)

where Adj(u) is the set of neighbors of u in G. With constraint (23.3), the star-shaped
subgraph of G that contains u and its neighbors is scaled by su. For two adjacent nodes i
and j, however, we can only satisfy this constraint if we set si = sj . Therefore, if G
is connected, we would have to select the same scale factor for all nodes in V . With
constraint (23.3), it is thus impossible to design a variable-scale map.

In order to allow for different scale factors in different parts of the map, we introduce a
relaxed version of constraint (23.3). We do not require that the neighborhood of node u is
exactly mapped to scale. Instead, we allow for small distortions, which we measure based
on residuals δxuv and δyuv. For this purpose, we introduce, for each edge uv ∈ E, auxiliary
variables δxuv and δyuv into our model. Relaxing constraint (23.3) simply yields

δxuv = su(Xv −Xu)− (xv − xu)
δyuv = su(Yv − Yu)− (yv − yu)

for each u ∈ V , v ∈ Adj(u) . (23.4)

If both u and v lie in the focus region F , we require

δxuv = δyuv = 0 for each u , v ∈ F , v ∈ Adj(u) . (23.5)

This makes sure that edges in the focus region indeed become enlarged by the zoom factor Z.
Our objective is to minimize the weighted square sum of the residuals:

Minimize
∑
u∈V

∑
v ∈Adj(u)

((
w(u, v) · δxuv

)2
+
(
w(u, v) · δyuv

)2)
(23.6)

with w(u, v) = 1/
√

(Xv −Xu)2 + (Yv − Yu)2. With this weight setting, we express that the
validity of the scale factor su decreases with increasing distance from node u. This finishes
the description of the core of the QP. All its constraints are linear; its objective function is
convex since it doesn’t contain mixed terms and all the weights are positive. Therefore, the
core QP can be solved efficiently.

Unfortunately, the core QP does not prevent edge crossings. Crossings are unlikely to
occur in triangulations but they do occur in less strongly connected networks. Hence, an
obvious idea is to triangulate the given plane graph G. Experiments, however, show that
this ad-hoc solution produces drawings with rather high distortion all over the network.
The reason is that the additional edges make the network inflexible. Sparse regions that
otherwise can help to balance the expansion of the focus regions are artificially made dense.

A more promising approach is to define, for each pair of edges, a line that separates the
two edges and to add new variables (the parameters of the line) and new constraints to the
QP. As it turns out, the necessary constraints are such that the set of feasible solutions is
not convex any more. In order to stay in the realm of convex quadratic programming, the
authors came up with a clever trick. They simply removed one degree of freedom from the
separating line; by fixing its slope. Clearly, adding the corresponding constraints to the QP
yields a new QP that is more constrained than actually necessary. By choosing a “good”
slope, however, the negative impact of the additional restriction can be kept small. Haunert

722 CHAPTER 23. GRAPH DRAWING AND CARTOGRAPHY

and Sering suggested to use the slope of the maximum-width strip that separates the two
edges in the input drawing. The second trick they applied is to not add all new planarity
constraints before solving the QP, but only in case the solution of the QP actually contains
crossings. For each such crossing, exactly the constraints that forbid it are added to the
QP, and the modified instance is given back to the QP solver. A similar trick was used by
Nöllenburg and Wolff [NW11] in order to deal with planarity constraints in their MIP for
drawing metro maps, see Section 23.5.2.

Concerning an example, consider the input instance depicted in Figure 23.14. This street
network consists of 5864 vertices and 6675 edges. Applying the QP-based method to that
input with the focus region represented by the black circle and a zoom factor of 2 took 51.8
seconds on a Windows PC with 3 GB main memory and a 3 GHz Intel dual-core CPU. The
output is shown in Figure 23.15(a). For comparison, Figure 23.15(b) depicts the result of
applying a fisheye transformation [YOT09] to the same input. Applying such a transfor-
mation takes only fractions of a second. Figure 23.15 also shows, in the small inlets on the
right-hand side, the residuals of the street network, which can be seen as a measure for the
deformation of the network. (The lower inlet has a legend that explains the color-coding.)
Clearly, the method of Haunert and Sering yields very good solutions for drawing maps with
focus regions. More work is needed, however, to come up with a method that is similarly
good but much faster. This would be very interesting for all kinds of mobile applications.

Böttger et al. [BBDZ08] provide an interesting link between the schematized world of
metro maps and the non-schematized world of city (street) maps. They show how to
gradually morph a map showing both types of networks between a representation that is
geographic and a representation where the map is distorted such that the metro network is
schematized.

Figure 23.14 A street map (showing a detail of Providence, Rhode Island, U.S.A.) with
a circular focus region that contains the conference site of InfoVis 2011.

23.5. PLANE AND NEAR-PLANE GRAPHS 723

(a) the method of Haunert and Sering [HS11]

0.0 to 2.5

2.5 to 5.0

5.0 to 7.5

>7.5

(b) the fish-eye transformation of Yamamoto et al. [YOT09]

Figure 23.15 The results of applying two deformation methods to the map in Fig-
ure 23.14. The inlets show edges with residuals in red.

724 CHAPTER 23. GRAPH DRAWING AND CARTOGRAPHY

23.5.4 Cable Plans

Lauther and Stübinger [LS02] briefly describe SCHEMAP, an iterative method to layout
cable plans. Their method is based on a spring embedder and does not guarantee that
all edges are drawn rectilinearly. Figures 23.16 (a) and (b) show the input to and the
output of their method (in (b), the individual cables are drawn in various colors). Their
preliminary work inspired Brandes at al. [BEKW02] who present an algorithm that produces
an orthogonal drawing of a sketch of a graph. A sketch can be handmade or the physical
embedding of a geometric network like the real position of telephone cables. Brandes et al.
use a path-based min-cost flow formulation based on that of Tamassia [Tam87]. In order
to stabilize tree-like subgraphs that stick into the outer face, they use dummy edges to
connect all vertices on the convex hull of the original embedding to a rectangular frame
that contains the whole embedding; see Figure 23.16 (c). The frame and the dummy edges
are removed before the final layout (see Figure 23.16 (d)) is returned. Their algorithm runs
in O(n2 log n) time, where n is the number of vertices. The algorithm can, in principle, also
be used to layout metro maps. It does not, however, allow for diagonals, and it does not
explicitly take into account the special features and constraints of such maps.

(a) input network (taken from [BEKW02]) (b) output of SCHEMAP [LS02]

(c) frame used by Brandes et al. [BEKW02] (d) output of Brandes et al. [BEKW02]

Figure 23.16 Schematizing cable plans.

23.6 Other Graphs

In this section we consider graphs that do not fit into the classes we have treated in the pre-
vious sections. We focus on two scenarios, one scenario that has a geographic background—
graphs that describe train connections (see Section 23.6.1)—and one scenario that uses the

23.6. OTHER GRAPHS 725

cartographic-map metaphor to convey cluster information in (non-geographic) social net-
works such as collaboration graphs (see Section 23.6.3).

23.6.1 Timetable Graphs

A timetable graph has a vertex for each train station and an edge for each pair of stations
connected by a train that does not stop in between. The graph is of interest to railway
companies to check completeness and consistency of their schedules and to analyze changes
between consecutive schedules. An obvious way to layout such graphs is to embed vertices
at their geographic locations and edges as straight-line segments between them. However,
this causes many edge crossings and small angles between edges along the same train line.
Instead, Brandes and Wagner [BW00] introduce the concept of minimal and transitive
edges. An edge {u, v} is minimal if it corresponds to a piece of track that does not contain
a station served by some other train. The remaining transitive edges correspond to through
trains.

Whereas Brandes and Wagner use straight-line edges for minimal edges and long transitive
edges, they suggest to use cubic Bézier curves [Béz72] to draw all other edges. Vertices are
kept at their geographic location to allow for easy orientation. Then the layout problem
consists of placing two control points for each Bézier curve. The authors define attractive
and repulsive forces between control points and train stations within a local neighborhood.
Using the random field layout framework [Bra99] and a customized version of the force-
directed Fruchterman-Reingold method [FR91], they managed to draw even large timetable
graphs nicely within minutes.

In subsequent work, Brandes et al. [BST00] explored ways to speed up their method
and, at the same time, achieve perfect (or any prescribed) angular resolution in drawings of
timetable graphs (and the Internet multicast backbone). They show that the flexibility of
cubic Bézier curves allows them to optimize a number of criteria (with respect to the given
straight-line drawing) in linear time by considering each vertex separately. This reduces
the running time of their method on the same graphs as above from minutes to fractions of
seconds. They refer to their new method as the rotation method. For a sample output, see
Figure 23.17(b) and compare to the straight-line layout in Figure 23.17(a).

Unfortunately, due to the locality of the rotation method, the number of edge cross-
ings and S-shaped edges increases. With a slightly different set of authors, Brandes et al.

(a) straight-line layout (b) rotation method (c) optimized by Gauss–Seidel

Figure 23.17 Timetable graphs of the sourroundings of Venice.

726 CHAPTER 23. GRAPH DRAWING AND CARTOGRAPHY

Figure 23.18 A comparison of elevated great circles (left) and Bézier curves output by
the rotation method of Brandes et al. [BST00] (right).

[BSTW01] get a grip on these issues by using two new ingredients. First, the preprocess
timetable graphs in order to make them more susceptible to the rotation method. Second,
they introduce a new objective function that combines three criteria concerning the posi-
tion and shape of edges, namely angular resolution, straightness, and roundness. They show
that this objective function is a generalization of the layout function of Tutte’s barycentric
method [Tut63]. Therefore, the function has a unique minimum, which is the solution of a
system of linear equations. Due to the size of their system, they resort in using the iterative
Gauss–Seidel method, which in their case converges very fast. Their new algorithm is just
about four times slower than the rotation method, and hence 50–100 times faster than the
force-directed approach. In terms of aesthetics, the new method comes much closer to, but
doesn’t quite reach the force-directed approach; see Figure 23.17(c).

23.6.2 Internet Traffic

Clearly, computer scientists are interested in analyzing the structure of the largest man-
made network, the Internet. Visualization plays an important role in this endeavor. Cox et
al. [CEH96] created SeeNet3D, a tool that can be used to view and analyze traffic between
routers of the Internet multicast backbone (MBone). The main view of the system represents
routers at their (approximate) geographic locations on spherical or (slanted) plane maps,
and it connects routers that communicate. The connections are drawn as circular arcs above
the geodesics between the endpoints. To avoid clutter, the height of the arcs increases with
the distance of its endpoints. SeeNet3D offers several synchronized views (spoke, helix,
pincushion display) in order to facilitate data analysis.

Munzner et al. [MHCF96] extend the work of Cox et al. by using the Virtual Reality
Modeling Language (VLMR 1.0) for the three-dimensional, spherical view. This allows
them to display labels, modify the width of the arcs and let the user choose a rotation
center different from the center of the sphere. For clutter removal, they also experiment
with drawing edges only partially; namely near their endpoints.

Brandes et al. [BST00] propose a different, more traditional method for clutter reduction
by applying their rotation method for timetable graphs (see Section 23.6.1) to the spherical
setting, replacing the somewhat inflexible arcs by three-dimensional cubic Bézier curves.
For a comparison, see Figure 23.18.

23.6. OTHER GRAPHS 727

23.6.3 Social Networks

In order to get a grip on the problem of visualizing large graphs with vertex clusters, Gansner
et al. [HGK10] came up with the idea of using the metaphor of a political map. In such maps,
each country is colored such that no two neighboring countries use the same color. Gansner
et al. take advantage of this well-known map style. Their tool GMap combines existing
general-purpose graph drawing methods for visualizing the given graph (as a traditional
node-link diagram) with new methods to create artificial maps whose countries correspond
to the clusters in the graph. GMap also colors the countries, striving to make the color
difference between adjacent countries large. Note that the GMap approach, while exploiting
(the map-users exposure to) cartography, is about visualizing an abstract binary relation.
Still, we found the idea of combining the drawing of graphs and maps so striking that we
decided to discuss it in this chapter.

In their paper, Gansner et al. give specific solutions to two steps of the above approach,
namely the steps of map making and of map coloring. The map-making step assumes
that the given graph has been drawn and clustered; the authors suggest to use pairs of algo-
rithms that have similar notions of distance, for example, multi-dimensional scaling [KW78]
for drawing the graph and the k-means algorithm [Llo82] for clustering. The GMap imple-
mentation uses the GraphViz [GN00] spring embedder and modularity clustering [New06].

Making the map. Assuming a drawing of the given graph G = (V,E), Gansner
et al. first place vertex labels (with font size as some function of vertex weight). They use
standard overlap removal techniques [GH10]. In order to subdivide the given rectangular
map area such that each vertex v of G receives a cell that is large enough for its label `v,
Gansner et al. use a Voronoi-based approach. Rather than directly computing the Voronoi
diagram of the labels (which would give rise to rather artificial-looking regions), they select
a set Pv of equidistant points on the boundary of `v and perturb them slightly; see the black
dots in Figure 23.19. In order to avoid large regions with awkward shapes at the boundary
of the given graph drawing, they insert random points in the “sea,” that is, in the map
region that is sufficiently far from the drawn graph; see the small circles in Figure 23.19.
Then they compute the Voronoi diagram of the point set that they have constructed; see
the gray tessellation in Figure 23.19. The region Rv that corresponds to a vertex v of G
is the union of the Voronoi cells of the points in Pv. Let V =

⋃
C be the given clustering,

that is, a partition of V . Then, for each cluster C ∈ C, Gansner et al. simply define the

label(w)

label(u)

label(v)

Ru

RwRv

Figure 23.19 The Voronoi-based map-making step of GMap. Note that vertex v is more
important than vertices u and w. Hence, v receives a label typeset in larger font size.

728 CHAPTER 23. GRAPH DRAWING AND CARTOGRAPHY

corresponding “country” to be
⋃

v∈C Rv. This finishes the description of the map-making
step.

For examples of maps that were generated with the method of Gansner et al., see Fig-
ures 23.20 and 23.21. The two graphs represent co-authorship of articles published at the
International Symposium on Graph Drawing during the years 1994–2004 and 1994–2007. It
is interesting to compare the traditional node-link diagram in Figure 23.20(a) with the cor-
responding map in Figure 23.20(b), which, technically, contains the same information—but
in a much more accessible way. It is also interesting to observe the changes that occurred
during the three additional years that were taken into account in Figure 23.21 as compared
to Figure 23.20(b). Note that Figure 23.21 is a clipping of a slightly larger map that, apart
from the “main land” has seven small islands (each with at most eight vertices)

Coloring the map. In the last step of their approach, Gansner et al. color the
countries of the map that they have computed. While the famous Four-Color Theorem
ensures that four colors always suffice for maps whose country adjacency graphGc = (Vc, Ec)
is planar, this does not hold if countries have exclaves (such as the Kaliningrad district,
which is not connected to Russia proper, or Steve North, who is part of the AT&T cluster
in Figure 23.20 but lies in a region disconnected from the main body of the cluster).

Gansner et al. model the coloring problem as follows. In order to handle exclaves properly,
they insist that each of the k := |C| = |Vc| countries actually receives a different color.
They assume that a set of colors in a linear color space has been predetermined so that the
difference between the colors is roughly equidistant. Hence, they simplify the problem by
asking for a (bijective) assignment c : Vc → {1, . . . , k} of the k vertices of Gc to the numbers
1, . . . , k such that ∑

uv∈Ec

(c(u)− c(v))2 (23.7)

is maximized over all such assignments. The problem is NP-hard [HKV11]. Therefore, they
solve the continuous version of the problem, where c′ : Vc → R must fulfill the additional
requirement that

∑
v∈V (c′(u))2 = 1. This problem is solved when c′ is the eigenvector

corresponding to the largest eigenvalue of the Laplacian of Gc. As a heuristic for the
discrete version of the problem, they let c(u) be the rank of c′(u) in the sorted sequence of
the c′-values. They suggest to apply, in a post-processing step, a 2-opt type greedy algorithm
that swaps the c-values of pairs of vertices whenever this increases the term (23.7). The
combination of the two methods seems to yield good results in practice.

Concluding, even for large social networks such as co-authorship graphs or Amazon book
co-purchase networks, the GMap yields very nice map-like visualizations. Recently, GMap
has been extended to dynamic scenarios [MKH11, HKV12].

23.6. OTHER GRAPHS 729

Tamassia

Tollis
Battista

Goodrich

Liotta Bridgeman

Fanto

Garg

Vismara
Brandes

Wagner

Eades

Didimo

Gelfand

Vargiu

TassinariParise

Kosaraju

Shubina

Chan

Dogrusoz

Madden

Castello

Mili

Biedl

Kakoulis

Six

Xia

Papakostas

Brandenburg

Marks

Mutzel
Junger

Kobourov

Bachl

Edachery

Sen

Schreiber
Himsolt

Forster

Raitner

Eppstein

Himsholt

Rohrer

Pick
Bachmaier

NorthMarshall

Dobkin

Gansner
Koutsofios

Ellson
Woodhull

Whitesides

Bose

Demetrescu

Finocchi

Patrignani
Pizzonia

Lenhart

Lubiw
Bertolazzi

Buti

Carmignani

MateraMarcandalli

Lillo

Vernacotola

Barbagallo

Boyer

Cortese

Mariani

Symvonis
Wood

Alt

Godau

Houle

Wismath

ElGindy

Meijer

Dujmovic

Fellows

Hallett

Kitching

McCartin

Nishimura

Ragde

RosamondSuderman

Shermer

Ryall

Fekete

Lesh

Andalman
Ruml

Shieber

Kruja

Blair

Waters

Leipert

Lee

Odenthal

Gutwenger

Buchheim

Ziegler

Klau

Klein Barth

Kupke

Weiskircher

Percan

Hundack

Pouchkarev

Thome

Brockenauer

Fialko

Kruger
Naher

Alberts

Ambras
Koch

Cheng

Duncan

Gajer

Efrat

Wenk

Erten

Harding

Wampler
Yee

Pitta

Le

Navabi

Tanenbaum

Scheinerman

Wagner

DickersonMeng

Lynn

Thiele

JohansenMorin

Madden

Genc

Kikusts

Freivalds

Frick

Bertault

Feng

Fosmeier

Grigorescu

Powers

Chrobak Nakano

Nishizeki

TokuyamaWatanabe

Miura

Yoshikawa

Rahman

Uno

Dean

Hutchinson

Ramos
McAllister

Snoeyink

Gomez

Toussaint

Sablowski
Brus

Keskin

Vogelmann

Ludwig

Mehldau

Jourdan

Rival Zaguia

Hashemi

Kisielewicz

Alzohairi

Barouni

Jaoua

Chen

Lu

YenLiao

Chuang

Lin

Roxborough

Italiano

Giacomo

Felsner

Binucci

Nonato
Cruz

Rusu

Chanda

Lozada

Neto

Rosi

Stolfi

Miller

Kaufmann

Hes

Kant

SteckelbachBubeck

Ritt

Rosenstiel

Cornelsen

Kenis

Dwyer

Kopf

Herman

BaurBenkert

Gaertler Lerner

EiglspergerSchank

Kuchem

Miyazawa

Ghosh

Naznin

Egi

Asano

Shahrokhi

Sykora

Szekely

Vrto

Newton

Munoz

Unger

Djidjev

Pach

Toth

Tardos

Wenger

Agarwal

Aronov

Pollack

Sharir

Pinchasi

Eckersley

Hong

Quigley

Sugiyama

Lee

Abelson
TaylorMaeda

Lin Lin
Cohen

Huang Feng

WebberRuskey

Garvan

Friedrich

Nascimento

Murray

Vince

Kanne

Trumbach

Skodinis

Eschbach Gunther

Drechsler Becker

Schonfeld

Molitor

Bretscher

AbellanasGarcia-Lopez

Hernandez-Penver

Noy

Hurtado

Marquez

CastroCobos

Dana

Garcia
Hernando

Tejel

Purchase

Allder

Carrington

James

Scott
Chow

Leonforte

Closson

Gartshore

Dyck

Joevenazzo
Nickle

Wilsdon

Iturriaga

Fernau

Wiese

Carpendale
Cowperthwaite

Fracchia

Matuszewski

Melancon
Ruiter

Delest

Lambe

Twarog

Rucevskis

Cerny

Kral

Nyklova

Pangrac

Dvorak

Jelinek

Kara

Babilon

Vondrak

Mateos

Garrido

Aggarwal

Pop

Misue

Sander

Vasiliu

Diguglielmo

DurocherKaplan

Alt

Ferdinand

Wilhelm

Baudel

Haible

Dillencourt
Hirschberg

Matousek

Maxova

Valtr

Tamassia

Tollis
Battista

Goodrich

Liotta Bridgeman

Fanto

Garg

Vismara
Brandes

Wagner

Eades

Didimo

Gelfand

Vargiu

TassinariParise

Kosaraju

Shubina

Chan

Dogrusoz

Madden

Castello

Mili

Biedl

Kakoulis

Six

Xia

Papakostas

Brandenburg

Marks

Mutzel
Junger

Kobourov

Bachl

Edachery

Sen

Schreiber
Himsolt

Forster

Raitner

Eppstein

Himsholt

Rohrer

Pick
Bachmaier

NorthMarshall

Dobkin

Gansner
Koutsofios

Ellson
Woodhull

Whitesides

Bose

Demetrescu

Finocchi

Patrignani
Pizzonia

Lenhart

Lubiw

Bertolazzi

Buti

Carmignani

MateraMarcandalli

Lillo

Vernacotola

Barbagallo

Boyer

Cortese

Mariani

Symvonis
Wood

Alt

Godau

Houle

Wismath

ElGindy

Meijer

Dujmovic

Fellows

Hallett

Kitching

McCartin

Nishimura

Ragde

RosamondSuderman

Shermer

Ryall

Fekete

Lesh

Andalman
Ruml

Shieber
Kruja

Blair

Waters

Leipert

Lee

Odenthal

Gutwenger

Buchheim

Ziegler

Klau

Klein Barth

Kupke

Weiskircher

Percan

Hundack

Pouchkarev

Thome

Brockenauer

Fialko

Kruger
Naher

Alberts

Ambras
Koch

Cheng

Duncan

Gajer

Efrat

Wenk

Erten

Harding

Wampler
Yee

Pitta

Le

Navabi

Tanenbaum

Scheinerman

Wagner

DickersonMeng

Lynn

Thiele

JohansenMorin

Madden

Genc

Kikusts

Freivalds

Frick

Bertault

Feng

Fosmeier

Grigorescu

Powers

Chrobak Nakano

Nishizeki

TokuyamaWatanabe

Miura

Yoshikawa

Rahman

Uno

Dean

Hutchinson

Ramos
McAllister

Snoeyink

Gomez

Toussaint

Sablowski
Brus

Keskin

Vogelmann

Ludwig

Mehldau

Jourdan

Rival Zaguia

Hashemi

Kisielewicz

Alzohairi

Barouni

Jaoua

Chen

Lu

YenLiao

Chuang

Lin

Roxborough

Italiano

Giacomo

Felsner

Binucci

Nonato
Cruz

Rusu

Chanda

Lozada

Neto

Rosi

Stolfi

Miller

Kaufmann

Hes

Kant

SteckelbachBubeck

Ritt

Rosenstiel

Cornelsen

Kenis

Dwyer

Kopf

Herman

BaurBenkert

Gaertler Lerner

EiglspergerSchank

Kuchem

Miyazawa

Ghosh

Naznin

Egi

Asano

Shahrokhi

Sykora

Szekely

Vrto

Newton

Munoz

Unger

Djidjev

Pach

Toth

Tardos

Wenger

Agarwal

Aronov

Pollack

Sharir

Pinchasi

Eckersley

Hong

Quigley

Sugiyama

Lee

Abelson
TaylorMaeda

Lin Lin
Cohen

Huang Feng

Webber
Ruskey

Garvan

Friedrich

Nascimento

Murray

Vince

Kanne

Trumbach

Skodinis

Eschbach Gunther

Drechsler Becker

Schonfeld

Molitor

Bretscher

AbellanasGarcia-Lopez

Hernandez-Penver

Noy

Hurtado

Marquez

CastroCobos

Dana

Garcia
Hernando

Tejel

Purchase

Allder

Carrington

James

Scott
Chow

Leonforte

Closson

Gartshore

Dyck

Joevenazzo
Nickle

Wilsdon

Iturriaga

Fernau

Wiese

Carpendale
Cowperthwaite

Fracchia

Matuszewski

Melancon
Ruiter

Delest

Lambe

Twarog

Rucevskis

Cerny

Kral

Nyklova

Pangrac

Dvorak

Jelinek

Kara

Babilon

Vondrak

Mateos

Garrido

Aggarwal

Pop

Misue

Sander
Vasiliu

Diguglielmo

DurocherKaplan

Alt

Ferdinand

Wilhelm

Baudel

Haible

Dillencourt
Hirschberg

Matousek

Maxova

Valtr

(a) traditional node-link diagram, label colors
indicate cluster membership

(b) same graph drawing plus map background
with countries corresponding to clusters

Figure 23.20 A portion of the co-authorship graph of articles published in the proceed-
ings of the International Symposium on Graph Drawing in the years 1994–2004.

Figure 23.21 A portion of the co-authorship graph of articles published in the pro-
ceedings of the International Symposium on Graph Drawing in the years 1994–2007. The
original map was clipped to increase the font size.

730 CHAPTER 23. GRAPH DRAWING AND CARTOGRAPHY

References

[AdCC+12] Nieves Atienza, Natalia de Castro, Carmen Cortés, M. Ángeles Gar-
rido, Clara I. Grima, Gregorio Hernández, Alberto Márquez, Auxiliadora
Moreno-González, Martin Nöllenburg, José Ramon Portillo, Pedro Reyes,
Jesús Valenzuela, Maria Trinidad Villar, and Alexander Wolff. Cover
contact graphs. J. Comput. Geom., 3(1), 2012.

[AES99] Pankaj K. Agarwal, Alon Efrat, and Micha Sharir. Vertical decomposi-
tion of shallow levels in 3-dimensional arrangements and its applications.
SIAM J. Comput., 29(3):912–953, 1999.

[AM00] Silvania Avelar and Matthias Müller. Generating topologically cor-
rect schematic maps. In Proc. 9th Int. Symp. Spatial Data Handling
(SDH’00), pages 4a.28–4a.35, 2000.

[AS01] Maneesh Agrawala and Chris Stolte. Rendering effective route maps:
Improving usability through generalization. In Eugene Fiume, editor,
Proc. 28th Annu. Conf. Comput. Graphics Interactive Techniques (SIG-
GRAPH’01), pages 241–249. ACM Press, 2001.

[Ass96] Association for Geographic Information, London. GIS dictionary. http:
//www.agi.org.uk/resources/dicitionary/content.htm, 1996.

[AV00] Pankaj K. Agarwal and Kasturi R. Varadarajan. Efficient algorithms for
approximating polygonal chains. Discrete Comput. Geom., 23:273–291,
2000.

[BBDZ08] Joachim Böttger, Ulrik Brandes, Oliver Deussen, and Hendrik Ziezold.
Map warping for the annotation of metro maps. IEEE Comput. Graphics
Appl., 28(5):56–65, 2008.

[BCC+06] Prosenjit Bose, Sergio Cabello, Otfried Cheong, Joachim Gudmundsson,
Marc van Kreveld, and Bettina Speckmann. Area-preserving approxima-
tions of polygonal paths. J. Discrete Algorithms, 4(4):554–566, 2006.

[BEKW02] Ulrik Brandes, Markus Eiglsperger, Michael Kaufmann, and Dorothea
Wagner. Sketch-driven orthogonal graph drawing. In Stephen G.
Kobourov and Michael T. Goodrich, editors, Proc. 10th Int. Symp. Graph
Drawing (GD’02), volume 2528 of Lecture Notes Comput. Sci., pages 1–
11. Springer-Verlag, 2002.

[Ber99] François Bertault. A force-directed algorithm that preserves edge cross-
ing properties. In Jan Kratochv́ıl, editor, Proc. 7th Int. Symp. Graph
Drawing (GD’99), volume 1731 of Lecture Notes Comput. Sci., pages
351–358. Springer-Verlag, 1999.

[Béz72] Pierre Bézier. Numerical Control. Wiley, 1972.

[BHKN09] Marc Benkert, Herman J. Haverkort, Moritz Kroll, and Martin
Nöllenburg. Algorithms for multi-criteria boundary labeling. J. Graph
Algorithms Appl., 13(3):289–317, 2009.

[BKNS10] Michael A. Bekos, Michael Kaufmann, Martin Nöllenburg, and Anto-
nios Symvonis. Boundary labeling with octilinear leaders. Algorithmica,
57(3):436–461, 2010.

[BKPS06] Michael A. Bekos, Michael Kaufmann, Katerina Potika, and Antonios
Symvonis. Multi-stack boundary labeling problems. In S. Arun-Kumar
and Naveen Garg, editors, Proc. Int. Conf. Foundat. Software Tech.

REFERENCES 731

Theor. Comput. Sci. (FSTTCS’06), volume 4337 of Lecture Notes Com-
put. Sci., pages 81–92. Springer-Verlag, 2006.

[BKPS10] Michael A. Bekos, Michael Kaufmann, Katerina Potika, and Antonios
Symvonis. Area-feature boundary labeling. Comput. J., 53(6):827–841,
2010.

[BKPS11] Michael A. Bekos, Michael Kaufmann, Dimitrios Papadopoulos, and An-
tonios Symvonis. Combining traditional map labeling with boundary
labeling. In Ivana Cerná, Tibor Gyimóthy, Juraj Hromkovic, Keith G.
Jeffery, Rastislav Královic, Marko Vukolic, and Stefan Wolf, editors,
Proc. 37th Conf. Current Trends Theory Practice Comput. Sci. (SOF-
SEM’11), volume 6543 of Lecture Notes Comput. Sci., pages 111–122.
Springer-Verlag, 2011.

[BKSW07] Michael A. Bekos, Michael Kaufmann, Antonios Symvonis, and Alexan-
der Wolff. Boundary labeling: Models and efficient algorithms for rect-
angular maps. Comput. Geom. Theory Appl., 36(3):215–236, 2007.

[BLR00] Thomas Barkowsky, Longin Jan Latecki, and Kai-Florian Richter.
Schematizing maps: Simplification of geographic shape by discrete curve
evolution. In C. Freksa, W. Brauer, C. Habel, and K. F. Wender, edi-
tors, Proc. Spatial Cognition II—Integrating abstract theories, empirical
studies, formal models, and practical applications, volume 1849 of Lecture
Notes in Artificial Intelligence, pages 41–53, 2000.

[BNUW07] Marc Benkert, Martin Nöllenburg, Takeaki Uno, and Alexander Wolff.
Minimizing intra-edge crossings in wiring diagrams and public transport
maps. In Michael Kaufmann and Dorothea Wagner, editors, Proc. 14th
Int. Symp. Graph Drawing (GD’06), volume 4372 of Lecture Notes Com-
put. Sci., pages 270–281. Springer-Verlag, 2007.

[BP13] Ulrik Brandes and Barbara Pampel. Orthogonal-ordering constraints are
tough. J. Graph Algorithms Appl., 17(1):1–10, 2013.

[Bra99] Ulrik Brandes. Layout of Graph Visualizations. PhD thesis, University
of Konstanz, 1999. See http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-
2552.

[BST00] Ulrik Brandes, Galina Shubina, and Roberto Tamassia. Improving angu-
lar resolution in visualizations of geographic networks. In Proc. Joint
Eurographics–IEEE TCVG Symp. Visual. (VisSym’00), pages 23–32,
2000.

[BSTW01] Ulrik Brandes, Galina Shubina, Roberto Tamassia, and Dorothea Wag-
ner. Fast layout methods for timetable graphs. In Joe Marks, editor,
Proc. 8th Int. Symp. Graph Drawing (GD’00), volume 1984 of Lecture
Notes Comput. Sci., pages 127–138. Springer-Verlag, 2001.

[BSV11] Kevin Buchin, Bettina Speckmann, and Kevin Verbeek. Angle-restricted
Steiner arborescences for flow map layout. In Takao Asano, Shin-Ichi
Nakano, Yoshio Okamoto, and Osamu Watanabe, editors, Proc. 22nd Int.
Symp. Algorithms Comput. (ISAAC’11), volume 7074 of Lecture Notes
Comput. Sci., pages 250–259. Springer-Verlag, 2011.

[BT04] Hans L. Bodlaender and Gerard Tel. A note on rectilinearity and angular
resolution. J. Graph Algorithms Appl., 8(1):89–94, 2004.

[BW00] Ulrik Brandes and Dorothea Wagner. Using graph layout to visualize
train connection data. J. Graph Algorithms Appl., 4(3):135–155, 2000.

732 CHAPTER 23. GRAPH DRAWING AND CARTOGRAPHY

[CdBvD+01] Sergio Cabello, Mark de Berg, Steven van Dijk, Marc van Kreveld, and
Tycho Strijk. Schematization of road networks. In Proc. 17th Annu.
ACM Symp. Comput. Geom. (SoCG’01), pages 33–39, 2001.

[CEH96] Kenneth C. Cox, Stephen G. Eick, and Taosong He. 3d geographic net-
work displays. ACM SIGMOD Record, 25(4):50–54, 1996.

[CZQ+08] W. Cui, H. Zhou, H. Qu, P. Wong, and X. Li. Geometry-based edge
clustering for graph visualization. IEEE Trans. Visual. Comput. Graph.
(InfoVis’08), 14(6):1277–1284, 2008.

[DGNP10] Daniel Delling, Andreas Gemsa, Martin Nöllenburg, and Thomas Pajor.
Path schematization for route sketches. In Haim Kaplan, editor, Proc.
12th Scand. Workshop Algorithm Theory (SWAT’10), volume 6139 of
Lecture Notes Comput. Sci., pages 285–296. Springer-Verlag, 2010.

[DHM08] Tim Dwyer, Nathan Hurst, and Damian Merrick. A fast and simple
heuristic for metro map path simplification. In George Bebis et al., editor,
Proc. 4th Int. Symp. Advances Visual Comput. (ISVC’08), volume 5359
of Lecture Notes Comput. Sci., pages 22–30. Springer-Verlag, 2008.

[dNE03] Hugo A. D. do Nascimento and Peter Eades. User hints for map labelling.
In Proc. 26th Australasian Comput. Sci. Conf., ACM Int. Conf. Proc.
Series, pages 339–347, 2003.

[DP73] David H. Douglas and Thomas K. Peucker. Algorithms for the reduc-
tion of the number of points required to represent a digitized line or its
caricature. Can. Cartogr., 10(2):112–122, 1973.

[ELMS91] Peter Eades, Wei Lai, Kazuo Misue, and Kozo Sugiyama. Preserving
the mental map of a diagram. In Proc. Compugraphics, pages 34–43,
Sesimbra, Portugal, September 1991.

[FD01] Michael Friendly and Daniel J. Denis. Milestones in the history of the-
matic cartography, statistical graphics, and data visualization. Web doc-
ument, http://www.datavis.ca/milestones/. Entry on the first flow map:
www.datavis.ca/milestones/index.php?group=1800%2B&mid=ms113,
2001. Accessed: Sept. 2012.

[FHN+13] Martin Fink, Herman Haverkort, Martin Nöllenburg, Maxwell Roberts,
Julian Schuhmann, and Alexander Wolff. Drawing metro maps using
Bézier curves. In Walter Didimo and Maurizio Patrignani, editors, Proc.
20th Int. Symp. Graph Drawing (GD’12), volume 7704 of Lecture Notes
Comput. Sci., pages 463-474. Springer-Verlag, 2013.

[FR91] Thomas M. J. Fruchterman and Edward M. Reingold. Graph drawing
by force-directed placement. Software Pract. Exper., 21(11):1129–1164,
1991.

[Gar94] Ken Garland. Mr Beck’s Underground Map. Capital Transport Publish-
ing, Harrow Weald, Middlesex, 1994.

[GH10] Emden R. Gansner and Yifan Hu. Efficient, proximity-preserving node
overlap removal. J. Graph Algorithms Appl., 14(1):53–74, 2010.

[GHN11] Andreas Gemsa, Jan-Henrik Haunert, and Martin Nöllenburg.
Boundary-labeling algorithms for panorama images. In Proc. 19th ACM
SIGSPATIAL Int. Conf. Advances Geogr. Inform. Syst. (ACM-GIS’11),
pages 289–298, 2011.

REFERENCES 733

[GMPP91] Peter Gritzmann, Bojan Mohar, János Pach, and Richard Pollack. Em-
bedding a planar triangulation with vertices at specified positions. Amer.
Math. Mon., 98:165–166, 1991.

[GN00] Emden R. Gansner and Stephen C. North. An open graph visualiza-
tion system and its applications to software engineering. Software Pract.
Exper., 30:1203–1233, 2000.

[GNPR11] Andreas Gemsa, Martin Nöllenburg, Thomas Pajor, and Ignaz Rutter.
On d-regular schematization of embedded paths. In Ivana Cerná, Tibor
Gyimóthy, Juraj Hromkovic, Keith Jefferey, Rastislav Královic, Marko
Vukolic, and Stefan Wolf, editors, Proc. 37th Int. Conf. Current Trends
Theory Practice Comput. Sci. (SOFSEM’11), volume 6543 of Lecture
Notes Comput. Sci., pages 260–271. Springer-Verlag, 2011.

[Har38] Henry Drury Harness. Atlas to accompany the second report of the
railway commissioners, Ireland. Her Majesty’s Stationery Office, 1838.

[HGK10] Yifan Hu, Emden R. Gansner, and Stephen Kobourov. Visualizing graphs
and clusters as maps. IEEE Comput. Graphics Appl., 30:54–66, 2010.

[HKV11] Yifan Hu, Stephen G. Kobourov, and Sankar Veeramoni. On maximum
differential graph coloring. In Ulrik Brandes and Sabine Cornelsen, ed-
itors, Proc. 18th Int. Symp. Graph Drawing (GD’10), volume 6502 of
Lecture Notes Comput. Sci., pages 274–286. Springer-Verlag, 2011.

[HKV12] Yifan Hu, Stephen G. Kobourov, and Sankar Veeramoni. Embedding,
clustering and coloring for dynamic maps. In Proc. 5th IEEE Pacific
Visual. Symp. (PacificVis’12), pages 33–40, 2012.

[HMdN06] Seok-Hee Hong, Damian Merrick, and Hugo A. D. do Nascimento. Auto-
matic visualisation of metro maps. J. Visual Lang. Comput., 17(3):203–
224, 2006.

[Hol95] Christine Holch. Der vielfältige Falk. Die Zeit (German newspaper),
15 December 1995.

[HS52] Magnus R. Hestenes and Eduard Stiefel. Methods of conjugate gradients
for solving linear systems. J. Research Nat. Bur. Standards, 49(6):409–
436, 1952.

[HS92] John Hershberger and Subhash Suri. Applications of a semi-dynamic
convex hull algorithm. BIT, 32(2):249–267, 1992.

[HS94] John Hershberger and Jack Snoeyink. An O(n log n) implementation
of the Douglas-Peucker algorithm for line simplification. In Proc. 10th
Annu. ACM Symp. Comput. Geom. (SoCG’94), pages 383–384, 1994.

[HS11] Jan-Henrik Haunert and Leon Sering. Drawing road networks with focus
regions. IEEE Trans. Vis. Comput. Graphics, 17(12):2555–2562, 2011.

[HVW09] Danny Holten and Jarke J. Van Wijk. Force-directed edge bundling for
graph visualization. Comput. Graphics Forum, 28(3):983–990, 2009.

[Jen06] Bernhard Jenny. Geometric distortion of schematic network maps. Bul-
letin Soc. Cartogr., 40:15–18, 2006.

[Koe36] Paul Koebe. Kontaktprobleme der konformen Abbildung. Ber. Sächs.
Akad. Wiss. Leipzig, Math.-Phys. Klasse, 88:141–164, 1936.

[KW78] Joseph B. Kruskal and Myron Wish. Multidimensional Scaling. Number
07-011 in Sage University Paper series on Quantitative Application in
the Social Sciences. Beverly Hills and London: Sage Publications, 1978.

734 CHAPTER 23. GRAPH DRAWING AND CARTOGRAPHY

[Law76] Eugene L. Lawler. Combinatorial Optimization: Networks and Matroids.
Holt, Rinehart & Winston, New York, 1976.

[Lin10] Chun-Cheng Lin. Crossing-free many-to-one boundary labeling with hy-
perleaders. In Proc. IEEE Pacific Visual. Symp. (PacificVis’10), pages
185–192, 2010.

[LKY08] Chun-Cheng Lin, Hao-Jen Kao, and Hsu-Chun Yen. Many-to-one bound-
ary labeling. J. Graph Algorithms Appl., 12(3):319–356, 2008.

[LL99] Longin Jan Latecki and Rolf Lakämper. Convexity rule for shape de-
composition based on discrete contour evolution. Comput. Vision Image
Underst., 73(3):441–454, 1999.

[Llo82] Stuart P. Lloyd. Least squares quantization in PCM. IEEE Trans. In-
form. Theory, 28(2):129–137, 1982.

[LPT+11] Chun-Cheng Lin, Sheung-Hung Poon, Shigeo Takahashi, Hsiang-Yun
Wu, and Hsu-Chun Yen. One-and-a-half-side boundary labeling. In
Weifan Wang, Xuding Zhu, and Ding-Zhu Du, editors, Proc. 5th Int.
Conf. Combin. Optim. Appl. (COCOA’11), volume 6831 of Lecture Notes
Comput. Sci., pages 387–398. Springer-Verlag, 2011.

[LS02] Ulrich Lauther and Andreas Stübinger. Generating schematic cable plans
using springembedder methods. In Petra Mutzel, Michael Jünger, and
Sebastian Leipert, editors, Proc. 9th Int. Symp. Graph Drawing (GD’01),
volume 2265 of Lecture Notes Comput. Sci., pages 465–466. Springer-
Verlag, 2002.

[LWY09] Chun-Cheng Lin, Hsiang-Yun Wu, and Hsu-Chun Yen. Boundary la-
beling in text annotation. In Proc. 13th Int. IEEE Conf. Inform. Vis.
(IV’09), pages 110–115, 2009.

[MG07] Damian Merrick and Joachim Gudmundsson. Path simplification for
metro map layout. In Michael Kaufmann and Dorothea Wagner, editors,
Proc. 14th Int. Symp. Graph Drawing (GD’06), volume 4372 of Lecture
Notes Comput. Sci., pages 258–269. Springer-Verlag, 2007.

[MHCF96] Tamara Munzner, Eric Hoffman, K. Claffy, and Bill Fenner. Visualizing
the global topology of the MBone. In Proc. IEEE Symp. Inform. Visual.
(InfoVis’96), pages 85–92, 1996.

[Min69] Charles Joseph Minard. Carte Figurative des pertes successives en
hommes de l’Armée Française dans la campagne de Russie 1812–1813.
http://en.wikipedia.org/wiki/File:Minard.png, 1869.

[MKH11] Daisuke Mashima, Stephen G. Kobourov, and Yifan Hu. Visualiz-
ing dynamic data with maps. IEEE Trans. Visual. Comput. Graphics,
18(9):1424–1437, 2011.

[MNWB08] Damian Merrick, Martin Nöllenburg, Alexander Wolff, and Marc
Benkert. Morphing polylines: A step towards continuous generalization.
Comput. Environ. Urban Syst., 32(4):248–260, 2008.

[MO01] Joseph S. B. Mitchell and Joseph O’Rourke. Computational geometry
column 42. SIGACT News, 32(3):63–72, 2001.

[Nes04] Keith V. Nesbitt. Getting to more abstract places using the metro map
metaphor. In Proc. 8th Int. Conf. Inform. Visual. (IV’04), pages 488–
493. IEEE Computer Society, 2004.

REFERENCES 735

[New06] Mark E. J. Newman. Modularity and community structure in networks.
Proc. Natl. Acad. Sci. USA, 103:8577–8582, 2006.

[Ney99] Gabriele Neyer. Line simplification with restricted orientations. In
Frank K. Dehne, Arvind Gupta, Jörg-Rüdiger Sack, and Roberto
Tamassia, editors, Proc. 6th Int. Workshop Algorithms Data Struct.
(WADS’99), volume 1663 of Lecture Notes Comput. Sci., pages 13–24.
Springer-Verlag, 1999.

[Nöl05a] Martin Nöllenburg. Automated drawing of metro maps. Master’s thesis,
Fakultät für Informatik, Universität Karlsruhe, 2005. Available at http:
//www.ubka.uni-karlsruhe.de/indexer-vvv/ira/2005/25.

[Nöl05b] Martin Nöllenburg. Automated drawings of metro maps. Technical
Report 2005-25, Fakultät für Informatik, Universität Karlsruhe, 2005.
Available at http://www.ubka.uni-karlsruhe.de/indexer-vvv/ira/

2005/25.

[NPS10] Martin Nöllenburg, Valentin Polishchuk, and Mikko Sysikaski. Dynamic
one-sided boundary labeling. In Proc. 18th Int. ACM Symp. Advances
Geogr. Inform. Syst. (ACM-GIS’10), pages 310–319, 2010.

[NW11] Martin Nöllenburg and Alexander Wolff. Drawing and labeling high-
quality metro maps by mixed-integer programming. IEEE Trans. Visual.
Comput. Graphics, 17(5):626–641, 2011.

[O’R03] O’Reilly. Open source route map. http://www.oreilly.de/artikel/

routemap.pdf, 2003.

[Ove03] Mark Ovenden. Metro maps of the world. Harrow Weald: Capital Trans-
port Publishing, 2nd edition, 2003.

[Pol06] Klemens Polatschek. Die Schönheit des Untergrundes. Frankfurter
Allgemeine Sonntagszeitung 28, 16 July 2006. Available via http://

fazarchiv.faz.net.

[PXY+05] Doantam Phan, Ling Xiao, Ron B. Yeh, Pat Hanrahan, and Terry Wino-
grad. Flow map layout. In Proc. IEEE Symp. Inform. Visual. (Info-
Vis’05), pages 219–224, 2005.

[RNL+11] Maxwell J. Roberts, Elizabeth J. Newton, Fabio D. Lagattolla, Si-
mon Hughes, and Megan C. Hasler. Objective versus subjective mea-
sures of metro map usability: Investigating the benefits of breaking
design rules. Available at http://privatewww.essex.ac.uk/~mjr/

underground/Roberts_Metro.pdf, August 2011.

[Rob55] Arthur H. Robinson. The 1837 maps of henry drury harness. Geogr. J.,
121(4):440–450, 1955.

[Saa95] Alan Saalfeld. Map generalization as a graph drawing problem. In
Roberto Tamassia and Ioannis Tollis, editors, Proc. 3rd Int. Symp. Graph
Drawing (GD’94), volume 894 of Lecture Notes Comput. Sci., pages 444–
451. Springer-Verlag, 1995.

[Saa99] Alan Saalfeld. Topologically consistent line simplification with the
Douglas-Peucker algorithm. Cartogr. Geogr. Inform. Sci., 26(1), 1999.

[SGSK01] Elmer S. Sandvad, Kaj Grønbæk, Lennert Sloth, and Jørgen Lindskov
Knudsen. A metro map metaphor for guided tours on the Web: the
Webvise Guided Tour System. In Proc. 10th Int. World Wide Web Conf.
(WWW’01), pages 326–333. ACM Press, 2001.

736 CHAPTER 23. GRAPH DRAWING AND CARTOGRAPHY

[SR05] Jonathan M. Stott and Peter Rodgers. Automatic metro map design
techniques. In Proc. 22nd Int. Cartogr. Conf. (ICC’05), La Coruña,
Spain, 2005.

[SRMW11] Jonathan Stott, Peter Rodgers, Juan Carlos Mart́ınez-Ovando, and
Stephen G. Walker. Automatic metro map layout using multicriteria
optimization. IEEE Trans. Visual. Comput. Graphics, 17(1):101–114,
2011.

[Syd08] http://www.cityrail.nsw.gov.au/networkmaps/network_map.pdf,
2008.

[Tam87] Roberto Tamassia. On embedding a graph in the grid with the minimum
number of bends. SIAM J. Comput., 16(3):421–444, 1987.

[Tob87] Waldo Tobler. Experiments in migration mapping by computer. Amer.
Cartogr., 14(2):155–163, 1987.

[Tuf01] Edward R. Tufte. The Visual Display of Quantitative Information.
Graphics Press, Cheshire, CT, 2nd edition, 2001.

[Tut63] William T. Tutte. How to draw a graph. Proc. London Math. Soc.,
13(52):743–768, 1963.

[VBS11] Kevin Verbeek, Kevin Buchin, and Bettina Speckmann. Flow map layout
via spiral trees. IEEE Trans. Visual. Comput. Graphics, 17(12):2536–
2544, 2011.

[VW93] Mahes Visvalingam and J. D. Whyatt. Line generalisation by repeated
elimination of points. Cartogr. J., 30(1):46–51, 1993.

[WC11] Yu-Shuen Wang and Ming-Te Chi. Focus+context metro maps. IEEE
Trans. Visual. Comput. Graphics, 17(12):2528–2535, 2011.

[Wik12] Wikipedia. Harry Beck, 2012. Accessed March 5, 2012.

[Wol07] Alexander Wolff. Drawing subway maps: A survey. Informatik –
Forschung & Entwicklung, 22(1):23–44, 2007.

[YOT09] Daisuke Yamamoto, Shotaro Ozeki, and Naohisa Takahashi. Fo-
cus+Glue+Context: an improved fisheye approach for Web map ser-
vices. In Proc. 17th Annu. ACM Symp. Advances Geogr. Inferm. Syst.
(ACM-GIS’09), pages 101–110, 2009.

24
Graph Drawing in Education

Stina Bridgeman
Hobart and William Smith

Colleges

24.1 Introduction . 737
24.2 Applications . 738

Algorithm Animation • Algorithm Simulation • Exercise
Systems • Exploration Systems • Program Visualization •

Software Visualization

24.3 Graph Drawing for Algorithm Animation 744
A Unified Approach to Drawing Data Structures •

Special-Purpose Layouts

24.4 Graph Drawing for Program Visualization 747
Complex Node Structures • Taking Structure into Account
• Drawing Execution Environments • Drawing Sequence
Diagrams

24.5 Graph Drawing for Software Visualization 750
Drawing UML Class Diagrams

24.6 Sequences of Drawings . 752
Trees • Force-Directed Layout • Sugiyama-Style Hierarchical
Layout • Offline Dynamic Graph Drawing • Smooth
Animation

References . 757

24.1 Introduction

Illustrations are a powerful explanatory tool, so one might expect a long history of the use
of graph drawing in education. This history can be traced back to at least the Middle Ages,
where squares of opposition (Figure 24.1) were used as pedagogical tools in logic and other
fields [KMBW02]. Murdoch [Mur84] provides examples of both basic squares and more
complex structures.

In mathematics, drawings of abstract graphs began to appear as illustrations in the late
18th century, 150 years after Euler’s famous paper on the Königsberg bridges launched
the field of graph theory [KMBW02]. Now commonplace, hand-drawn pictures of small
graphs are often used as illustrations in math and computer science textbooks to describe
a graph-related concept or to explain a graph algorithm—any graph theory, discrete math,
or data structures text will contain many such pictures. Drawings of graphs are also used
to illustrate graph-structured information, such as the topology of a computer network or
a flow chart showing a program’s execution.

The introduction of computers into the classroom has led to new applications of graph
drawing, including algorithm animation, algorithm simulation, exercise systems, exploration
systems, program visualization, and software visualization. Section 24.2 surveys these ap-
plications, with emphasis on tools specifically developed for or used in the classroom. Many

737

738 CHAPTER 24. GRAPH DRAWING IN EDUCATION

Figure 24.1 An Aristotelian square of opposition showing the relationships between the
four logical forms (drawn using the circo algorithm from the Graphviz package [BCE+]).

of these applications place special requirements on the graph drawing algorithms used.
Sections 24.3–24.6 address relevant graph drawing techniques.

24.2 Applications

24.2.1 Algorithm Animation

Algorithm animation deals with graphically illustrating the conceptual behavior of an al-
gorithm or data structure.

Algorithm animation has been used in educational settings for many years. An early
and well-known example is Baecker’s 1981 video “Sorting Out Sorting” [Bae81], which
animates and explains nine sorting techniques. The video illustrates how each of the sorting
algorithms works by showing how bars of varying heights are gradually rearranged into
increasing order, then makes an effective point about running time by showing a “race”
between all of the algorithms.

In the classroom, instructor-prepared animations can be used as demonstrations during
class to help explain a new concept—an animated version of the explanatory illustration.
Animations used in class can be made available for students to pause, step, and replay so
they can absorb the material at their own pace. Algorithm animation can also be used to
engage students in the learning process—creating their own animations can deepen students’
understanding of concepts, and incorporating the creation of animations into assignments
can add interest to what might otherwise be a dry algorithm implementation task.

Animations of graph algorithms naturally make use of a drawing of a graph, using an-
notations, changing colors, or other visual effects to show the progression of the algorithm.
Animations of data structure manipulations, such as inserting or removing elements from
a binary tree, may also utilize a drawing of a graph or a tree. Support for automatic graph
drawing frees the animation designer from having to specify the details of how the graph is
drawn in each step, allowing her to focus on expressing the concept being illustrated.

24.2. APPLICATIONS 739

Example Systems

Balsa BALSA [BS84, BS85] is one of the classic algorithm animation systems. It is
a general-purpose system, designed for animating any kind of algorithm. BALSA introduced
the idea of “interesting events,” key points in the program where the visualization must be
updated. Animations are created by implementing one or more graphical views and then
augmenting the program code with calls to update those views when interesting events
occur. Views are often created from scratch, though it is possible to create a reusable library
of standard views. Graph layout algorithms are not provided, but can be implemented as
part of a view. BALSA has been used to illustrate concepts in both mathematics and
computer science courses, and for research in algorithm design and analysis.

Tango Tango [Sta90a, Sta90b] is another classic general-purpose algorithm ani-
mation system. Tango also utilizes the idea of interesting events, but provides a framework
to aid in defining views. Four kinds of elements are provided as building blocks for ani-
mation scenes: basic graphical objects (shapes and text), locations of objects, transitions
(movement, size, and color changes, etc.), and paths specifying how the transitions occur.
Creating an animation involves three steps: defining a series of “animation scenes” (which
may be a static view or an animated step), annotating the program with interesting events,
and specifying the mapping of interesting events to animation scenes. Of note is Tango’s
support for (and emphasis on) smooth transitions between view states—many algorithm
animation systems simply present a series of snapshots.

Samba Samba [Sta97] was designed to make it as easy as possible for students
to create their own algorithm animations. Samba is a front-end for Polka [SK93], the
successor to Tango; it reads in a command script and generates the animation from that
script. Samba commands are deliberately kept simple; basic commands allow the creation
of graphical objects (such as circles and lines) and the modification of existing objects (such
as by moving them or changing their color). Animations are created by augmenting the
program to be animated with instructions to output the Samba script. An advantage of
Samba is that it does not require the animator to implement separate graphical views and
link them to the code.

JAWAA JAWAA [PR98] is a web-based system for animating data structures.
Animations are specified by writing a script in JAWAA’s command language—unlike many
algorithm animation systems, the algorithm being animated does not need to be imple-
mented. Graphs and trees can be drawn using user-specified node positions, or can be
drawn automatically using one of three built-in layout algorithms (circular layout, Tunke-
lang’s force-directed layout [Tun94], and tree layout).

Swan Swan [SHY96] was designed specifically for visualizing graph algorithms and
their related data structures. Animations are created by augmenting a C/C++ program
with commands to build a graph representing the data structure to be visualized, specify
visual parameters such as the shape and color of the node, and draw the graph. This means
that the visualizations created are not tied to the physical representation of data structures
in the program and can instead represent a conceptual view. Swan includes special “layout
components” which perform automatic layout for specific types of data structures such as
linked lists, arrays, trees, and general graphs. Layout components for general graphs include
circular layout, Kamada and Kawai’s force-directed layout [KK89], and a Sugiyama-style
hierarchical layout.

740 CHAPTER 24. GRAPH DRAWING IN EDUCATION

24.2.2 Algorithm Simulation

Animations can only be viewed; in an algorithm simulation, a student experimenting with
data structures or an instructor providing on-the-fly demonstrations in class can modify the
data structure being animated or even carry out the algorithm’s steps by hand.

Example Systems

Matrix Matrix [KM02] provides both algorithm animation and algorithm simu-
lation. It can also be used to create visualizations of students’ own implementations of data
structures, and to perform visual testing. Multiple levels of abstraction are supported; for
example, when carrying out an algorithm involving inserting an element into a balanced
binary search tree, the student can perform the entire operation manually, allow the system
to insert the element into the underlying binary tree but then perform rebalancing steps her-
self, or allow the system to do the entire insertion. Matrix provides supports several types
of data structures and includes automatic tree layout. MatrixPro [KKMS04a, KKMS04b]
utilizes the Matrix platform and provides a GUI tailored for instructor use in the classroom.

24.2.3 Exercise Systems

Exercise systems present students with exercises to solve and provide feedback on the stu-
dents’ answers. Such systems can be used for learning and practice—students can test their
knowledge of an algorithm by trying exercises, and gain further understanding as the sys-
tem provides feedback about their mistakes—or for assessment and grading. Key features
of exercise systems include automatic generation of problem instances and automatic feed-
back and assessment, allowing students to practice on as many or as few problems as they
wish without burdening a faculty member or teaching assistant with excessive problem-
set creation or grading duties. The problem-generation feature can also be used to create
individualized problem sets to help thwart cheating.

Intelligent tutoring systems also build up a model of the student’s knowledge and under-
standing, and tailor the problems generated to address each student’s individual weaknesses.

Incorporating automatic graph drawing into an exercise system is important if the system
is to support graph- or tree-based problems, because each problem is randomly generated
as needed.

Example Systems

PILOT PILOT [BGKT00] is a Web-based exercise system supporting trace-the-
algorithm exercises. It supports automatic generation of exercise instances, feedback at each
step of the tracing process, solution grading, and algorithm animation. PILOT’s feedback
and assessment mechanism is based on whether each step is consistent with correct execution
of the algorithm at that point rather than simply checking if some final answer matches
the correct solution. This allows PILOT to easily accommodate cases with multiple correct
solutions and to provide meaningful feedback and reasonable partial credit when a single
mistake is made early in the process. Several graph-based problems including minimum
spanning tree, breadth-first and depth-first search, and shortest path algorithms have been
implemented. Force-directed and hierarchical drawing algorithms provided by the Graph
Drawing Server [BGT99] are used for graph layout.

TRAKLA2 TRAKLA2 [MKK+04] is a Web-based exercise system built on the
Matrix [KM02] algorithm animation and simulation framework. Like PILOT, TRAKLA2
supports trace-the-algorithm exercises and includes automatic generation of exercise in-

24.2. APPLICATIONS 741

stances, solution grading, and animation of model solutions. Evaluation of a student’s
answer is limited to comparing the student’s solution to a model solution, and the stu-
dent only receives notice of how many steps were correct. However, TRAKLA2 contains
a number of features making it useful for coursework including storage of students’ grades
and submitted answers, deadlines for exercises, and the ability to control whether the same
instance of an exercise may be repeatedly submitted for feedback (a practice exercise) or
if it must be reset with new input data each time (a graded assignment). Exercises in-
volving a variety of data structures and algorithms, including graph algorithms, have been
implemented.

AnimalSense AnimalSense [RMS11] takes a different approach. Instead of pro-
viding an environment where students manually trace the execution of an algorithm, Ani-
malSense supports questions that provide evidence of successful algorithm-tracing such as
“Give the sorted order” or “Give your third chosen edge.” This approach allows greater lat-
itude in the types of exercises that can be supported — it can also accommodate questions
like “Provide an array which uses 4 pivots to be sorted,” which go beyond simply tracing
and which require deeper thinking about the functioning of an algorithm. Algorithm ani-
mation is provided to aid in solving the problem and to help reveal the cause of a mistake.
Exercises involving graph algorithms, searching algorithms, and sorting algorithms have
been implemented.

24.2.4 Exploration Systems

Exploration systems support experimentation with graph structures and graph theory con-
cepts. In the classroom, exploration systems can be used in a professor-led discussion to
illustrate or animate examples or algorithms, or for student exploration or experimentation.

Support for automatic graph drawing frees the experimenter from having to find a rea-
sonable layout, and can be important in revealing the structure of the graph being studied.

Example Systems

LINK LINK [BDG+00] is designed for education and research in discrete mathe-
matics. It consists of a library of templated C++ classes for graphs and other data structures
coupled with an interactive front-end for animation and visualization. The library also con-
tains a collection of graph algorithms commonly used as building blocks and which are often
covered in their own right in graph theory and computer science courses. To aid in visu-
alization, LINK includes several simple graph layout algorithms (place vertices randomly,
on a circle, or on a grid), a spring embedder, and several algorithms suited for particular
applications (e.g., illustrating the results of a depth-first search, drawing the graph as a
bipartite graph, and laying out each biconnected component of the graph separately to
emphasize the components) [Ber].

GraphPack GraphPack [KOD+96] is a tool designed for experimenting with
graphs and graph algorithms. It supports several 3D and 2D graph layout algorithms,
contains a graph viewer, and can integrate functionality from other packages such as Math-
ematica, Maple, and Matlab. A novel feature is its ability to extract the graph structure
from a black-and-white bitmap image of a drawing.

24.2.5 Program Visualization

Program visualization deals with visualizing a program’s actual execution rather than a
high-level conceptual view of an algorithm. Aspects of the program being visualized can

742 CHAPTER 24. GRAPH DRAWING IN EDUCATION

include source code, data structures, and runtime behavior. Program visualization can
be used to illustrate the functioning of an algorithm or data structure (as in algorithm
animation), to gain an understanding of how the program works, to aid in debugging, and
to evaluate and improve program performance.

In the classroom, program visualization can help students learn to program and debug by
revealing what their programs are actually doing. This is more effective than systems which
attempt to explain a bug (because explanations require understanding the underlying con-
cept in the first place), try to guide the student to a particular way of solving the problem
(ignoring other valid solutions), or are limited to a small set of toy problems [EPD92]. For
more advanced students, visualizations can help explain the underlying semantics of the pro-
gramming language, design patterns, and the workings of multithreaded programs [GJ05].
As with algorithm animation, instructors can also use program visualization to spice up an
implementation assignment.

Automatic graph drawing is an essential component for program visualization systems
which display graph-structured information because the particular graph depends on the
runtime state of the program.

Example Systems

A simple form of program visualization—and one that is also suitable for algorithm
animation—is to display graphical snapshots of the key data structures whenever the state
of the structure changes.

GraphTree/GraphHeap Owen’s GraphTree and GraphHeap subrou-
tines [Owe86] were designed as a low-overhead animation system for illustrating binary
tree and heap operations. The subroutines take the data structure to be visualized as a
parameter, and are called when the animator wants to produce a graphical snapshot of
the current state of the tree or heap. A simple layout algorithm is used: parent nodes are
centered above their two children, with empty spaces for missing child nodes.

VisualGraph VisualGraph [LNR03] is a Java graph class which provides typical
graph querying and manipulation operations, as well as visualization operations (highlight-
ing and changing the color of edges and vertices) and related utility routines (random
graph generation, graph layout using the force-directed method of Kamada [Kam89], and
file I/O). Simple visualizations are created by augmenting the program code with calls to
“print graph” whenever a picture of the current state of the graph is desired. VisualGraph is
implemented as a front-end to an algorithm animation system—animation operations pro-
duce output in the AnimalScript language [RF01], which can then be read and displayed
by a system such as JHAVÉ [NEN00].

Visualiser Naps’ Visualiser class [Nap98] supports multiple data structures, in-
cluding trees and graphs. It parses a string representation of the data structure to be
visualized rather than working directly with particular Java objects, so it can be extended
to new implementations of data structures by providing a new “to string” routine. New data
structures or visualization styles can be supported by adding new Visualiser subclasses.

JDSL Visualizer The JDSL Visualizer [BBG+99] does not require users to mod-
ify their code to generate visualizations of data structures, as snapshots are automatically
generated before and after data structure operations. However, data structures must be
implemented to a particular API. Several linear and binary-tree-based structures are sup-
ported.

LJV The Lightweight Java Visualizer (LJV) [Ham04] uses Java’s reflection mech-
anism to determine the structure of a Java object and is thus suitable for use with any
Java program. Visualizing an object requires only adding calls to a “display object” rou-

24.2. APPLICATIONS 743

tine when an object is to be visualized. The resulting graph structure is drawn using
GraphViz [BCE+]. More advanced users or instructors setting up the tool for a course can
customize the appearance of particular classes, such as to hide the internal representation
of the String class. Of note is that because the structure is derived directly from the object
itself, both correct data structures and students’ incorrect ones can be visualized. The tool
is also effective for demonstrating aspects of the Java language which often cause confusion,
such as the pervasive but hidden use of references and the meaning of static fields.

Other systems provide visualization of data structures without requiring the program to
be modified.

UWPI The University of Washington illustrating compiler (UWPI) [HWF90] an-
alyzes program source code (written in a subset of Pascal) and automatically constructs a
visualization of the data structures used in the program. UWPI attempts to infer the ab-
stract data type of each variable from its concrete data type and usage patterns in order
to determine an appropriate visualization. Supported ADTs are numbers, arrays, and di-
graphs; graphs are converted to directed acyclic graphs and drawn using the methods of
Sugiyama, Tagawa, and Toda [STT81] and Rowe et al. [RDM+87].

jGRASP jGRASP [HCIB04] is a Java development environment combining a de-
bugger and visualization tools. Data structures to be visualized are extracted automatically
from the program; “external viewers” specify how to render a visual representation of an
object of that type. This architecture allows multiple views of a single data structure to be
displayed simultaneously. New external viewers can be added, so the system can be used
for creating animations as well for debugging. More recent versions of jGRASP include a
“Data Structure Identifier” which automatically identifies the data structure being visual-
ized and suggests appropriate viewers [CIHJB07]. jGRASP uses FLGL, a graph drawing
library based on VCJ [MB98], to produce layouts of data structures. VCJ includes Walker’s
algorithm [Wal90] for drawing rooted trees, Kamada and Kawai’s spring embedder [KK89]
for undirected graphs, and clan-based graph drawing [MCS98] for directed graphs.

Program visualization can include visualization of more than just data structures.

Jeliot 3 Jeliot 3 [MMSBA04] is the fourth system in a series of program visual-
ization systems designed for beginning programmers. Jeliot displays both object structures
and control flow, providing a fine-grained animations of every step of the program’s execu-
tion, including the evaluation of expressions. One drawback is that Jeliot does not support
the full Java language.

JIVE JIVE [GJ05] is designed for the visualization of object-oriented programs
(specifically, Java) and shows objects not just as data structures but also as execution envi-
ronments. JIVE’s views show an object’s fields and its methods, structural links between
objects, and the history of the method calls made as the program runs. This approach re-
veals much more of how Java actually works than data structure visualization approaches,
and helps the viewer more thoroughly understand what is really going on when the program
is run. Streib and Soma [SS10] discuss experiences using JIVE and the contour diagrams
used by JIVE in introductory programming courses.

24.2.6 Software Visualization

The field of software visualization encompasses the visualization of all aspects of a software
system, including its structure, execution, and evolution over time. Graph drawing plays
an important role in software visualization as many aspects of a software system can be rep-

744 CHAPTER 24. GRAPH DRAWING IN EDUCATION

resented using graphs, including control-flow graphs, program call graphs, class diagrams,
and dependency graphs.

While there has been a great deal of work in the field of software visualization, many
of the software visualization tools designed for use in the classroom focus on algorithm
animation or program visualization. BlueJ, described below, is one exception.

Example Systems

BlueJ BlueJ [KQPR03] is an integrated development environment (IDE) devel-
oped for the teaching of Java programming. BlueJ emphasizes class structure and design
through UML class diagrams—a class diagram is displayed in the main window when a
project is opened, and it is through the diagram that students can edit, compile, and create
instances of classes.

24.3 Graph Drawing for Algorithm Animation

In algorithm animation (and in many program visualization applications), an abstract view
of the data structure is both sufficient and desired. In many cases, standard graph drawing
algorithms are suitable for this task. The most important criteria for drawings are follow-
ing familiar conventions (such as placing the root of a tree at the top or directing edges
downward) and readability, properties which are easily achieved by many standard algo-
rithms. Examples of suitable algorithms include Walker’s algorithm [Wal90] for rooted trees,
Sugiyama-style layout [STT81, GKNV93] for directed graphs, and force-directed methods
(e.g., Kamada-Kawai [KK89] and Tunkelang [Tun94]) for general graphs.

24.3.1 A Unified Approach to Drawing Data Structures

One drawback to using standard algorithms is that different algorithms must be chosen
for linked lists, trees, directed graphs, and general graphs. For applications such as visual
debuggers, which need to be able to visualize any data structure (including buggy or ill-
formed ones) and where the type of data structure is not known in advance, a unified
approach is needed.

Since data structure graphs are directed graphs and convention often places the root of
the structure at the top, a hierarchical layout is a natural layout style for drawings of data
structures. The classic Sugiyama algorithm [STT81] for producing a hierarchical layout of
a directed graph consists of five phases:

• Cycle removal: If the graph to be drawn is not acyclic, one or more edges must
be reversed in order to remove all directed cycles.

• Layer assignment: Nodes are assigned to layers, where all nodes on the same
layer will have the same y-coordinate in the final drawing. Dummy nodes are
inserted as needed so that edges only connect nodes on adjacent layers.

• Crossing reduction: The nodes in each layer are rearranged so as to reduce edge
crossings between layers, typically through repeated passes in which the ordering
of one layer is held fixed while the nodes in an adjacent layer are rearranged. One
strategy for rearranging nodes is to sort them according to the average position
of the adjacent nodes in the other layer (barycenter method).

• Coordinate assignment: The nodes in each layer are assigned x-coordinates, pre-
serving the left-to-right ordering of each layer.

24.3. GRAPH DRAWING FOR ALGORITHM ANIMATION 745

• Edge routing: Edges are commonly drawn as polylines, with bends introduced
by the placement of dummy nodes. However, other routing strategies (such as
splines [GKNV93] and edge bundling [PNK11]) have been introduced.

Constraints can then be added to respect specialized conventions for drawing particular
kinds of data structures. Waddle [Wad01] identifies three types of constraints as the most
important for data structures: “same-level” constraints defining nodes which must appear
on the same level, left-to-right ordering constraints between nodes or paths, and edge-
orientation constraints which preference edges for reversal during cycle removal. Adapting
the Sugiyama algorithm to accommodate these constraints will be discussed below.

Same-Level Constraints

Same-level constraints may result in edges connecting nodes in the same level. Tradi-
tional layer assignment prevents same-level edges, and furthermore same-level edges cannot
be handled by the traditional compute-barycenters-and-sort crossing reduction method.
(Sorting requires a fixed barycenter for the duration of the sort, but the barycenter of
a node with same-level neighbors will change as the neighbors are rearranged during the
sorting process.)

Waddle’s solution is a two-tier layer assignment and crossing reduction strategy. First,
same-level constraints are used to define equivalence classes of nodes that must appear on
the same level and layer assignment is performed using a single proxy node in place of each
equivalence class. “Virtual layers” are then created within each layer and layer assignment is
repeated for each equivalence class using the virtual layers. This results in nodes involved in
same-level constraints being assigned to different virtual layers. During crossing reduction,
a layer containing virtual layers is sorted by applying the usual crossing reduction procedure
to the virtual layers.

Finally, all nodes within a layer (regardless of virtual layer) are assigned the same y-
coordinate and same-level edges are routed around intervening nodes as needed. Böhrigner
and Paulisch [BN90] add an additional constraint that same-level edges must connect con-
secutive nodes in order to avoid the need for edge routing.

Node Ordering Constraints

Node ordering constraints specify the left-to-right ordering of pairs of nodes in the
same level. (After layer assignment, path ordering constraints can be converted to node
ordering constraints involving pairs of nodes and dummy nodes along the extent of the
paths.) Node ordering constraints are implemented in the crossing reduction phase.

A simple strategy for respecting node ordering constraints is to proceed with sorting
nodes by their barycenters, but to disallow any swaps which would violate the ordering
constraints.

Waddle [Wad01] uses a different strategy: the ordering constraints are checked after the
barycenters have been computed and, if a constraint is violated, a new barycenter is assigned
which places the node just to the right of the rightmost node which must precede it according
to the constraints. The nodes are then sorted according to their revised barycenters.

Both of these approaches are fast and result in an ordering which satisfies the constraints,
but may result in a large number of avoidable crossings.

A third strategy is the “penalty graph” approach [Fin01], which produces fewer crossings
at the expense of a more complex algorithm and a higher running time. In this approach,
the penalty graph contains the nodes of the layer to be reordered. A directed edge (u,v)
indicates that placing u to the left of v results in fewer crossings than placing v to left of u.
The weight of the edge (u,v) indicates by how much the number of crossings is improved.

746 CHAPTER 24. GRAPH DRAWING IN EDUCATION

An ordering constraint requiring u to be to the left of v can be imposed by assigning the
edge (u,v) an infinite weight. The ordering of the layer is determined by applying a heuristic
to find the minimum-weight set of arcs whose removal makes the penalty graph acyclic (the
minimum weighted feedback arc set problem), and then performing a topological sort of the
resulting acyclic penalty graph.

Forster [For04] gives a heuristic which combines the efficiency and simplicity of the
barycenter approach with the quality of the penalty graph method. First, barycenters
are computed for each node. Then, for each violated constraint, the nodes involved are re-
placed by a single proxy node and a new barycenter is computed for the proxy node based
on the combined neighbors of the original nodes. Once all of the constraints have been ac-
commodated, the nodes and proxy nodes are sorted by their barycenters. The final sorted
layer is obtained by replacing each proxy node with the ordered collection of individual
nodes that were grouped together.

Constraints must be considered in the correct order when creating proxy nodes or else it
can become impossible to satisfy all of the constraints. The constraints to be satisfied can be
represented by a constraint graph, which contains a directed edge (u,v) for each constraint
of the form “u must be placed to the left of v.” The next constraint to consider can be
found by performing a topological sort of the constraint graph; as each node is visited, its
incoming constraints are considered in reverse traversal order. The first violated constraint
encountered is the next one to collapse into a proxy node. The constraint graph must be
updated and the traversal restarted after each proxy node is created.

Forster’s heuristic is based on the assumption that if the barycenter ordering causes vertex
v to be placed to the left of u in violation of an ordering constraint, no vertices would be
placed between u and v in the optimal solution with the correct ordering (u left of v).
Though counterexamples can be easily found, the heuristic gives results that are nearly as
good as the penalty graph approach in much less time.

Edge-Orientation Constraints

Since layer assignment requires an acyclic graph, the cycle removal phase reverses the
direction of one or more edges in order to remove directed cycles. For some data structures,
such as doubly-linked lists or trees where each node has both “child” and “parent” pointers,
arbitrarily selecting edges for reversal may result in drawings that violate standard drawing
conventions or have inconsistent edge orientations.

Waddle [Wad01] addresses the problem by tagging edges which may be reversed during
cycle-breaking in the layer assignment phase. These edges will be reversed first, before
untagged edges.

24.3.2 Special-Purpose Layouts

Space is a powerful visual variable, and an animation designer may choose to devise a custom
layout algorithm which makes more effective use of space than a general-purpose algorithm.
For example, Brown and Sedgewick [BS85] discuss the design of an animation involving
binary search trees: noting that the simple recursive strategy of devoting half of the width
of the current region to each of the left and right subtrees quickly leads to crowding even
in trees of the size typically used in examples, they instead base the x coordinate of a node
on the node’s position in an in-order traversal of the tree. This ensures that each subtree
has a width proportional to the number of nodes in that subtree, and also helps reinforce
the organizational structure of the tree.

24.4. GRAPH DRAWING FOR PROGRAM VISUALIZATION 747

24.4 Graph Drawing for Program Visualization

Many program visualization applications focus on visualizing the objects in memory. These
objects, along with their references to other objects, naturally form directed graphs.

Standard drawing algorithms for directed graphs can be used to produce layouts for object
graphs. However, program visualization applications may have requirements that are not
well-served by standard drawing algorithms. The rest of this section addresses specialized
drawing techniques relevant for program visualization.

24.4.1 Complex Node Structures

Objects in programs are complex structures with multiple fields. Seeing this internal struc-
ture can be important for understanding the program’s behavior, particularly in debugging
applications.

The convention when drawing object structures is to show pointers or references as edges
which end at distinct points inside the node. This can pose problems for standard drawing
algorithms. For example, traditional crossing-reduction strategies used by Sugiyama-style
layout algorithms assume that edges connect node centers and thus crossings can only occur
between edges connecting different pairs of nodes. With complex nodes, edges may originate
and terminate at any point within a node, and crossings can occur even when two edges
are incident on the same node.

Waddle [Wad01] uses a Sugiyama-style approach for drawing object graphs, and accom-
modates complex nodes by using the coordinate of the edge’s actual endpoint within the
node instead of the node’s center when computing barycenters for crossing reduction. Prob-
lems can still arise if a node contains several edges whose endpoints are vertically aligned
because the adjacent nodes may end up with the same barycenter—and improper ordering
of those nodes can result in edge crossings. This is addressed by assigning a secondary sort
key (or “secondary barycenter”) based on the vertical ordering of the endpoints. Figure 24.2
shows two ways to assign secondary barycenters.

(a) (b)

Figure 24.2 Two strategies for assigning secondary barycenters. The value of the sec-
ondary barycenters are shown below the nodes (d > 0). (a) Drawing with edge-node
overlaps. (b) Drawing that avoids edge-node overlaps but involves additional edge routing.

748 CHAPTER 24. GRAPH DRAWING IN EDUCATION

24.4.2 Taking Structure into Account

Not all of the nodes in the object graph serve the same purpose — some are part of a data
structure, such as a binary tree, while others are data fields. With this in mind, Gestwicki
et al. [GJG04] identify two important aesthetic criteria for drawing object graphs:

• Leaf objects, which have exactly one incoming reference and no outgoing ref-
erences, should be grouped with the objects (called aggregators) that reference
them.

• Recursive structures should be clustered.

Figure 24.3 illustrates the benefits of this approach.

(a)

(b)

Figure 24.3 (a) Object graph for a simple expression parser drawn using a traditional
Sugiyama-style layout algorithm. (b) Drawing taking the class structure into account.
Example from [GJG04].

24.4. GRAPH DRAWING FOR PROGRAM VISUALIZATION 749

Gestwicki et al. [GJG04] use the program’s class diagram to identify the important struc-
tures. A leaf class is a class with no outgoing associations—all of its fields, including
inherited fields, are either primitive types or immutable wrappers around primitive types.
A recursive type is defined by a directed cycle along generalization and aggregation rela-
tionships in the class diagram—all of the classes along the cycle are part of the recursive
type. The simplest case is a single class containing a field of its own type.

The leaf classes and recursive types identified in the class diagram can then be used to
identify interesting structures in the object graph. A leaf cluster consists of an aggregator
node and its leaf-class children. (Note that an aggregator node may have other children in
the object graph that are not part of the leaf cluster.) A recursive cluster is a connected
subgraph containing objects belonging to a single recursive type and their leaf-class children,
and with at most one node with incoming edges from outside the cluster.

Once the leaf and recursive clusters have been identified, the graph is drawn in three
steps:

• Draw the leaf clusters.

• Replace the leaf clusters by single nodes, and draw the recursive clusters.

• Replace the recursive clusters by single nodes, and draw the remaining structure.

In order to avoid needlessly complicating the drawing with unnecessary detail, only nodes
whose type is included in the class diagram are drawn. A variety of algorithms can be used
in each stage, though the drawing algorithms chosen for the last two steps must be able
to take into account the area needed to draw the collapsed cluster nodes. Using different
layout techniques for each cluster, such as a radial layout for leaf clusters and a hierarchical
layout for recursive clusters, emphasizes the distinct nature of each type of cluster.

The advantage of deriving leaf and recursive clusters from structures in the class diagram
instead of basing them solely on the object graph is that the final drawing will reflect
the correct semantics of the program—it will not be dependent on the current state in the
program’s execution. Consider, for example, the definition of a leaf cluster—it distinguishes
between nodes in the object graph which currently have no outgoing edges and those which
will never have any outgoing edges.

24.4.3 Drawing Execution Environments

Many program visualization systems show objects only as containers for data, but
JIVE [GJ05] aims to give a more comprehensive view of the execution of object-oriented
programs by showing objects both as containers for data and as environments for execu-
tion. In the most detailed view, objects are shown with both fields and methods; each active
method is shown with its parameters and local variables. This structure may be multiple
levels deep as contained objects may themselves contain fields and active methods. Inher-
itance relationships are also shown so each object’s scope is clear. JIVE’s object graphs
present a challenge for graph drawing, as the graphs have large nodes containing complex
internal structures, nested structures, multiple types of nodes and edges, and edges which
connect to internal points within nodes.

The nested structure of objects-within-objects can be represented as a tree, and the object
can be drawn by creating an HV-inclusion drawing of the nesting tree. In this drawing style,
child nodes are drawn as rectangles within the rectangle devoted to the parent and are either
arranged in a row or stacked vertically. Garg et al. [GGJ06] give a dynamic programming
algorithm for computing minimum-area HV-inclusion drawings.

750 CHAPTER 24. GRAPH DRAWING IN EDUCATION

The rest of the graph structure in the object graph can be drawn using an algorithm for
layered drawings of weighted multigraphs [GJ05].

24.4.4 Drawing Sequence Diagrams

In addition to displaying object graphs, JIVE [GJ05] uses a sequence diagram to show the
program’s execution history. In a sequence diagram, each method activation is represented
by a vertical bar and all of the method activation bars belonging to a single object are
drawn along the same vertical line. Method calls and returns are represented by arrows
drawn from one activation bar to another.

Drawing sequence diagrams can be formulated as a graph drawing problem. A sequence
graph contains a node for each method activation bar and a directed edge for each method
call and return; the task is to find a left-to-right ordering for the object lines which minimizes
edge length, the number of edges crossing activation bars, and the number of method-call
edges directed to the left. Clustering constraints may also be applied to ensure that object
lines for related objects are close together.

Garg et al. [GGJ06] give a simulated annealing algorithm for finding a left-to-right order-
ing of object lines which respects the desired clustering and optimizes an objective function
incorporating the aesthetic criteria. Each object line is assigned a unique integer value;
lines belonging to the same cluster receive consecutive labels. Two object lines are selected
randomly and, with a probability related to the potential improvement in the objective
function and the temperature of the system, the integer labels of either the lines (if the ob-
ject lines belong to the same cluster) or the clusters (if the object lines belong to different
clusters) are swapped.

24.5 Graph Drawing for Software Visualization

24.5.1 Drawing UML Class Diagrams

One challenge in drawing UML class diagrams is handling the multiple types of edges—
generalizations and associations—because generalizations are hierarchical and associations
are not. In addition, Purchase et al. [PAC01] have identified several aesthetic criteria that
are important for UML class diagrams, including orthogonality, a consistent orientation for
the edges, and joined inheritance arcs instead of separate edges. The traditional aesthetic
criteria of few crossings and bends are also important.

Two-Pass Approach

Seemann [See97] prioritizes showing the different types of relationships over the other
aesthetic criteria. A two-pass strategy is used: first the inheritance hierarchies are drawn
using a variation of the Sugiyama algorithm, and then the association edges are drawn with
an orthogonal style.

In the first phase of the algorithm, a modified Sugiyama layout is applied to just the
generalization edges and their incident vertices. The initial layer assignment is adjusted
to reduce the span of association edges: if a node has an association with a node in a
lower layer, and moving the node to the lower layer does not violate the desired direction
of any generalization edges, the node is moved. In addition, the crossing reduction stage is
modified to attempt to place nodes with association edges between them next to each other
in the layer.

24.5. GRAPH DRAWING FOR SOFTWARE VISUALIZATION 751

Next, the remaining nodes are placed into levels. New nodes are added incrementally; in
each pass, nodes which have not yet been placed but which are adjacent to nodes which have
been placed are added. Let v be an already-placed node and S be the set of to-be-placed
nodes adjacent to v. If |S| ≤ 2 and the already-placed nodes to either side of v are not
adjacent to v, the nodes of S can be placed to the right and left of v in v’s layer. If there
is not enough room to place the nodes of S next to v—either because S is too large, or v is
already connected to the nodes next to it—the nodes of S are placed on a sublayer above
or below v’s layer. Once all of the nodes have been placed, the sublayers are used to further
reduce crossings and bends due to assocation edges connecting non-consecutive nodes on a
layer.

Finally, node sizes are computed, edges are routed, and x coordinates are calculated. Node
sizes are based on the information that must be displayed inside the node. Generalization
edges are drawn as straight lines, with connection ports evenly spaced along the bottom
or top of a node. Association edges are drawn with an orthogonal style; to route edges
connecting nodes in different layers, dummy nodes representing bends in the edge are added
on one side of the nodes being connected. These dummy nodes are constrained to stay
vertically aligned when x coordinates are assigned. Connection ports for association edges
are evenly spaced along the left or right side of a node.

Integrated Approach

Gutwenger et al. [GJK+03] give a more complex drawing algorithm which respects all
of the aesthetic criteria identified by Purchase et al. [PAC01] and additionally ensures that
all generalization edges within the same class hierarchy are oriented in the same direction,
generalization edges in different hierarchies do not cross, and hierarchies do not contain
each other. The algorithm follows the topology-shape-metrics approach [DETT99]: first
the graph is planarized, then the bends and angles are fixed, and finally edge lengths are
computed.

Because the convention that inheritance arcs are drawn joined can result in additional
crossings (Figure 24.4), the planarization phase begins with a preprocessing step which
adds a new vertex for each join point. Consistency of direction of edges within a hierarchy
is achieved by computing an upward planar representation for each class hierarchy, and
separation of different hierarchies is achieved by treating each hierarchy as a cluster and
applying a cluster planarization algorithm.

(a) (b)

Figure 24.4 (a) A planar embedding. (b) With the same embedding, joining the gener-
alization edges results in a crossing.

752 CHAPTER 24. GRAPH DRAWING IN EDUCATION

In the shape phase, vertices with degree greater than four are replaced by a “cage”
containing a cycle of degree-3 vertices prior to computing an orthogonal representation.

Finally, two compaction steps are used in the metrics phase. After the first compaction
step, the cages are replaced by the original high-degree vertices. Because the cages may
be larger than the vertices they contain, additional bends may be needed in order to route
edges within the cage. The second compaction step addresses this problem and removes
unnecesssary bends.

24.6 Sequences of Drawings

Both algorithm animation and program visualization often involve graphs whose structure
changes over the course of the visualization. In these cases, it is important to preserve the
user’s mental map [ELMS91]—that is, to maintain a degree of layout stability so the viewer
can focus on what is really going on in the algorithm or program without being distracted by
the side-effects of the layout algorithm. However, many standard layout algorithms assume
complete freedom over the placement of nodes.

There are many models for the user’s mental map. The most rigid is the “no change”
model, where existing portions of the drawing are preserved exactly (e.g. [MHT93, PT98]).
Böhringer and Paulisch [BN90] limit change to nodes within a certain graph distance of
those directly affected by an update. Other strategies seek to preserve absolute vertex
position, but allow some movement (e.g. [LMR98]). Misue et al. [MELS95] seek more
generally to preserve the shape of the drawing and give several models for the mental map
based on orthogonal ordering (the relative up/down/left/right relationships between nodes),
proximity (nodes near each other should stay near each other), and topology (specifically,
the dual graph). Specific metrics for measuring mental map preservation are given by Lyons
et al. [LMR98], Bridgeman and Tamassia [BT98], and Brandes and Wagner [BW98]. Time
can also be a factor, with the idea that it is more costly to the user’s mental map when
long-stable portions of the drawing are changed instead of relatively new sections [BW97].

Preserving the mental map typically leads to a tradeoff with drawing quality. Algorithms
which more rigidly preserve the original layout result in drawings which are less good ac-
cording to traditional aesthetic criteria such as drawing area, crossing minimization, and
bend minimization. Some dynamic graph drawing algorithms allow user control over the
relative weight given to each goal.

An overview of dynamic graph drawing and its application in several drawing paradigms
is given by Branke [Bra01]. This section will address some strategies for maintaining lay-
out stability within the drawing paradigms most useful for data structure and program
visualization.

24.6.1 Trees

A “no change” algorithm for binary trees is simple: recursively draw the left subtree in
the left half of the available space and the right subtree in the right half of the available
space, and center parent nodes above the drawings of their subtrees. GraphTree and Graph-
Heap [Owe86] use this approach. The drawback is an overly-wide drawing and wasted space
if the tree is not complete or nearly complete.

Moen [Moe90] gives an algorithm for general trees which makes better use of space and
does not change the drawings of subtrees not affected by updates. In addition, the algorithm
can accommodate nodes with any polygonal shape—an advantage for data structures with
complex nodes. The algorithm is based on computing a contour around each subtree,

24.6. SEQUENCES OF DRAWINGS 753

which is then used to pack subtrees together as closely as possible. Contours are computed
recursively. Making changes to the tree structure requires recomputing contours (only) for
the subtrees containing the affected nodes.

A similar approach is used by Workman et al. [WBP04], with the drawing convention
that trees are laid out horizontally (children next to parents instead of below) and parents
are placed on the same level as the first child.

24.6.2 Force-Directed Layout

In the force-directed model, layout stability is most commonly achieved by incorporating
additional forces into the model. Varying the strength of the stability forces provides a
convenient way to balance layout stability and drawing quality.

Absolute vertex positions can be maintained by adding forces that attract nodes to their
former positions [LMR98, BW97].

Relative distances between nodes can be maintained by adding springs whose natural
length is the desired distance [BW97]. Stiffening the springs makes the distances more
rigid. Stiffening entire subgraphs can help maintain the shape of the drawing.

Clustering can be maintained by adding attractive forces toward the center of the cluster
and repulsive forces between clusters [Tam98].

It is also possible to incorporate some hard constraints. For example, Tamassia [Tam98]
mentions truncating a node’s movement each time forces are applied in order to keep it
within the desired region. In addition, the shape of a subgraph can be preserved exactly
(up to translation and rotation) by treating it as a single rigid body when computing forces.

24.6.3 Sugiyama-Style Hierarchical Layout

Within the Sugiyama framework, several basic approaches can be used: incremental tech-
niques, in which the existing drawing is modified to accommodate the changes; constraint-
based techniques, in which a new layout is computed subject to constraints meant to pre-
serve the user’s mental map; and cost-based techniques, in which stability is encouraged by
assigning a cost to changes that affect the user’s mental map.

Incremental Techniques

North [Nor96] describes an incremental heuristic for maintaining both geometric (po-
sition) and topological (ordering) stability in Sugiyama-style layouts. It is assumed that
changes are made to the graph one at a time, so the algorithm only needs to accommodate
the addition or removal of a single node or edge.

A new node is assigned to the highest possible level consistent with maintaining a down-
ward orientation for edges, and existing nodes are shifted to lower levels as needed. New
level assignments are determined by depth-first search. Nodes are moved downward one
level at a time. At each step, the node is shifted into its correct horizontal position in the
level according to the median of its neighbors’ positions. Finally, a linear program is used
to assign horizontal coordinates to the nodes. An additional cost is introduced to penalize
moving nodes to new positions.

Constraint-Based Techniques

Böhringer and Paulisch [BN90] maintain layout stability by adding constraints to
maintain the level assignment of nodes and the ordering of nodes within a level. When a
node or edge is added or removed, constraints are weakened (more likely to be deactivated

754 CHAPTER 24. GRAPH DRAWING IN EDUCATION

in the case of contradictory constraints) or removed in the vicinity of the changes. They
define “vicinity” in terms of graph distance, but other notions (such as Euclidean distance
in the drawing) could be used.

Waddle’s algorithm for drawing data structures [Wad01] also handles layout stability by
adding constraints. He focuses on maintaining the relative ordering of subgraphs rather
than fixing the layer assignment, adding

• node-ordering constraints between root nodes in the top level,

• edge-ordering constraints between edges incident on root nodes, and

• edge-ordering constraints between downward edges.

New elements added to the graph are initially unconstrained; constraints which are rendered
invalid by the removal of elements are updated or deleted. Böhringer and Paulisch’s [BN90]
scheme of weakening constraints in the vicinity of changes could also be applied.

Section 24.3.1 outlines how the basic Sugiyama algorithm can be modified to accommo-
date these constraints.

Cost-Based Techniques

North and Woodhull [NW02] reduce the layer assignment and coordinate assignment
phases to integer linear programs. Layout stability can be incorporated by adding terms
to the objective functions to penalize movement to a different layer (layer assignment) or
a different position (coordinate assignment). An advantage of this approach is that the
tradeoff between drawing quality and layout stability can be managed by adjusting the cost
of movement.

In the crossing reduction phase, median sort and transposition sort are used to reduce
crossings. Only new or modified nodes and edges and edges incident on new or modified
nodes are considered to be movable during sorting.

24.6.4 Offline Dynamic Graph Drawing

In “canned” animations, both the graph and the sequence of changes being made to the
graph are known in advance. In this situation, an offline drawing algorithm—which takes
into account future graph states when producing a layout—can be used to increase layout
stability.

Force-Directed Layout

Erten et al. [EHK+04] combine the individual snapshot graphs into a single aggregrate
graph, adding edges between corresponding vertices in different snapshots. At a minimum,
between-snapshot edges should be added between corresponding vertices in consecutive
snapshots. Global layout stability can be increased by adding edges between more distant
snapshots.

The aggregate graph is drawn using the Kamada-Kawai algorithm [KK89], modified so
that there are no repulsive forces between vertices in different snapshots. The balance
between layout stability and readability can be controlled by adding weights to the between-
snapshot edges. To accommodate weights, the Kamada-Kawai forces are modified to use
the ideal distance between vertices (based on the weights of edges between them) instead
of the graph distance between them.

24.6. SEQUENCES OF DRAWINGS 755

Foresighted Layout

Diehl, Görg, and Kerren [DGK01] give a more general strategy which they call “fore-
sighted layout.” In the simplest case, the individual snapshot graphs are combined to create
a supergraph containing every node and every edge present in at least one individual graph.
A layout is then computed for the supergraph, and each individual graph is drawn using
the subset of the supergraph layout information.

A drawback to this approach is that the supergraph can be quite large if the graph
structure changes significantly over the course of the animation, leading to wasted space in
the individual layouts. To save space, a reduced version of the supergraph in which nodes
and edges with disjoint “live times” are grouped together is used instead. (Since elements
with disjoint live times do not occur in the same snapshot graph, they can occupy the same
position in different snapshots.)

As a final step, layout adjustment strategies can be used to improve the quality of each
snapshot layout at the expense of layout stability [DG02].

24.6.5 Smooth Animation

When viewing a series of drawings, animation can be used to help the viewer see and
understand what has changed from one drawing to the next.

A simple scheme is to move each vertex along a straight line between its starting and
ending positions. However, this can lead to very poor animations which confuse rather than
reveal the structure of the changes, particularly in cases where part or all of the drawing
has been rotated or flipped.

With this problem in mind, Friedrich and Eades [FE02] identify several properties of a
good animation:

• Uniform motion—groups of vertices with similar relative positions at the begin-
ning and the end should move together.

• Separation—vertices with different motion paths should not be too close together.

• Rigid motion—movements should be consistent with 2D projections of the motion
of 3D rigid objects, to exploit human perceptual strengths.

• No misleading layouts—unfortunate overlaps, such as a vertex lying on an edge,
can lead to incorrect conclusions about the graph’s structure.

• Short motion paths—vertices should travel as short a route as possible, to make
the motion easier to follow.

They give a four-step algorithm for animation designed to satisfy these properties:

• fade out vertices and edges not present in the end drawing,

• apply a rigid transformation (composed of translation, rotation, scaling, flipping,
and/or shearing) to the entire graph to move the elements of the graph as close
as possible to their positions in the end drawing,

• complete the movement of vertices to their final positions, and

• fade in vertices and edges not present in the beginning drawing.

The transformation is chosen to minimize the sum of the squared distances between the
transformed nodes and their positions in the end drawing. To reduce the effect of outliers,
a (weighted) centroid can be included in the node set, or several random subsets of nodes
can be chosen and the best transformation used. Once the transformation has been found,
smooth animation paths for the nodes can be computed by extracting the rotational part

756 CHAPTER 24. GRAPH DRAWING IN EDUCATION

of the transformation using polar matrix decomposition, then simultaneously interpolating
the angle of rotation and the entries of the non-rotational part of the transformation matrix.
Rotation around the center of the drawing can be achieved by incorporating a translation
to the origin and back into the transformation matrix before the decomposition is done.

Simple linear interpolation can be used to move the transformed nodes to their final
positions, but a more pleasing result can be obtained with a force-directed approach where
nodes repel each other but are attracted to their final positions instead of their neighbors.

If the drawings contain subgraphs which move in different ways, the animation can be
improved by applying the middle steps separately to each distinct subgraph. Friedrich
and Houle [FH02] suggest two strategies for clustering nodes into groups with common
transformations—k-means and eliminating edges in the Delaunay triangulation to merge
triangles with sufficiently similar transformations—and note that both strategies can pro-
duce good results though they also have limitations.

REFERENCES 757

References

[Bae81] R. M. Baecker. Sorting out sorting, 1981. 30 minute color sound film, Dy-
namic Graphics Project, University of Toronto, excerpted and reprinted
in SIGGRAPH Video Review 7, 1983.

[BBG+99] Ryan S. Baker, Michael Boilen, Michael T. Goodrich, Roberto Tamassia,
and B. Aaron Stibel. Testers and visualizers for teaching data structures.
In Proceedings of the 30th SIGCSE Technical Symposium on Computer
Science Education, SIGCSE ’99, pages 261–265, New York, NY, USA,
1999. ACM.

[BCE+] A. Bilgin, D. Caldwell, J. Ellson, E. Gansner, Y. Hu, and S. North.
GraphViz. http://www.graphviz.org/.

[BDG+00] J. Berry, N. Dean, M. K. Goldberg, G. E. Shannon, and S. Skiena. LINK:
a system for graph computation. Software: Practice and Experience,
30(11):1285–1302, 2000.

[Ber] J. Berry. LINK online manual. http://dimacs.rutgers.edu/ berryj/manual/.

[BGKT00] S. Bridgeman, M. T. Goodrich, S. G. Kobourov, and R. Tamassia. PI-
LOT: an interactive tool for learning and grading. In SIGCSE 2000,
pages 139–143, March 2000.

[BGT99] Stina Bridgeman, Ashim Garg, and Roberto Tamassia. A graph drawing
and translation service on the World Wide Web. Internat. J. Comput.
Geom. Appl., 9(4–5):419–446, 1999.

[BN90] K. Bohringer and F. Newbery Paulisch. Using constraints to achieve
stability in automatic graph layout algorithms. In Proc. ACM Conf. on
Human Factors in Computing Systems, pages 43–51, 1990.

[Bra01] Jürgen Branke. Dynamic graph drawing. In Michael Kaufmann and
Dorothea Wagner, editors, Drawing Graphs, volume 2025 of Lecture Notes
in Computer Science, pages 228–246. Springer Berlin / Heidelberg, 2001.

[BS84] Marc H. Brown and Robert Sedgewick. A system for algorithm animation.
SIGGRAPH Comput. Graph., 18:177–186, January 1984.

[BS85] M. H. Brown and R. Sedgewick. Techniques for algorithm animation.
IEEE Softw., 2(1):28–39, January 1985.

[BT98] Stina Bridgeman and Roberto Tamassia. Difference metrics for interac-
tive orthogonal graph drawing algorithms. In Journal of Graph Algo-
rithms and Applications, pages 57–71. Springer-Verlag, 1998.

[BW97] Ulrik Brandes and Dorothea Wagner. A bayesian paradigm for dynamic
graph layout. In G. Di Battista, editor, Graph Drawing (Proc. GD ’97),
volume 1353 of Lecture Notes Comput. Sci., pages 236–247. Springer-
Verlag, 1997.

[BW98] Ulrik Brandes and Dorothea Wagner. Dynamic grid embedding with few
bends and changes. In Proceedings of the 9th International Symposium on
Algorithms and Computation, ISAAC ’98, pages 89–98. Springer-Verlag,
1998.

[CIHJB07] James H. Cross II, T. Dean Hendrix, Jhilmil Jain, and Larry A. Barowski.
Dynamic object viewers for data structures. In Proceedings of the 38th
SIGCSE Technical Symposium on Computer Science Education, SIGCSE
’07, pages 4–8, New York, NY, USA, 2007. ACM.

758 CHAPTER 24. GRAPH DRAWING IN EDUCATION

[DETT99] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing.
Prentice Hall, Upper Saddle River, NJ, 1999.

[DG02] Stephan Diehl and Carsten Görg. Graphs, they are changing. In Revised
Papers from the 10th International Symposium on Graph Drawing, GD
’02, pages 23–30. Springer-Verlag, 2002.

[DGK01] Stephan Diehl, Carsten Görg, and Andreas Kerren. Preserving the mental
map using foresighted layout. In In Proceedings of Joint Eurographics
IEEE TCVG Symposium on Visualization VisSym’01, pages 175–184.
Springer Verlag, 2001.

[EHK+04] Cesim Erten, Philip Harding, Stephen Kobourov, Kevin Wampler, and
Gary Yee. GraphAEL: Graph animations with evolving layouts. In
Giuseppe Liotta, editor, Graph Drawing, volume 2912 of Lecture Notes
in Computer Science, pages 98–110. Springer Berlin / Heidelberg, 2004.

[ELMS91] P. Eades, W. Lai, K. Misue, and K. Sugiyama. Preserving the mental
map of a diagram. In Proceedings of Compugraphics 91, pages 24–33,
1991.

[EPD92] Marc Eisenstadt, Blaine A. Price, and John Domingue. Software visual-
ization as a pedagogical tool. Instructional Science, 21:335–364, 1992.

[FE02] Carsten Friedrich and Peter Eades. Graph drawing in motion. Journal
of Graph Algorithms and Applications, 6:2002, 2002.

[FH02] Carsten Friedrich and Michael Houle. Graph drawing in motion II. In
Petra Mutzel, Michael Jünger, and Sebastian Leipert, editors, Graph
Drawing, volume 2265 of Lecture Notes in Computer Science, pages 122–
125. Springer Berlin / Heidelberg, 2002.

[Fin01] I. Finocchi. Layered drawings of graphs with crossing constraints. In
COCOON ’01, pages 357–367, 2001.

[For04] M. Forster. A fast and simple heuristic for constrained two-level crossing
reduction. In GD ’04, pages 206–216, 2004.

[GGJ06] Ashim Garg, Paul V. Gestwicki, and Bharat Jayaraman. Interactive pro-
gram visualization and graph drawing. In M. Sethumadhavan, editor,
Discrete Mathematics and Its Applications, pages 36–52. Narosa Pub-
lishing House Pvt. Ltd., 2006.

[GJ05] Paul Gestwicki and Bharat Jayaraman. Methodology and architecture of
JIVE. In Proceedings of the 2005 ACM Symposium on Software Visual-
ization, SoftVis ’05, pages 95–104, New York, NY, USA, 2005. ACM.

[GJG04] P. V. Gestwicki, B. Jayaraman, and A. Garg. From class diagrams to
object diagrams: A systematic approach. Technical Report 2004-21, Uni-
versity at Buffalo, State University of New York, December 2004.

[GJK+03] Carsten Gutwenger, Michael Jünger, Karsten Klein, Joachim Kupke, Se-
bastian Leipert, and Petra Mutzel. A new approach for visualizing UML
class diagrams. In Proceedings of the 2003 ACM Symposium on Software
Visualization, SoftVis ’03, pages 179–188, New York, NY, USA, 2003.
ACM.

[GKNV93] E. R. Gansner, E. Koutsofios, S. C. North, and K. P. Vo. A technique for
drawing directed graphs. IEEE Trans. Softw. Eng., 19:214–230, 1993.

REFERENCES 759

[Ham04] J. Hamer. Visualising Java data structures as graphs. In CRPIT ’30:
Proceedings of the 6th Conference on Australian Computing Education,
pages 125–129. Australian Computer Society, Inc., 2004.

[HCIB04] T. Dean Hendrix, James H. Cross II, and Larry A. Barowski. An exten-
sible framework for providing dynamic data structure visualizations in
a lightweight IDE. In Proceedings of the 35th SIGCSE Technical Sym-
posium on Computer Science Education, pages 387–391, New York, NY,
USA, 2004. ACM.

[HWF90] Robert R. Henry, Kenneth M. Whaley, and Bruce Forstall. The Uni-
versity of Washington illustrating compiler. In Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and Implemen-
tation, pages 223–233, New York, NY, USA, 1990. ACM.

[Kam89] T. Kamada. Visualizing Abstract Objects and Relations. World Scientific
Series in Computer Science, 1989.

[KK89] T. Kamada and S. Kawai. An algorithm for drawing general undirected
graphs. Inform. Process. Lett., 31:7–15, 1989.

[KKMS04a] V. Karavirta, A. Korhonen, L. Malmi, and K. Stalnacke. MatrixPro—a
tool for demonstrating data structures and algorithms ex tempore. In
Proc. IEEE Int. Conf. on Advanced Learning Technologies, pages 892–
893, 2004.

[KKMS04b] Ville Karavirta, Ari Korhonen, Lauri Malmi, and Kimmo Stlnacke. Ma-
trixPro – a tool for on-the-fly demonstration of data structures and al-
gorithms. In Proceedings of the Third Program Visualization Workshop,
pages 26–33. Department of Computer Science, University of Warwick,
UK, July 2004.

[KM02] Ari Korhonen and Lauri Malmi. Matrix: concept animation and algo-
rithm simulation system. In Proceedings of the Working Conference on
Advanced Visual Interfaces, AVI, pages 109–114, New York, NY, USA,
2002. ACM.

[KMBW02] E. Kruja, J. Marks, A. Blair, and R. C. Waters. A short note on the
history of graph drawing. In GD ’01, pages 272–286. Springer-Verlag,
2002.

[KOD+96] M. S. Krishnamoorthy, F. Oxaal, U. Dogrusoz, D. Pape, A. Robayo,
R. Koyanagi, Y. Hsu, D. Hollinger, and A. Hashimi. GraphPack: Design
and features. In P. Eades and K. Zhang, editors, Software visualization,
pages 83–99. World Scientific, 1996.

[KQPR03] Michael Kolling, Bruce Quig, Andrew Patterson, and John Rosenberg.
The BlueJ system and its pedagogy. Journal of Computer Science
Education, Special issue on Learning and Teaching Object Technology,
13(4):249–268, December 2003.

[LMR98] Kelly A. Lyons, Henk Meijer, and David Rappaport. Algorithms for
cluster busting in anchored graph drawing. J. Graph Algorithms Appl.,
2(1):1–24, 1998.

[LNR03] J. Lucas, T. L. Naps, and G. Rößling. VisualGraph—a graph class de-
signed for both undergraduate students and educators. In SIGCSE 2003,
pages 167–171, February 2003.

760 CHAPTER 24. GRAPH DRAWING IN EDUCATION

[MB98] Carolyn McCreary and Larry Barowski. VGJ: Visualizing graphs through
java. In Sue Whitesides, editor, Graph Drawing, volume 1547 of Lecture
Notes in Computer Science, pages 454–455. Springer, 1998.

[MCS98] Carolyn McCreary, Richard Chapman, and Fwu-Shan Shieh. Using graph
parsing for automatic graph drawing. IEEE Transactions on Systems,
Man, and Cybernetics, Part A, pages 545–561, 1998.

[MELS95] K. Misue, Peter Eades, W. Lai, and K. Sugiyama. Layout adjustment
and the mental map. J. Visual Lang. Comput., 6(2):183–210, 1995.

[MHT93] K. Miriyala, S. W. Hornick, and R. Tamassia. An incremental approach
to aesthetic graph layout. In Proc. Internat. Workshop on Computer-
Aided Software Engineering, 1993.

[MKK+04] Lauri Malmi, Ville Karavirta, Ari Korhonen, Jussi Nikander, Otto Seppl,
and Panu Silvasti. Visual algorithm simulation exercise system with au-
tomatic assessment: TRAKLA2. In Informatics in Education, page 048,
2004.

[MMSBA04] Andrés Moreno, Niko Myller, Erkki Sutinen, and Mordechai Ben-Ari. Vi-
sualizing programs with Jeliot 3. In Proceedings of the Working Confer-
ence on Advanced Visual Interfaces, AVI ’04, pages 373–376, New York,
NY, USA, 2004. ACM.

[Moe90] S. Moen. Drawing dynamic trees. IEEE Softw., 7:21–28, 1990.

[Mur84] J. E. Murdoch. Album of Science: Antiquity and the Middle Ages. Charles
Scribner’s Sons, New York, 1984.

[Nap98] Thomas L. Naps. A Java visualiser class: incorporating algorithm vi-
sualisations into students’ programs. In Proceedings of the 6th Annual
Conference on the Teaching of Computing and the 3rd Annual Conference
on Integrating Technology into Computer Science Education: Changing
the Delivery of Computer Science Education, ITiCSE ’98, pages 181–184,
New York, NY, USA, 1998. ACM.

[NEN00] T. L. Naps, J. R. Eagan, and L. L. Norton. JHAVÉ: An environment
to actively engage students in web-based algorithm visualizations. In
SIGCSE ’00: Proceedings of the 31st SIGCSE Technical Symposium on
Computer Science Education, page 109–113, Austin, Texas, 2000. ACM
Press.

[Nor96] S. North. Incremental layout in DynaDAG. In F. J. Brandenburg, editor,
Graph Drawing (Proc. GD ’95), volume 1027 of Lecture Notes Comput.
Sci., pages 409–418. Springer-Verlag, 1996.

[NW02] Stephen C. North and Gordon Woodhull. Online hierarchical graph draw-
ing. In Revised Papers from the 9th International Symposium on Graph
Drawing, GD ’01, pages 232–246. Springer-Verlag, 2002.

[Owe86] G. S. Owen. Teaching of tree data structures using microcomputer graph-
ics. In SIGCSE ’86: Proceedings of the 17th SIGCSE Technical Sympo-
sium on Computer Science Education, pages 67–72. ACM Press, 1986.

[PAC01] Helen C. Purchase, Jo-Anne Allder, and David A. Carrington. User
preference of graph layout aesthetics: A UML study. In Proceedings of
the 8th International Symposium on Graph Drawing, GD ’00, pages 5–18.
Springer-Verlag, 2001.

REFERENCES 761

[PNK11] Sergey Pupyrev, Lev Nachmanson, and Michael Kaufmann. Improv-
ing layered graph layouts with edge bundling. In Proceedings of the
18th International Conference on Graph Drawing, GD’10, pages 329–340.
Springer-Verlag, 2011.

[PR98] W. C. Pierson and S. H. Rodger. Web-based animation of data structures
using JAWAA. In SIGCSE ’98, pages 267–271, 1998.

[PT98] A. Papakostas and I. G. Tollis. Interactive orthogonal graph drawing.
IEEE Trans. Comput., C-47(11):1297–1309, 1998.

[RDM+87] L. A. Rowe, M. Davis, E. Messinger, C. Meyer, C. Spirakis, and A. Tuan.
A browser for directed graphs. Softw. – Pract. Exp., 17(1):61–76, 1987.

[RF01] G. Rößling and B. Freisleben. Program visualization using AnimalScript.
In Proceedings of the First Program Visualization Workshop, PVW’00,
page 41–52, Porvoo, Finland, 2001. University of Joensuu Press, Univer-
sity of Joensuu Press.

[RMS11] Guido Rößling, Mihail Mihaylov, and Jerome Saltmarsh. AnimalSense:
combining automated exercise evaluations with algorithm animations.
In Proceedings of the 16th Annual Joint Conference on Innovation and
Technology in Computer Science Education, ITiCSE ’11, page 298–302,
New York, NY, USA, 2011. ACM.

[See97] Jochen Seemann. Extending the sugiyama algorithm for drawing UML
class diagrams: Towards automatic layout of object-oriented software
diagrams. In G. Di Battista, editor, Graph Drawing (Proc. GD ’97),
volume 1353 of Lecture Notes Comput. Sci., pages 415–424. Springer-
Verlag, 1997.

[SHY96] C. A. Shaffer, L. S. Heath, and J. Yang. Using the Swan data structure
visualization system for computer science eduction. In SIGCSE ’96, pages
140–144, February 1996.

[SK93] John T. Stasko and Eileen Kraemer. A methodology for building
application-specific visualizations of parallel programs. J. Parallel Dis-
trib. Comput., 18:258–264, June 1993.

[SS10] James T. Streib and Takako Soma. Using contour diagrams and JIVE to
illustrate object-oriented semantics in the Java programming language.
In Proceedings of the 41st ACM Technical Symposium on Computer Sci-
ence Education, SIGCSE ’10, pages 510–514, New York, NY, USA, 2010.
ACM.

[Sta90a] J. T. Stasko. Simplifying algorithm animation with tango. In Proc. IEEE
Workshop on Visual Languages, pages 1–6, 1990.

[Sta90b] J. T. Stasko. Tango: a framework and system for algorithm animation.
IEEE Computer, 23(9):27–39, 1990.

[Sta97] John T. Stasko. Using student-built algorithm animations as learning
aids. In Proceedings of the 28th SIGCSE Technical Symposium on Com-
puter Science Education, SIGCSE ’97, pages 25–29, New York, NY, USA,
1997. ACM.

[STT81] K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understanding
of hierarchical systems. IEEE Trans. Syst. Man Cybern., SMC-11(2):109–
125, 1981.

762 CHAPTER 24. GRAPH DRAWING IN EDUCATION

[Tam98] R. Tamassia. Constraints in graph drawing algorithms. Constraints,
3(1):89–122, 1998.

[Tun94] D. Tunkelang. A practical approach to drawing undirected graphs. Tech-
nical Report CMU-CS-94-161, School Comput. Sci., Carnegie Mellon Uni-
versity, June 1994.

[Wad01] V. E. Waddle. Graph layout for displaying data structures. In GD ’00:
Proceedings of the 8th International Symposium on Graph Drawing, pages
241–252. Springer-Verlag, 2001.

[Wal90] J. Q. Walker II. A node-positioning algorithm for general trees. Softw. –
Pract. Exp., 20(7):685–705, 1990.

[WBP04] David Workman, Margaret Bernard, and Steven Pothoven. An incremen-
tal editor for dynamic hierarchical drawing of trees. In Marian Bubak,
Geert Dick van Albada, Peter M. A. Sloot, and Jack J. Dongarra, edi-
tors, Computational Science—ICCS 2004, volume 3038 of Lecture Notes
in Computer Science, pages 986–995. Springer-Verlag, 2004.

25
Computer Networks

Giuseppe Di Battista
Roma Tre University

Massimo Rimondini
Roma Tre University

25.1 Introduction . 763
Benefits of Visualizing Computer Networks

25.2 The Very Basics of Computer Networking 764
A Network Model • Interconnection Technologies • Routing
and Routing Protocols • The Internet Structure • The User’s
Point of View

25.3 A Taxonomy of Visualization Methods and Tools 766
Visualized Data • Graph Drawing Conventions and
Methodologies • Visualization Tools

25.4 Data Sources . 775
25.5 Visualization of the Internet . 779
25.6 Visualization of an Internet Service Provider Network 785
25.7 Visualization of Local Networks . 789
25.8 Visualization of Basic Internet Services and Specific

Network Contexts . 792
References . 795

25.1 Introduction

Communication systems are nowadays fundamental to support various applications, and this
is especially true for computer networks as their utmost expression. Some examples include
information interchange for critical operations, such as bank transfers or military data, as
well as commonly used services such as the web, email, or streaming of multimedia contents.
It is therefore essential to be able to ensure an uninterrupted and efficient operation of a
computer network.

However, the task of maintaining a computer network may get considerably harder as
the complexity of the network increases, either in terms of the topology or in terms of the
enabled services. Therefore, as it often happens in other contexts, a significant aid in the
maintenance comes from the ability to obtain a visual representation of the network.

25.1.1 Benefits of Visualizing Computer Networks

The availability of a methodology and a tool to visualize computer networks brings benefits
both to network administrators and to researchers that work on studying network related
phenomena.

Network administrators can exploit visualization tools to accurately design a network
before deploying it. This includes, for example, defining the topology as well as tuning link
bandwidths. At a higher level of abstraction, a visual representation of the interconnections

763

764 CHAPTER 25. COMPUTER NETWORKS

between Internet Service Providers (ISPs) can help to better plan future commercial rela-
tionships among them. On the other hand, once the network is operational, a visualization
system can significantly help in maintaining it, by providing graphical monitoring facilities
that also simplify troubleshooting potential problems.

The research community can also benefit from the existence of a methodology to visualize
networks. For example, it is possible to validate a theoretical model by spotting anomalies
in the generated layout at a glance. This is particularly useful for the case of techniques
to infer network topologies based on a limited amount of information and for the case of
random network generators. Also, a graphical representation of a network can support
reconstructing the root cause and the impact of a particular routing event.

25.2 The Very Basics of Computer Networking

This section briefly recalls some basic concepts about the operation of computer networks.

25.2.1 A Network Model

A computer network essentially consists of an interconnection of devices (computers, print-
ers, routers, etc.) that exchange information with each other. In order to do this, a device
encodes data in a format that other devices can understand, which is called protocol. To
support a flexible configuration and ensure a good scalability, several encodings are usu-
ally stacked upon each other, so that data are first encoded (encapsulated) using a certain
protocol, then the encoded data are encapsulated using another protocol, the resulting infor-
mation is again encoded using a different protocol, and so on. After the last encapsulation
step, information is actually sent to the destination, which performs the steps in reverse
order: interprets the protocol used in received information and decapsulates the data, then
again the decoded information is analyzed to interpret a different protocol and its payload
is decapsulated, etc. After the last decapsulation step, the information that was originally
forwarded by the sender is available for processing by the receiver.

This mechanism allows to consider and configure separately the different features of a
network. For example, a high level protocol such as HTTP (HyperText Transfer Protocol),
that is typically used to transfer web pages, can be configured and used independently of
the actual protocol spoken on the transmission medium (copper cable, fiber, wireless link,
etc.).

This kind of operation is defined in the ISO/IEC Open Systems Interconnection (OSI)
model [fS, Com, ISO]. That is, computer networks usually operate according to a lay-
ered model, where each layer corresponds to an encapsulation/decapsulation step and is
associated with a specific protocol used to communicate with the corresponding layer at
the destination. According to the ISO OSI model, network protocols are organized as a
stack consisting of 7 layers. Therefore, the setup of a network link consists at least of the
specification of the stack of protocols to be used.

The following sections briefly describe some of the most commonly adopted network
protocols.

25.2.2 Interconnection Technologies

Network links can be implemented using different physical media, usually wire, fiber, or air.
The usage of a physical medium rather than another implies a choice for the implementa-
tion of the physical layer, the lowest layer of the ISO OSI protocol stack. At this layer,

25.2. THE VERY BASICS OF COMPUTER NETWORKING 765

the implementation contains the specification of parameters such as electrical signals or
frequencies, that are used to encode the information transmitted on the physical medium.
Examples of protocols at the physical layer are SDH and DWDM [SS96, IMN84].

Often, the choice of a physical medium is associated with the choice of a data link layer
protocol that exploits the medium in such a way as to provide a reasonably fast and re-
liable communication channel. For example, wired communication can happen by using
Ethernet on a local network or SDLC on a wide area network [Sta07, Sys09b]. On the
other hand, wireless communication can take place using either the IEEE802.11 proto-
col or the IEEE802.16/WiMAX protocol, the choice depending on parameters such as
the distance between antennas, the transmitting power, or the desired communication
speed [IEE09, wim09]. Communication over optical fiber often takes place on Gigabit
Ethernet links [Nor02].

25.2.3 Routing and Routing Protocols

Once the protocols for the physical and data link layers have been chosen, there must be a
mechanism to allow the delivery of a piece of information from any source in the network
to any destination. This is accomplished by network layer protocols such as the well-known
Internet Protocol [Pos81b] (IP), which are usually run by devices known as routers.

Actually, network layer protocols support the reachability of remote destinations based
on the knowledge of a previously built routing table, a data structure stored on the routers
that specifies the physical port to be used to forward information to a given destination.
Since network topologies frequently change, there must also be a way to update the routing
tables without human intervention. This is achieved by running routing protocols that are
designed for this purpose, such as OSPF, IS-IS, and BGP [Moy94, Ora90, YTS06]. While
these protocols often exploit layers of the ISO OSI stack that are higher than the network
layer, their function is still to support the operation of the network layer.

25.2.4 The Internet Structure

The structure of the Internet, both from the point of view of the topology and from the point
of view of the configuration, is rather complex. The Internet embraces lots of different, yet
interacting, physical media and data link protocols. The only commonly adopted standard
is on the network layer protocol which, for almost all network nodes, can be assumed to
be IP [Pos81b]. Actually, it is very common to hear about the TCP/IP stack: this is just
a shortcut to indicate that the routing layer is implemented by IP and the transport layer
(which is on top of the routing layer) is implemented by TCP.

Further complexity is brought about by the fact that different ISPs may be interested
in adopting their own routing mechanisms, protocols, and policies, and they may establish
different economical agreements with neighboring ISPs. This poses a big challenge because
different parties, using different protocols, and adopting different configuration policies,
must be enabled to communicate with each other.

For this reason, Internet devices are usually grouped into Autonomous Systems (ASes),
such that within each AS a single routing protocol and consistent routing configurations
are adopted. Routing between different ASes (interdomain routing) is made possible by
the Border Gateway Protocol (BGP) [YTS06]. BGP has been conceived to support routing
optimization as well as the specification of political or economical constraints on the routing.
Because of its features, BGP is the ideal solution to implement, for example, commercial
relationships.

Two BGP-speaking routers that are configured to exchange BGP routing information are

766 CHAPTER 25. COMPUTER NETWORKS

said to have a peering. Routing information exchanged over a peering includes at least data
about the reachability of blocks of contiguous network addresses called network prefixes.
Because of the relevance to the operation of Internet routing, a common requirement for
both operators and researchers is to get a visual representation of the Internet topology at
the level of peerings between Autonomous Systems.

25.2.5 The User’s Point of View

The configuration of a network, even of a local area network, consists of a plenty of settings.
However, depending on the type of usage and on the skill level of a network user, only a
few settings may be relevant and, therefore, interesting candidates for visualization.

An ordinary user is typically only interested in getting plug-and-play connectivity, if pos-
sible without having to explicitly configure any parameter. In this case, getting a graphical
representation of the network would be helpful for the user, because he could get an auto-
matically generated representation of the topology without having to fiddle with any devices
or advanced settings. Some modern operating systems provide this feature out of the box,
usually as a support to automatic network troubleshooting procedures [Mic09].

Network administrators and operators have full knowledge of network settings and may
also be responsible for its design. In this case, the purpose of a graphical representa-
tion would be to make maintenance easier, and for this reason the visualization should be
enriched with additional information such as link usage and capacities, commercial relation-
ships, routing changes, etc. Sometimes the visualization system may allow the administrator
to interact with the network, so that he can quickly reconfigure some settings without using
uncomfortable router interfaces.

Researchers have strong interests in studying the behavior of a network in order to build
models that capture well network events and design algorithms and protocols that support a
more efficient and robust operation. For this purpose, researchers may resort to examining
different kinds of data, depending on the kind of analysis to be performed. Therefore, a
visual representation that is augmented with additional information from those data can
aid in pointing out interesting patterns and validating existing models against real world
data.

25.3 A Taxonomy of Visualization Methods and Tools

It has been shown in previous sections that several aspects in the operation of a network
can be better investigated by taking advantage of a visualization system. For this reason,
a variety of methodologies and tools have been made available, each designed to address a
certain kind of analysis.

The literature about the visualization of computer networks includes some interesting sur-
vey contributions. A paper by Withall et al. [WPP07] first considers some basic guidelines
that network visualization systems should obey, then it distinguishes between contributions
where the network topology is laid out using real geographic coordinates for network nodes
and contributions where this constraint is relaxed. The same paper also surveys techniques
focused on the visualization of data from a single point in the network, typically in the
form of a plot. In 2002, Dodge et al. published a comprehensive book [KD01] that classifies
visualization systems according to the type of information to be displayed. In particular,
the book introduces visualization systems putting them in a historical perspective. Next, it
spans over techniques for visualizing network topologies augmented with traffic volumes, the
relationships among web pages, the structure of social networks, and some cues for futurist

25.3. A TAXONOMY OF VISUALIZATION METHODS AND TOOLS 767

visualizations of the Internet. A report by Vandenberghe et al. [VT06] briefly reviews some
layout algorithms, then shows their effectiveness on a reference network topology. The same
paper also provides a quick comparative evaluation of the described algorithms.

In this section we review methodologies and tools for the visualization of computer net-
works by proposing a classification according to some fundamental coordinates: the set of
data being visualized, the drawing paradigm that is used to display information, and the
features of the tools that implement visualization methodologies. Consider that some vi-
sualization methodologies may be conceived to work on nearly arbitrary data sets and to
support different drawing paradigms. Such methodologies do not fit this classification and
in the following will be gathered in groups called “Other.” The following conventions are
adopted in the classification:

• If a contribution adopts multiple approaches or, in general, falls into multiple
classes, its citation is repeated for all the applicable values of the affected clas-
sification coordinate. For example, [BEW95] supports visualization at different
scales and therefore may appear multiple times in the same table.

• If the methodology adopted in a paper or in a tool applies to arbitrary values of
some classification coordinate, the contribution is considered in the Arbitrary or
Customizable class.

• Contributions which do not fit any of the proposed values for a classification
coordinate appear in the Other class. There are also contributions which we could
not classify along some coordinate, for example because the approach is scarcely
documented, and they appear in the Unknown class. Moreover, contributions
that cannot be perfectly fit into a value of a classification coordinate because
of some specificities (e.g., visualization at the level of granularity of countries
instead of Autonomous Systems, or visualization of the nodes of a circuit-switched
network instead of the routers of a packet-switched one) are accommodated in
the best reasonably fitting class.

• All the contributions that are relevant within a certain section appear in every
table in that section. For example, Tables 25.1 through 25.7 provide the reader
with a general classification of the literature and therefore each of them considers
all the contributions about visualization. Instead, each of the Tables from 25.10
to 25.13 considers all the contributions about Internet-scale visualization.

Some of the classification coordinates that we introduce in the following could be further
refined. For example, the scale could consider the span of time considered in visualizations
of historical data, or the number of packets that are transmitted during an observation
period. In order to make the classification simpler and better understandable, we have
picked values for the classification coordinates that offer a compromise between precision of
the classification and ease of lookup.

25.3.1 Visualized Data

Depending on the specific goal, a network visualization system may visualize different kinds
of data. We classify these data according to the following coordinates.

Scale : The visualization may span a local network, the entire network of an Internet
Service Provider, or even the whole Internet. Table 25.1 classifies the contribu-
tions in the literature with respect to the scale of the visualization. As shown in
the table, a significant number of contributions consider the whole Internet, and
there are some that support visualization at different scales.

768 CHAPTER 25. COMPUTER NETWORKS

S
c
a
le

Internet [BBGW04], [BBP07], [BEW95], [HPF07], [PH99], [PN99], [Jac99],
[CAI09], [Dit09], [CBB00], [CDD+00], [CDM+06], [CDM+05], [CE95],
[CEH96], [CRC+08], [GGW07], [GKN04], [GT00], [kc97], [GMO+03],
[LMZ04], [LMZ06], [MB95], [OCP+07], [OCLZ08], [Piz07], [YSS05],
[Sii01], [RIS09], [Oli09], [OC07], [oANTtE08], [AS06], [Gro00],
[RTU09], [Che07], [Pro02], [LUM], [ea05], [Des09], [Map08], [DLV97],
[Cor09], [Bou02], [Tel09], [Lim09], [Vis09], [Aug03], [WS04], [YGM05],
[YMMW09]

ISP [AGL+08], [AGN99], [BCD+04], [BEW95], [Mei00], [kcH97],
[EHH+00], [FNMT94], [GMN03], [KMG88], [KNK99], [KNTK99],
[Kvi03], [MFKN07], [MHkcF96], [MKN+07], [Piz07], [SMW04], [Sal00],
[3Co09], [oANTtE08], [Ent09], [RTU09], [IBM09], [Dar09], [Net09c],
[WAN08], [EHH+05], [Com09b], [CP], [Hew09], [Tec09], [Sof09b],
[UNI09], [Jon09]

Local [AGL+08], [EHH+00], [EW93], [KGS07], [PIP05], [Mic09], [WCH+03],
[3Co09], [Ent09], [TvAG+06], [Net09b], [Hir07], [Net09c], [Vol09],
[EHH+05], [NoCSNCTUT09], [Wyv09], [net09a], [Tec09], [Sof09a],
[Tec05], [Jon09], [Ips09], [WH09], [ZW92]

Arbitrary [AHDBV05b], [AHDBV05a], [BMB00], [HNkc97], [HJWkc98], [GH02],
[McR99], [Mun97], [Hyu05], [Bro01], [AHDBV], [Cor]

Table 25.1 A classification of the state of the art in terms of visualization scale.

Granularity : Determines the level of detail at which information is made available.
A network visualization system may display single routers and hosts, the Points
of Presence (POPs, introduced in Section 25.6), or the OSPF areas in the network
of an Internet Service Provider, or the Autonomous Systems that, all together,
constitute the Internet. It is interesting to correlate the granularity of the vi-
sualization with the scale. From Table 25.2 it is possible to notice that, even
if the most natural granularities are perhaps Autonomous System for the Inter-
net, POP for ISPs, and Router/Host for Local networks, there are several works
that explore different choices. For example the router-level granularity, typically
adopted for local networks, is often used in the visualization of POPs or even
the Internet. Of course, some of the contributions that allow the visualization
with an arbitrary scale and granularity trade quality of the representation for
flexibility.

Additional displayed information : Displayed network topologies may be aug-
mented with auxiliary information that better describe the features of nodes and
links. Such information may include bandwidth, delays, traffic volumes, TCP
ports, geographical locations, etc., and are typically encoded by using different
sizes, colors, and labels for both vertices and edges. Table 25.3 classifies contri-
butions in the literature according to their ability to enrich visualized network
topologies with additional information. It can be easily noticed that only a small
number of visualization approaches is limited to the representation of the sole
topology. The row Unknown accounts for those contributions for which it could
not be determined whether additional information is also displayed.

Data source : Typical sources of information about the operation of a network are
collections of routing data. Since there are lots of different ways to obtain such
data, instead of classifying the literature along this coordinate we separately pro-

25.3. A TAXONOMY OF VISUALIZATION METHODS AND TOOLS 769

Scale

Internet ISP Local Arbitrary
G

r
a
n
u
la
r
it
y

Autonomous
System

[BBGW04],

[BBP07], [CAI09],

[CDD+00],

[CDM+06],

[CDM+05],

[CRC+08],

[GGW07],

[kc97], [GMO+03],

[LMZ04], [LMZ06],

[OCP+07],

[OCLZ08],

[RIS09], [Oli09],

[OC07], [Gro00],

[Pro02], [Des09],

[Cor09], [Bou02],

[WS04], [YGM05],

[YMMW09]

POP [CE95], [CEH96] [AGN99], [kcH97],

[KNK99],

[KNTK99],

[SMW04]

Router/Host [BEW95], [PN99],

[Jac99], [Dit09],

[CBB00], [GT00],

[Piz07], [YSS05],

[Sii01], [oANTtE08],

[AS06], [RTU09],

[Che07], [LUM],

[ea05], [Vis09],

[Aug03]

[AGL+08],

[BCD+04],

[BEW95], [Mei00],

[EHH+00],

[FNMT94],

[KMG88], [Kvi03],

[MHkcF96],

[Piz07], [SMW04],

[Sal00], [3Co09],

[oANTtE08],

[Ent09], [RTU09],

[IBM09], [Dar09],

[Net09c], [WAN08],

[EHH+05],

[Com09b], [CP],

[Hew09], [Tec09],

[UNI09], [Jon09]

[AGL+08],

[EHH+00],

[PIP05],

[Mic09],

[WCH+03],

[3Co09],

[Ent09],

[TvAG+06],

[Net09b],

[Hir07],

[Net09c],

[Vol09],

[EHH+05],

[NoCSNCTUT09],

[Wyv09],

[net09a],

[Tec09],

[Sof09a],

[Tec05], [Jon09],

[Ips09], [WH09],

[ZW92]

[McR99]

Arbitrary [HPF07], [PH99],

[Map08], [Tel09],

[Lim09]

[MFKN07],

[MKN+07], [Sof09b]

[EW93] [AHDBV05b],

[AHDBV05a],

[BMB00],

[HNkc97],

[HJWkc98],

[GH02],

[Mun97],

[Hyu05],

[Bro01],

[AHDBV], [Cor]

Other [GKN04], [MB95],

[DLV97]

[GMN03] [KGS07]

Table 25.2 A classification of the state of the art that compares visualization
granularity against scale.

770 CHAPTER 25. COMPUTER NETWORKS

A
d
d
it
io
n
a
l
D
is
p
la
y
e
d

In
fo
rm

a
ti
o
n Yes [AGN99], [BBP07], [BEW95], [BMB00], [Mei00], [HPF07], [PH99],

[PN99], [Jac99], [CAI09], [kcH97], [HNkc97], [HJWkc98], [McR99],
[Mun97], [Hyu05], [CBB00], [CDD+00], [CDM+06], [CE95], [CEH96],
[EHH+00], [GMN03], [GMO+03], [KGS07], [KNK99], [KNTK99],
[Kvi03], [LMZ04], [LMZ06], [MB95], [MFKN07], [MKN+07],
[OCP+07], [OCLZ08], [Piz07], [Sal00], [Sii01], [Bro01], [Oli09], [OC07],
[TvAG+06], [Gro00], [Hir07], [RTU09], [IBM09], [Dar09], [Che07],
[Vol09], [Cor], [LUM], [WAN08], [EHH+05], [Wyv09], [Tec09], [ea05],
[DLV97], [Cor09], [Sof09a], [Tel09], [Sof09b], [UNI09], [Lim09], [Vis09],
[Jon09], [Ips09], [Aug03], [WS04]

No [AHDBV05b], [AHDBV05a], [BBGW04], [BCD+04], [GH02], [Dit09],
[CDM+05], [CRC+08], [FNMT94], [GGW07], [GKN04], [GT00],
[kc97], [KMG88], [MHkcF96], [PIP05], [SMW04], [YSS05], [Mic09],
[WCH+03], [AS06], [Pro02], [AHDBV], [NoCSNCTUT09], [Com09b],
[CP], [Bou02], [WH09], [YGM05]

Unknown [AGL+08], [EW93], [3Co09], [RIS09], [oANTtE08], [Ent09], [Net09b],
[Net09c], [net09a], [Hew09], [Des09], [Map08], [Tec05], [YMMW09],
[ZW92]

Table 25.3 Capability of displaying additional information besides the network
topology.

vide in Section 25.4 a detailed description of the data sources used in visualization
systems.

Collection rate : The displayed data can be gathered on demand, at the moment
in which the visualization is requested by the user, or on a periodical basis.
This coordinate of the classification determines how often the data is reloaded.
Consider that low (e.g., periodical) collection rates may imply a skew between
the depicted network and its actual status.

Collection strategies : Visualized information can be retrieved by using different
methodologies including, for example, active probing of a network and passive
monitoring. Table 25.4 classifies the state of the art according to the rate and
strategy adopted to collect the information to be visualized. Most of the contribu-
tions fall in the class Other because either the collection process is undocumented,
or they provide already drawn network topologies without details about the way
they have been laid out.

25.3.2 Graph Drawing Conventions and Methodologies

We focus on visualization methodologies and systems that display network information
using a graph. Whereas this is a commonly adopted metaphor, different data sets are
better visualized using different graph drawing conventions and methodologies. We classify
the graph drawing paradigm according to the following coordinates:

Graph drawing convention : A drawing convention is a basic rule that the draw-
ing must satisfy to be admissible. In this chapter we mainly focus on differ-
ent conventions for edge representation. Hence, we distinguish among straight-
line drawings, where edges are drawn as segments, curved-line drawings, where
edges are drawn as curves (e.g., parametric curves), and orthogonal drawings,
where edges are represented with polygonal lines composed by horizontal and

25.3. A TAXONOMY OF VISUALIZATION METHODS AND TOOLS 771

Collection Strategy

Passive
Monitoring

Active Probing Customizable Other
C
o
ll
e
c
t
io

n
R
a
t
e Periodic [CDD+00],

[CRC+08],

[OCP+07],

[OCLZ08],

[Piz07],

[RIS09],

[Oli09],

[OC07],

[Gro00],

[RTU09]

[CBB00],

[Kvi03], [Sii01],

[Che07], [LUM],

[ea05], [UNI09]

On Demand [TvAG+06] [Mic09], [3Co09],

[Ent09],

[Net09b],

[Hir07], [IBM09],

[Net09c], [Vol09],

[Cor], [Wyv09],

[Vis09], [Aug03]

[LMZ04], [LMZ06],

[Des09]

Customizable [CDM+06],

[CDM+05],

[Com09b],

[Tec05],

[ZW92]

[Ips09] [AHDBV05b],

[AHDBV05a],

[BMB00],

[HPF07],

[PH99],

[HNkc97],

[HJWkc98],

[GH02],

[Mun97],

[Hyu05],

[EW93],

[KMG88],

[Bro01],

[AHDBV],

[Lim09], [Jon09]

[CE95], [CEH96],

[Dar09], [Hew09]

Other [BCD+04],

[Sof09a],

[YMMW09]

[Mei00], [PN99],

[Jac99], [CAI09],

[Dit09], [GT00],

[GMO+03],

[MHkcF96],

[SMW04],

[Sal00], [YSS05],

[AS06], [Tec09]

[AGL+08], [AGN99],

[BBGW04],

[BBP07], [BEW95],

[kcH97], [McR99],

[EHH+00], [FNMT94],

[GGW07], [GKN04],

[GMN03], [kc97],

[KGS07], [KNK99],

[KNTK99], [MB95],

[MFKN07], [MKN+07],

[PIP05], [WCH+03],

[oANTtE08], [Pro02],

[WAN08], [EHH+05],

[NoCSNCTUT09],

[net09a], [CP], [Map08],

[DLV97], [Cor09],

[Bou02], [Tel09],

[Sof09b], [WH09],

[WS04], [YGM05]

Table 25.4 A classification of the state of the art according to the rate and strategy by
which visualized information is collected.

772 CHAPTER 25. COMPUTER NETWORKS

G
ra

p
h

D
ra

w
in
g
C
o
n
v
e
n
ti
o
n Straight-Line [AHDBV05b], [AHDBV05a], [AGL+08], [BBGW04], [BBP07],

[BEW95], [BMB00], [Mei00], [PH99], [PN99], [Jac99], [CAI09],
[kcH97], [HNkc97], [HJWkc98], [GH02], [Mun97], [Hyu05],
[CBB00], [CDM+06], [CDM+05], [CE95], [CEH96], [CRC+08],
[EHH+00], [EW93], [FNMT94], [GGW07], [GKN04], [GMN03],
[GT00], [kc97], [GMO+03], [KGS07], [KMG88], [Kvi03],
[LMZ04], [LMZ06], [MB95], [MFKN07], [MKN+07], [OCP+07],
[OCLZ08], [PIP05], [Piz07], [SMW04], [Sal00], [YSS05],
[Sii01], [WCH+03], [3Co09], [RIS09], [Bro01], [Oli09], [OC07],
[oANTtE08], [AS06], [TvAG+06], [Net09b], [RTU09], [Dar09],
[Che07], [Pro02], [Net09c], [AHDBV], [Cor], [LUM], [WAN08],
[EHH+05], [NoCSNCTUT09], [CP], [Hew09], [Tec09], [ea05],
[Des09], [DLV97], [Cor09], [Bou02], [Sof09a], [Tec05], [UNI09],
[Vis09], [Jon09], [Ips09], [WH09], [WS04], [YMMW09], [ZW92]

Curved-Line [CE95], [CEH96], [MHkcF96], [oANTtE08], [Hir07], [Com09b],
[Jon09], [Aug03], [YGM05]

Orthogonal-Line [BCD+04], [CDD+00], [Mic09], [Gro00], [Dar09], [Vol09],
[Wyv09], [Tec09]

Other/Unknown [AGN99], [HPF07], [Dit09], [McR99], [KNK99], [KNTK99],
[Ent09], [IBM09], [net09a], [Map08], [Tel09], [Sof09b], [Lim09]

Table 25.5 Graph drawing conventions adopted in different approaches for the
visualization of computer networks.

vertical segments. Table 25.5 shows that the vast majority of the literature
adopts a straight-line convention, probably because of its simplicity. The row
Other/Unknown includes those contributions for which either the graph drawing
convention is arbitrary (e.g., configurable), or it is undocumented. For example,
in [Sof09b] the convention can be selected by the user, while in commercial vi-
sualization systems such as [Ent09] there is no publicly available specification of
the graph layout engine. It is very interesting to point out that most of the visu-
alization methodologies do not consider obtaining a planar drawing as a priority
objective.
Readers interested in more details about specific graph drawing conventions may
refer to the applicable chapter in this handbook.

Spatial dimension : While most methodologies build the graphical representation
on a plane, some systems provide the user with the ability to explore a three-
dimensional view of the network. Table 25.6 shows how contributions in the lit-
erature are distributed by adopted spatial dimension. For example, [MHkcF96]
proposes a visualization of the MBone, namely the Multicast experimental back-
bone that was deployed around the early 1990s. Figure 25.1 shows an example
of this visualization, obtained using tools described in [HNkc99].

Graph drawing methodologies : The graph drawing methodologies adopted in
network visualization may include, for example, hierarchical and upward pla-
nar drawings, circular layouts, and force-directed methods (we refer in this way
to a variety of methods, including spring embedders, magnetic fields, barycenter
methods, etc.). See [DETT99] for a survey of existing methodologies. The usage
of these methodologies will be discussed in the sections devoted to the different
scales of the visualization.

25.3. A TAXONOMY OF VISUALIZATION METHODS AND TOOLS 773

D
im

e
n
si
o
n
s
o
f
th

e
V
is
u
a
li
z
a
ti
o
n 2D [BBP07], [BCD+04], [BEW95], [Mei00], [HPF07], [PH99], [PN99],

[Jac99], [CAI09], [kcH97], [HNkc97], [HJWkc98], [GH02], [Dit09],
[McR99], [CBB00], [CDD+00], [CDM+06], [CDM+05], [CRC+08],
[EHH+00], [EW93], [FNMT94], [GGW07], [GKN04], [GMN03],
[GT00], [KGS07], [KMG88], [Kvi03], [LMZ04], [LMZ06], [MFKN07],
[MKN+07], [OCP+07], [OCLZ08], [PIP05], [Piz07], [SMW04], [Sal00],
[Sii01], [Mic09], [WCH+03], [3Co09], [RIS09], [Oli09], [OC07],
[oANTtE08], [Ent09], [TvAG+06], [Net09b], [Gro00], [Hir07], [RTU09],
[IBM09], [Dar09], [Che07], [Pro02], [Net09c], [Vol09], [Cor], [LUM],
[WAN08], [EHH+05], [NoCSNCTUT09], [Com09b], [Wyv09], [net09a],
[Hew09], [Tec09], [Des09], [Map08], [DLV97], [Cor09], [Bou02], [Sof09a],
[Tec05], [Tel09], [UNI09], [Vis09], [Jon09], [Ips09], [WH09], [WS04],
[YMMW09], [ZW92]

3D [AHDBV05b], [AHDBV05a], [AGL+08], [AGN99], [BBGW04],
[BMB00], [Mun97], [Hyu05], [CE95], [CEH96], [kc97], [GMO+03],
[KNK99], [KNTK99], [MB95], [MHkcF96], [YSS05], [Bro01], [AS06],
[AHDBV], [CP], [ea05], [Aug03], [YGM05]

Customizable [Sof09b], [Lim09]

Table 25.6 Spatial dimension adopted in different visualization approaches.

Figure 25.1 A three-dimensional visualization of the global topology of the MBone, the
Internet’s multicast backbone, as it appeared in 1996. The picture is taken from [MHkcF96].

774 CHAPTER 25. COMPUTER NETWORKS

U
se

s
a
b
so

lu
te

g
e
o
g
ra

p
h
ic

c
o
o
rd

in
a
te

s Yes [AGN99], [BEW95], [Mei00], [HPF07], [PH99], [PN99], [Jac99],
[kcH97], [HNkc97], [HJWkc98], [Dit09], [CE95], [CEH96], [KNK99],
[KNTK99], [Kvi03], [MHkcF96], [SMW04], [oANTtE08], [Dar09],
[CP], [Bou02], [Tel09], [UNI09], [Lim09], [Vis09], [Aug03], [YGM05],
[YMMW09]

No [AHDBV05b], [AHDBV05a], [AGL+08], [BBGW04], [BBP07],
[BCD+04], [BMB00], [CAI09], [GH02], [McR99], [Mun97], [Hyu05],
[CBB00], [CDD+00], [CDM+06], [CDM+05], [CRC+08], [EHH+00],
[EW93], [FNMT94], [GGW07], [GKN04], [GMN03], [GT00], [kc97],
[GMO+03], [KGS07], [KMG88], [LMZ04], [LMZ06], [MB95],
[MFKN07], [MKN+07], [OCP+07], [OCLZ08], [PIP05], [Piz07],
[Sal00], [YSS05], [Sii01], [Mic09], [WCH+03], [RIS09], [Bro01], [Oli09],
[OC07], [AS06], [TvAG+06], [Net09b], [Gro00], [Hir07], [RTU09],
[IBM09], [Che07], [Pro02], [Net09c], [AHDBV], [Vol09], [LUM],
[WAN08], [EHH+05], [NoCSNCTUT09], [Com09b], [Wyv09], [net09a],
[Hew09], [Tec09], [ea05], [Des09], [DLV97], [Cor09], [Sof09a], [Tec05],
[Ips09], [WH09], [WS04], [ZW92]

Unknown [3Co09], [Ent09], [Cor], [Map08], [Sof09b], [Jon09]

Table 25.7 A classification of visualization methodologies according to the usage of
absolute geographic coordinates for the placement of network nodes.

Detailed information about specific graph drawing methodologies can be found
in the applicable chapters of this handbook.

Usage of absolute geographic location coordinates : If the visualization includes
the network topology, some methodologies envisage arranging network nodes on
the basis of real geographic coordinates. This is the case, e.g., for popular vi-
sual traceroute tools [Aug03, Vis09]. Quite often the geographic coordinates of
network components are not deemed relevant. Also, determining the actual po-
sition of network nodes is not an easy task. Therefore, as shown in Table 25.7,
most contributions rely on layout approaches that do not consider geographic
coordinates. Further, it may happen that the entities to be visualized do not
have specific geographic coordinates. For example, an Autonomous System can
span multiple countries or even continents, having routers in many geographic
locations.

25.3.3 Visualization Tools

For the cases in which the visualization methodology has been implemented in the form of
a visualization tool, it is interesting to classify the tool according to the functions offered
by the user interface.

Possibility of user interaction : Some tools display the network as a static image,
without any possibility of interaction. Others allow to adjust the visualization,
for example by zooming and rotating the view, selecting a different layout, and
manually dragging vertices. Other tools allow to directly configure the network by
interacting with the visualization. This is especially useful for network operators,
and is often possible only with commercial tools.

Static/Dynamic(Animated) : If the tool is aimed at visualizing dynamically chang-
ing information (e.g., routing data), the changes may be displayed by animation.

25.4. DATA SOURCES 775

Figure 25.2 A screenshot of the NAM Network Animator, taken from [EHH+05].

Consider that this poses very interesting challenges in the optimization of the
layout. The classification of the state of the art according to the ability to ani-
mate the visualization is further discussed in the following sections. Figure 25.2
shows a screenshot of a well-known tool for network simulation, that is able to
display the flow of packets along the pipes.

Visualization tools are made available as software pieces in different flavors:

Type of tool : The tool may consist of a library of drawing functions, a standalone
application, or an applet that can be embedded in a web browser. If a certain
approach only consists of a methodological contribution and we were not able
to identify a publicly available implementation, we classify that contribution
separately.

License : Depending on the target users, the tool may be distributed commercially
or freely, possibly with an open source license.

25.4 Data Sources

The information to be visualized can be gathered from different data sources. The available
sources can vary depending on whether the network to be visualized is managed by the
same entity requesting the visualization or not. In the first case, one can use two main
strategies:

• Routers maintain a rich database containing information about their current
status. This database is called Management Information Base (MIB) and can
be accessed by a widely available protocol called Simple Network Management
Protocol (SNMP) [MR91, CFSD90]. A visualization tool can query the MIB of
routers via SNMP in order to collect information about the network. This is the
approach adopted by the Polyphemus tool [BCD+04].

776 CHAPTER 25. COMPUTER NETWORKS

• Providers quite often store information about the configuration of network devices
in a database that is maintained outside of the devices themselves and can be used
to quickly manage and configure them. Such a database is implemented within
a network management platform, like, e.g., HP Operations Manager [Hew09] or
WANDL IP/MPLSView [WAN08]. A visualization tool can extract information
from this database. Sometimes the visualization tool is embedded in the network
management platform itself, which makes data extraction even easier.

If the entity requesting the visualization does not have control over the network, infor-
mation can still be gathered by resorting to the following strategies:

• Network devices are usually responsive to probe packets that, in troubleshooting
sessions, can be used to determine whether they are alive and reachable. Such
packets are commonly transmitted according to the Internet Control Message
Protocol [Pos81a] (ICMP). The same kind of packets can be used to discover
the links on a foreign network. Of course, the applicability of this technique is
limited by the presence of firewalls and other intrusion prevention systems.

• Some organizations maintain, typically for research purposes, repositories of pub-
licly available information collected from routers. This is the case, for example, of
the RIPE Routing Information Service [RIP] (RIS) or the Oregon Route Views
project [oO]. These services collect information about the reachability of Au-
tonomous Systems on a periodic basis. Information about router configurations
is also maintained in a worldwide Internet Routing Registry [NCC] (IRR), which
is also used to extract network topologies at the Autonomous System level. Unfor-
tunately, the IRR is not always up-to-date with actually deployed configurations.

From another point of view, it is possible to consider the strategy adopted to collect
the visualized information. Roughly speaking, there are two possible ways of achieving
this: actively probing or passively monitoring the network. An example of active probing
strategy is the usage of the traceroute tool to discover the routers along paths to certain
destinations. This is the approach adopted in the CAIDA Archipelago measurement in-
frastructure [CAI07]. On the other hand, passive monitoring may consist in observing the
status of the network by accessing routing information stored at the routers.

Table 25.8 shows the relationship between the visualization scale and the adopted col-
lection strategy. It is clear from the table that the approaches for Internet visualization
exploit many different collection strategies, while data for visualizing local and ISP-scale
networks is often collected using active probing.

The collection strategy also influences the timing of data accesses. In particular, data
may be collected periodically or just when it is needed to generate a visualization (see
Table 25.9). Interestingly, collecting data on a periodic basis for the sole visualization
purpose is rather unusual on local networks. We recall that, depending on the adopted
collection rate, the displayed information may not reflect the current status of the network.

Table 25.4 puts in evidence the relationships between the collection strategy and the col-
lection rate. As shown in the table, those tools whose collection strategy can be customized
usually allow to customize the collection rate as well. Works for which the collection rate
and/or the strategy are unspecified typically focus on a single snapshot of a network (e.g.,
a graph of an ISP’s infrastructure at a given time instant) or simply provide a visualization
methodology without considering the data sets to be displayed.

25.4. DATA SOURCES 777

Collection Strategy

Passive
Monitoring

Active Probing Customizable Other

S
c
a
le

Internet [CDD+00],

[CDM+06],

[CDM+05],

[CRC+08],

[OCP+07],

[OCLZ08],

[Piz07], [RIS09],

[Oli09], [OC07],

[Gro00], [RTU09],

[YMMW09]

[PN99], [Jac99],

[CAI09], [Dit09],

[CBB00], [GT00],

[GMO+03],

[YSS05], [Sii01],

[AS06], [Che07],

[LUM], [ea05],

[Vis09], [Aug03]

[HPF07],

[PH99],

[Lim09]

[BBGW04], [BBP07],

[BEW95], [CE95],

[CEH96], [GGW07],

[GKN04], [kc97],

[LMZ04], [LMZ06],

[MB95], [oANTtE08],

[Pro02], [Des09],

[Map08], [DLV97],

[Cor09], [Bou02],

[Tel09], [WS04],

[YGM05]

ISP [BCD+04],

[Piz07], [RTU09],

[Com09b]

[Mei00], [Kvi03],

[MHkcF96],

[SMW04], [Sal00],

[3Co09], [Ent09],

[IBM09], [Net09c],

[Tec09], [UNI09]

[KMG88],

[Jon09]

[AGL+08], [AGN99],

[BEW95], [kcH97],

[EHH+00], [FNMT94],

[GMN03], [KNK99],

[KNTK99],

[MFKN07],

[MKN+07],

[oANTtE08], [Dar09],

[WAN08], [EHH+05],

[CP], [Hew09],

[Sof09b]

Local [TvAG+06],

[Sof09a], [Tec05],

[ZW92]

[Mic09], [3Co09],

[Ent09], [Net09b],

[Hir07], [Net09c],

[Vol09], [Wyv09],

[Tec09], [Ips09]

[EW93],

[Jon09]

[AGL+08], [EHH+00],

[KGS07], [PIP05],

[WCH+03], [EHH+05],

[NoCSNCTUT09],

[net09a], [WH09]

Arbitrary [Cor] [AHDBV05b],

[AHDBV05a],

[BMB00],

[HNkc97],

[HJWkc98],

[GH02],

[Mun97],

[Hyu05],

[Bro01],

[AHDBV]

[McR99]

Table 25.8 Data collection strategies adopted for different visualization scales.

778 CHAPTER 25. COMPUTER NETWORKS

Collection Rate

Periodic On Demand Customizable Other

S
c
a
le

Internet [CBB00],

[CDD+00],

[CRC+08],

[OCP+07],

[OCLZ08], [Piz07],

[Sii01], [RIS09],

[Oli09], [OC07],

[Gro00], [RTU09],

[Che07], [LUM],

[ea05]

[LMZ04],

[LMZ06], [Des09],

[Vis09], [Aug03]

[HPF07],

[PH99],

[CDM+06],

[CDM+05],

[CE95],

[CEH96],

[Lim09]

[BBGW04], [BBP07],

[BEW95], [PN99],

[Jac99], [CAI09],

[Dit09], [GGW07],

[GKN04], [GT00],

[kc97], [GMO+03],

[MB95], [YSS05],

[oANTtE08], [AS06],

[Pro02], [Map08],

[DLV97], [Cor09],

[Bou02], [Tel09],

[WS04], [YGM05],

[YMMW09]

ISP [Kvi03], [Piz07],

[RTU09], [UNI09]

[3Co09], [Ent09],

[IBM09], [Net09c]

[KMG88],

[Dar09],

[Com09b],

[Hew09],

[Jon09]

[AGL+08], [AGN99],

[BCD+04], [BEW95],

[Mei00], [kcH97],

[EHH+00], [FNMT94],

[GMN03], [KNK99],

[KNTK99],

[MFKN07],

[MHkcF96],

[MKN+07], [SMW04],

[Sal00], [oANTtE08],

[WAN08], [EHH+05],

[CP], [Tec09], [Sof09b]

Local [Mic09], [3Co09],

[Ent09],

[TvAG+06],

[Net09b], [Hir07],

[Net09c], [Vol09],

[Wyv09]

[EW93],

[Tec05], [Jon09],

[Ips09], [ZW92]

[AGL+08], [EHH+00],

[KGS07], [PIP05],

[WCH+03], [EHH+05],

[NoCSNCTUT09],

[net09a], [Tec09],

[Sof09a], [WH09]

Arbitrary [Cor] [AHDBV05b],

[AHDBV05a],

[BMB00],

[HNkc97],

[HJWkc98],

[GH02],

[Mun97],

[Hyu05],

[Bro01],

[AHDBV]

[McR99]

Table 25.9 Collection rates adopted for different visualization scales.

25.5. VISUALIZATION OF THE INTERNET 779

25.5 Visualization of the Internet

The visualization of the whole Internet poses important challenges, because the amount of
information to be displayed is generally very large and still the drawing presented to the
user must preserve readability. To get a feeling of how complex the Internet can be, consider
that its size can be roughly estimated in more than 20,000 Autonomous Systems and more
than 60,000 links between them, and these sizes keep growing with time [MKF+06, RTM08].
Given that an ISP can span over several Autonomous Systems, managing tens of thousands
of routers on its own [SMW04], and that there exist tens of thousands of ISPs, it can be
easily imagined how complex it is to provide a complete yet useful visualization that spans
the whole Internet.

In order to provide an overview of the most commonly adopted approaches for Internet
visualization, Table 25.10 proposes a comparison of the graph drawing conventions against
the graph drawing methodologies used in the literature about this field. There is a clear
predominance in the adoption of the straight-line convention, and many approaches rely on
force-directed methods for vertex placement. Figures 25.3(a) and 25.3(b) contain screen-
shots of two well-known systems for visualizing Internet routing at the Autonomous System
level: BGPlay [CDM+05] and LinkRank [LMZ06]. Both tools use a spring embedder as
node placement algorithm. Also, these tools make the choice of presenting only a small
portion of the Internet. BGPlay focuses on how a network prefix is seen from a collection
of vantage points, while LinkRank tries to put in evidence links that may have undergone
faults. CAIDA’s Walrus [Mun97, Hyu05] is a tool that exploits a three-dimensional hyper-
bolic geometry to display graphs under a fisheye-like distortion. Walrus is able to visualize
network topologies consisting of more than 500,000 nodes and more than 600,000 links.

(a) (b)

Figure 25.3 The BGPlay [CDM+05] ((a)) and LinkRank [LMZ06] ((b)) tools provide an
animated visualization of routing changes at the Autonomous System level. The screenshots
are taken from [Rom09] and [Lab09], respectively.

Table 25.11 matches graph drawing methodologies against the ability to provide an ani-
mated visualization. Most of the tools that provide an animation rely on a force-directed
drawing methodology. In order to achieve a smooth transition between different frames of
the animation, sometimes the placement of nodes is influenced by constraints.

780 CHAPTER 25. COMPUTER NETWORKS

Graph Drawing Convention

Straight-Line Curved-Line Orthogonal-Line Other/Unknown

G
r
a
p
h

D
r
a
w
in

g
M

e
t
h
o
d
o
lo

g
y Force Directed [BBGW04],

[BEW95],

[CBB00],

[CDM+06],

[CDM+05],

[GGW07],

[LMZ04],

[LMZ06],

[OCP+07],

[OCLZ08], [Piz07],

[Sii01], [RIS09],

[Oli09], [OC07],

[RTU09], [Che07],

[Pro02], [LUM]

Circular [AHDBV05b],

[AHDBV05a],

[CAI09], [HNkc97],

[HJWkc98],

[Mun97], [Hyu05],

[CE95], [CEH96],

[AHDBV], [Cor09]

[CE95],

[CEH96]

Clustering [GMO+03],

[WS04]

[CDD+00],

[Gro00]

Layering [BBGW04],

[CRC+08],

[DLV97]

Topology-Shape-
Metrics

[CDD+00],

[Gro00]

Customizable/
Various

[GH02], [GT00],

[kc97], [ea05]

[Lim09]

Other/Unknown [BMB00],

[PH99], [PN99],

[Jac99], [GKN04],

[YSS05], [Bro01],

[oANTtE08],

[AS06], [Cor],

[Des09],

[Bou02], [Vis09],

[YMMW09]

[oANTtE08],

[Aug03],

[YGM05]

[HPF07], [Dit09],

[McR99],

[Map08], [Tel09]

Table 25.10 Graph drawing conventions and methodologies adopted for the
visualization of the Internet.

25.5. VISUALIZATION OF THE INTERNET 781

Static Animated

G
ra

p
h

D
ra

w
in
g
M

e
th

o
d
o
lo
g
y Force Directed [BBGW04], [CBB00],

[GGW07], [Sii01], [Che07],
[Pro02], [LUM]

[BEW95], [CDM+06],
[CDM+05], [LMZ04], [LMZ06],
[OCP+07], [OCLZ08], [Piz07],
[RIS09], [Oli09], [OC07],
[RTU09]

Circular [AHDBV05b], [AHDBV05a],
[CAI09], [HNkc97], [Mun97],
[Hyu05], [AHDBV], [Cor09]

[HJWkc98], [CE95], [CEH96]

Clustering [CDD+00], [GMO+03], [Gro00],
[WS04]

Layering [BBGW04], [CRC+08], [DLV97]

Topology-
Shape-Metrics

[CDD+00], [Gro00]

Customizable/
Various

[GH02], [GT00], [kc97], [ea05] [Lim09]

Other/Unknown [PH99], [PN99], [Jac99], [Dit09],
[McR99], [GKN04], [YSS05],
[oANTtE08], [AS06], [Cor],
[Map08], [Bou02], [Tel09],
[Vis09], [Aug03], [YGM05],
[YMMW09]

[BMB00], [HPF07], [Bro01]

Table 25.11 Visualization of the Internet: ability to animate the visualizations with
respect to the adopted graph drawing methodology.

782 CHAPTER 25. COMPUTER NETWORKS

Figure 25.4 The Cyclops tool provides an animated visualization of the changes in the
relationships between Autonomous Systems. This is a snapshot of the running tool available
at [OC07].

Animations are typically used to convey information about historical data sets (see,
e.g., [BBP07]), and often facilitate the exploration of topological changes. An example
of a tool providing an animation of Internet routing changes is Cyclops [OCP+07], whose
screenshot is provided in Figure 25.4. The tool visualizes disappeared and newly detected
peerings between Autonomous Systems over a user-selected time period. The time instant
the visualization refers to can be picked by using a slider. Although Table 25.11 shows
that many contributions take advantage of animation, in our opinion the obtained results
are not always satisfactory. Hence, the animation of network topologies, that combines
methodological challenges and practical relevance, is one of the promising fields of research
for future developments.

Despite its sheer size, there are efforts to map and visualize the Internet not just at the
Autonomous System level, but also at finer levels of granularity. Table 25.12 provides an
overview of the graph drawing methodologies exploited in the visualization with different
granularities. It can be easily seen that the Internet is sometimes visualized at the router
level, like it happens in [CBB00]. More often, network nodes are aggregated to provide a
visualization at the Autonomous System level. The Internet topology maps provided by
CAIDA [CAI09] are a famous example of this kind of visualization.

It is interesting to observe that some proposals display the Internet topology combined
with other topological aspects. As an example, the approach in [CDM+06] allows to vi-
sualize the Internet topology in the context of a customer-provider hierarchy. Actually,
Autonomous Systems establish commercial agreements in order to gain connectivity. In
these agreements each ISP plays the role of provider of certain ISPs and is in turn a cus-
tomer of others. In [CDM+06] the Internet is displayed within a topographic metaphor that
visually renders the customer-provider hierarchy in a pretty intuitive way.

For most of the visualization methodologies, an implementation in the form of a software
tool is also available. As shown in Table 25.13, most of the implementations can be accessed
freely. Among them, there are several tools that are made available in the form of Java
applets, so that the user can benefit from the visualization without having to install any
application or to obtain source data.

25.5. VISUALIZATION OF THE INTERNET 783

Granularity

Autonomous
System

POP Router/Host Arbitrary Other

G
r
a
p
h

D
r
a
w
in

g
M

e
t
h
o
d
o
lo

g
y Force Directed [BBGW04],

[CDM+06],

[CDM+05],

[GGW07],

[LMZ04],

[LMZ06],

[OCP+07],

[OCLZ08],

[RIS09], [Oli09],

[OC07], [Pro02]

[BEW95],

[CBB00],

[Piz07],

[Sii01],

[RTU09],

[Che07],

[LUM]

Circular [CAI09], [Cor09] [CE95],

[CEH96]

[AHDBV05b],

[AHDBV05a],

[HNkc97],

[HJWkc98],

[Mun97],

[Hyu05],

[AHDBV]

Clustering [CDD+00],

[GMO+03],

[Gro00], [WS04]

Layering [BBGW04],

[CRC+08]

[DLV97]

Topology-Shape-
Metrics

[CDD+00],

[Gro00]

Customizable/
Various

[kc97] [GT00],

[ea05]

[GH02],

[Lim09]

Other/Unknown [Des09], [Bou02],

[YGM05],

[YMMW09]

[PN99],

[Jac99],

[Dit09],

[McR99],

[YSS05],

[oANTtE08],

[AS06],

[Vis09],

[Aug03]

[BMB00],

[HPF07],

[PH99],

[Bro01],

[Cor],

[Map08],

[Tel09]

[GKN04]

Table 25.12 Graph drawing methodologies adopted for the visualization of the Internet
at different levels of granularity.

784 CHAPTER 25. COMPUTER NETWORKS

License

Free Commercial Other/Unknown

T
y
p
e

o
f
T
o
o
l Application [AHDBV05b],

[AHDBV05a], [BEW95],

[BMB00], [HPF07], [PN99],

[Jac99], [CAI09], [HNkc97],

[HJWkc98], [GH02],

[McR99], [Mun97], [Hyu05],

[CDM+06], [CDM+05],

[CE95], [CEH96], [LMZ04],

[LMZ06], [YSS05], [Bro01],

[AS06], [AHDBV], [ea05],

[DLV97], [Aug03]

[Cor], [Vis09] [GMO+03],

[YMMW09]

Java Applet [PH99], [Dit09], [CDD+00],

[CDM+06], [CDM+05],

[CRC+08], [OCP+07],

[OCLZ08], [Piz07], [RIS09],

[Oli09], [OC07], [Gro00],

[RTU09], [Pro02], [DLV97]

[Vis09]

None Publicly
Available

[Map08], [Tel09] [BBGW04], [BBP07],

[CBB00], [GGW07],

[GKN04], [GT00],

[MB95], [Sii01],

[Che07], [LUM],

[WS04]

Other/Unknown [Des09], [Cor09] [kc97], [oANTtE08],

[Bou02], [Lim09],

[YGM05]

Table 25.13 License policies used for Internet visualization tools.

25.6. VISUALIZATION OF AN INTERNET SERVICE PROVIDER NETWORK 785

G
ra

n
u
la
ri
ty

Autonomous
System

POP [AGN99], [kcH97], [KNK99], [KNTK99], [SMW04]

Router/Host [AGL+08], [BCD+04], [BEW95], [Mei00], [McR99], [EHH+00],
[FNMT94], [KMG88], [Kvi03], [MHkcF96], [Piz07], [SMW04],
[Sal00], [3Co09], [oANTtE08], [Ent09], [RTU09], [IBM09],
[Dar09], [Net09c], [WAN08], [EHH+05], [Com09b], [CP],
[Hew09], [Tec09], [UNI09], [Jon09]

Arbitrary [AHDBV05b], [AHDBV05a], [BMB00], [HNkc97], [HJWkc98],
[GH02], [Mun97], [Hyu05], [MFKN07], [MKN+07], [Bro01],
[AHDBV], [Cor]

Other [GMN03]

Table 25.14 A classification of the state of the art on the visualization of ISP networks
according to the granularity of the visualization.

25.6 Visualization of an Internet Service Provider Network

The difficulty of visualizing the network of a single ISP is comparable to the one of visualizing
the Internet at the Autonomous System level. In fact an ISP has roughly as many network
devices as the number of Autonomous Systems in the Internet. In some cases ISP networks
may be displayed at a coarser granularity, taking into account the Points of Presence (POP).
A POP is a set of network devices housed at a certain location that are used to provide access
to the Internet. CAIDA’s Mapnet [kcH97] provides a visualization of the interconnections
between the POPs, for different ISPs. More often, ISP-scale visualization considers every
router or host on the network. This is the case, for example, of the commercial system
InterMapper [Dar09], which visualizes routers and their interconnections superimposed on
a geographical map. Table 25.14 provides a classification of the literature according to the
granularity adopted in the visualization.

Table 25.15 classifies the graph drawing conventions and methodologies adopted within
approaches for the visualization of ISP-scale networks. Most notably, almost every contribu-
tion adopts a straight-line convention. A very popular visualization tool is Otter [HNkc97],
which is at the basis of the famous Internet maps provided by CAIDA. Node placement
in Otter happens on the basis of geographic coordinates. Those nodes for which the coor-
dinates are not available are laid out in semi-circles around their parent node. Otter has
been exploited to generate several visualizations, including, e.g., the multicast backbone of
an ISP.

Some of the contributions exploit clustered drawings. This is the case, for example,
of [Sal00], where different virtual communication channels are grouped together to highlight
the interconnections established by the ATM protocol [Sta07]. In [CP] the authors visualize
the NSFnet, a wide-area network developed by the National Science Foundation (NSF). In
a three-dimensional space, they arrange backbone nodes on a higher layer, and client nodes
that utilize the backbone on a lower layer. Everything is displayed in the context of a
geographical map. The Systrax community proposes a prototype of a tool for visualizing
traffic flows collected by the NetFlow tool [Com09b, Sys09a]. The visualization exploits
curved lines to represent device interconnections. The Polyphemus tool [BCD+04] visualizes
the routing of an ISP by collecting information about the OSPF protocol [Moy94], and
exploits an orthogonal drawing with a topology-shape-metrics methodology.

786 CHAPTER 25. COMPUTER NETWORKS

Graph Drawing Convention

Straight-Line Curved-Line Orthogonal-Line Other/Unknown

G
r
a
p
h

D
r
a
w
in

g
M

e
t
h
o
d
o
lo

g
y Force Directed [BEW95],

[GMN03], [Piz07],

[RTU09], [Hew09]

Circular [AHDBV05b],

[AHDBV05a],

[HNkc97],

[HJWkc98],

[Mun97], [Hyu05],

[KMG88],

[AHDBV]

[Com09b]

Clustering [AGL+08],

[SMW04], [Sal00]

Layering [CP]

Topology-Shape-
Metrics

[BCD+04]

Customizable/
Various

[GH02],

[EHH+00],

[EHH+05], [Tec09]

[Tec09] [IBM09]

Other/Unknown [BMB00],

[Mei00], [kcH97],

[FNMT94],

[Kvi03],

[MFKN07],

[MKN+07],

[SMW04],

[3Co09], [Bro01],

[oANTtE08],

[Dar09], [Net09c],

[Cor], [WAN08],

[UNI09], [Jon09]

[MHkcF96],

[oANTtE08],

[Jon09]

[Dar09] [AGN99],

[McR99],

[KNK99],

[KNTK99],

[Ent09]

Table 25.15 Graph drawing conventions and methodologies adopted in the visualization
of the network of an ISP.

25.6. VISUALIZATION OF AN INTERNET SERVICE PROVIDER NETWORK 787

Uses absolute geographic coordinates

Yes No Unknown
G
ra

p
h

D
ra

w
in
g
C
o
n
v
e
n
ti
o
n Straight-Line [BEW95], [Mei00],

[kcH97], [HNkc97],
[HJWkc98],
[Kvi03], [SMW04],
[oANTtE08], [Dar09],
[CP], [UNI09]

[AHDBV05b],
[AHDBV05a],
[AGL+08], [BMB00],
[GH02], [Mun97],
[Hyu05], [EHH+00],
[FNMT94], [GMN03],
[KMG88], [MFKN07],
[MKN+07], [Piz07],
[Sal00], [Bro01],
[RTU09], [Net09c],
[AHDBV], [WAN08],
[EHH+05], [Hew09],
[Tec09]

[3Co09],
[Cor], [Jon09]

Curved-Line [MHkcF96],
[oANTtE08]

[Com09b] [Jon09]

Orthogonal-Line [Dar09] [BCD+04], [Tec09]

Other/Unknown [AGN99], [KNK99],
[KNTK99]

[McR99], [IBM09] [Ent09]

Table 25.16 Graph drawing conventions used in the visualization of ISP-scale networks
when geographic location coordinates are or are not considered.

Most of the approaches in which network nodes are placed according to their geographic
location make use of a straight-line drawing convention. This is highlighted in Table 25.16.

There are few contributions that support an animated visualization of the ISP under
consideration. Table 25.17 relates these contributions with the graph drawing methodology
they adopt. Interestingly, some of the tools that arrange nodes according to geographic
coordinates also provide support for animated visualizations. For example, the system
described in [KNK99, AGN99] displays traffic flows over time, where traffic sources are
placed over a geographic map.

Finally, Table 25.18 shows the license policies under which ISP-scale visualization tools are
distributed. These tools are sometimes released as standalone applications within network
management suites (see, e.g., [Hew09, IBM09, WAN08]).

788 CHAPTER 25. COMPUTER NETWORKS

Static Animated
G
ra

p
h

D
ra

w
in
g
M

e
th

o
d
o
lo
g
y Force Directed [BEW95], [GMN03], [Piz07],

[RTU09]

Circular [AHDBV05b], [AHDBV05a],
[HNkc97], [Mun97], [Hyu05],
[KMG88], [AHDBV], [Com09b]

[HJWkc98]

Clustering [AGL+08], [SMW04], [Sal00]

Layering [CP]

Topology-
Shape-Metrics

[BCD+04]

Customizable/
Various

[GH02], [IBM09], [Tec09] [EHH+00], [EHH+05]

Other/Unknown [Mei00], [kcH97], [McR99],
[FNMT94], [Kvi03],
[MHkcF96], [SMW04], [3Co09],
[oANTtE08], [Ent09], [Dar09],
[Net09c], [Cor], [WAN08],
[UNI09]

[AGN99], [BMB00], [KNK99],
[KNTK99], [MFKN07],
[MKN+07], [Bro01], [Jon09]

Table 25.17 Graph drawing methodologies adopted for static/animated visualizations
of an ISP’s network.

License

Free Commercial Other/Unknown

T
y
p
e
o
f
T
o
o
l Application [AHDBV05b],

[AHDBV05a],
[BCD+04], [BEW95],
[BMB00], [HNkc97],
[HJWkc98], [GH02],
[McR99], [Mun97],
[Hyu05], [Bro01],
[AHDBV], [Jon09]

[3Co09], [Ent09],
[IBM09], [Dar09],
[Net09c], [Cor],
[WAN08],
[Hew09], [Tec09]

[AGL+08],
[EHH+00],
[GMN03],
[SMW04], [Sal00],
[EHH+05]

Java Applet [kcH97], [Piz07],
[RTU09], [Com09b]

[Sal00]

None Publicly
Available

[CP] [AGN99],
[FNMT94],
[KMG88],
[KNK99],
[KNTK99], [Kvi03],
[MFKN07],
[MHkcF96],
[MKN+07], [UNI09]

Other/Unknown [Mei00],
[oANTtE08]

Table 25.18 Licensing policies for different kinds of ISP-scale visualization tools.

25.7. VISUALIZATION OF LOCAL NETWORKS 789

Graph Drawing Convention

Straight-Line Curved-Line Orthogonal-Line Other/Unknown
G

r
a
p
h

D
r
a
w
in

g
M

e
t
h
o
d
o
lo

g
y Force Directed

Circular [AHDBV05b],

[AHDBV05a],

[HNkc97],

[HJWkc98],

[Mun97], [Hyu05],

[TvAG+06],

[AHDBV]

Clustering [AGL+08]

Layering

Topology-Shape-
Metrics

Customizable/
Various

[GH02],

[EHH+00],

[Net09b],

[EHH+05],

[Tec09]

[Tec09]

Other/Unknown [BMB00],

[EW93], [PIP05],

[WCH+03],

[3Co09], [Bro01],

[Net09c], [Cor],

[NoCSNCTUT09],

[Sof09a], [Tec05],

[Jon09], [Ips09],

[WH09], [ZW92]

[Hir07],

[Jon09]

[Mic09], [Vol09],

[Wyv09]

[McR99],

[Ent09], [net09a]

Table 25.19 Graph drawing conventions and methodologies adopted for the
visualization of local networks.

25.7 Visualization of Local Networks

A local network typically consists of a few hundreds of devices, hence it is meaningful to
visualize it as a whole.

Table 25.19 shows that most of the contributions to the visualization of local networks
adopt a straight-line drawing convention and different, sometimes customizable methodolo-
gies. There are some notable exceptions to this rule: for example the “Full Map View”
embedded in the Microsoft Windows VistaTM operating system (see Figure 25.5) and the
LanTopolog [Vol09] discovery tool adopt an orthogonal convention, while the Weathermap
application [Jon09] exploits curved lines for the visualization.

Methodologies targeted at the visualization of local networks may also support animated
displays. This is useful, for example, to monitor traffic exchanges among network devices or
the distribution of bandwitdh usage over time. Tables 25.20, 25.21, and 25.22 classify the
literature by correlating the ability of animating the visualization with the graph drawing
methodology, the rate, and the strategy by which visualized data are collected, respectively.
Some interesting considerations can be derived from these tables.

First of all, providing an animated view is not a fundamental requirement, as there are
fewer contributions that have this capability.

790 CHAPTER 25. COMPUTER NETWORKS

Figure 25.5 A snapshot of the Windows VistaTM “Full Map View” feature.

Static Animated

G
ra

p
h

D
ra

w
in
g
M

e
th

o
d
o
lo
g
y Force Directed

Circular [AHDBV05b], [AHDBV05a],
[HNkc97], [Mun97], [Hyu05],
[AHDBV]

[HJWkc98], [TvAG+06]

Clustering [AGL+08]

Layering

Topology-
Shape-Metrics

Customizable/
Various

[GH02], [Net09b], [Tec09] [EHH+00], [EHH+05]

Other/Unknown [McR99], [EW93], [PIP05],
[Mic09], [WCH+03],
[3Co09], [Ent09], [Hir07],
[Net09c], [Vol09], [Cor],
[NoCSNCTUT09], [Wyv09],
[net09a], [Sof09a], [Ips09],
[WH09]

[BMB00], [Bro01], [Tec05],
[Jon09], [ZW92]

Table 25.20 Graph drawing methodology adopted for static and animated
visualizations of local networks.

25.7. VISUALIZATION OF LOCAL NETWORKS 791

Static Animated

C
o
ll
e
c
ti
o
n

R
a
te Periodic

On Demand [Mic09], [3Co09], [Ent09],
[Net09b], [Hir07], [Net09c],
[Vol09], [Cor], [Wyv09]

[TvAG+06]

Customizable [AHDBV05b], [AHDBV05a],
[HNkc97], [GH02], [Mun97],
[Hyu05], [EW93], [AHDBV],
[Ips09]

[BMB00], [HJWkc98], [Bro01],
[Tec05], [Jon09], [ZW92]

Other [AGL+08], [McR99], [PIP05],
[WCH+03], [NoCSNCTUT09],
[net09a], [Tec09], [Sof09a],
[WH09]

[EHH+00], [EHH+05]

Table 25.21 Data collection rate for static and animated visualizations of local
networks.

Static Animated

C
o
ll
e
c
ti
o
n

S
tr
a
te

g
y

Passive
Monitoring

[Sof09a] [TvAG+06], [Tec05], [ZW92]

Active Probing [Mic09], [3Co09], [Ent09],
[Net09b], [Hir07], [Net09c],
[Vol09], [Cor], [Wyv09],
[Tec09], [Ips09]

Customizable [AHDBV05b], [AHDBV05a],
[HNkc97], [GH02], [Mun97],
[Hyu05], [EW93], [AHDBV]

[BMB00], [HJWkc98], [Bro01],
[Jon09]

Other [AGL+08], [McR99], [PIP05],
[WCH+03], [NoCSNCTUT09],
[net09a], [WH09]

[EHH+00], [EHH+05]

Table 25.22 Strategies by which data are collected for static and animated
visualizations of local networks.

792 CHAPTER 25. COMPUTER NETWORKS

License

Free Commercial Other/Unknown

T
y
p
e
o
f
T
o
o
l Application [AHDBV05b],

[AHDBV05a],
[BMB00], [HNkc97],
[HJWkc98], [GH02],
[McR99], [Mun97],
[Hyu05], [WCH+03],
[Bro01], [TvAG+06],
[AHDBV], [Vol09],
[NoCSNCTUT09],
[Jon09], [WH09]

[Mic09], [3Co09],
[Ent09], [Net09b],
[Hir07], [Net09c],
[Cor], [Wyv09],
[net09a], [Tec09],
[Sof09a], [Ips09]

[AGL+08],
[EHH+00],
[EHH+05],
[Tec05], [ZW92]

Java Applet

None Publicly
Available

[EW93], [PIP05]

Other/Unknown

Table 25.23 License policies applied for visualization tools targeted at local networks.

Second, the graph drawing methodology adopted for animated visualizations is often
undocumented. An exception to this rule is, for example, the well-known network animator
Nam [EHH+00] (Figure 25.2), which provides a dynamic visualization of the packets that
traverse the links of a network. The tool keeps network nodes in a fixed position while the
animation is displayed.

Another interesting observation based on the tables is that tools for animated visual-
izations usually do not collect data on their own (“Periodic” or “On Demand” collection
rate), but rather are fed with data sets that have been gathered separately and contain
enough information to support the animation. This is the case, for example, of the Cichlid
visualization tool [BMB00], which provides three-dimensional views of resource utilization
in a network over time. The gathering process is typically based on a passive observation of
the network. This is the approach pursued in the Etherape tool [TvAG+06], which displays
network nodes and links with different sizes depending on their network activity.

Table 25.23 shows that most of the tools aimed at the visualization of local networks are
distributed, either freely or under a commercial license, in the form of standalone appli-
cations. A possible motivation is that Java applets are more suited for the case in which
information about the network to be visualized is only available remotely.

25.8 Visualization of Basic Internet Services and Specific
Network Contexts

As highlighted in the previous sections, the topology of computer networks can be considered
at different levels of granularity. Besides the topology itself, computer networks very often
consist of overlapping logical infrastructures called overlays, that are set up in order to
provide additional services and optimize network usage. These logical infrastructures only
exist in the form of configuration statements on board the network devices, and support
commonly used services such as peer-to-peer content sharing.

There is a class of visualization systems that, instead of visualizing the topology of a
network, aim at displaying the exchanges of information that are happening on an overlay
network.

BASIC INTERNET SERVICES AND SPECIFIC NETWORK CONTEXTS 793

For example, [Mai02], [BB07], and [FHN+07] propose a visualization of email exchanges
between users. The first one is an orthogonal drawing showing the relationships among
Internet domains that generate spam. The second one proposes to visualize email exchanges
as an example of application of a layout algorithm of graphs with different levels of detail.
The last one is a paper describing the visualization of mail exchange patterns with different
drawing methodologies. Other contributions focus on monitoring the usage of distributed
services like the Domain Name System (DNS). For example, the approach in [DSN12] allows
to observe how the workload shifts between different name servers, thus showing how clients
migrate from one server to another and simplifying the recognition of unusual operational
patterns.

An emerging hot topic is the visualization of relationships in social networks. Users
registered on Facebook [web09] can visualize their friendship relationships using a tool
called Nexus [Net09d]. In [Tri06] and [BdM06] the authors describe methodologies and
tools to display communication relationships between entities (for example, a student and
a teacher). In particular, the tool SoNIA [MBd07] also offers animated views of these
relationships.

Peer-to-peer networks are more and more widespread, mainly due to the simplicity of
setup and to the effectiveness for content sharing. Thanks to the fact that participating
devices are self-organizing, the network attempts to preserve connectivity and performance
levels even in the presence of frequent topology changes. The problem of displaying the
topology of a peer-to-peer network has been considered in [JD08], where a method to
generate animated visualization of simulated networks is proposed.

The new version of the Internet Protocol, IPv6 [DH98], has received much attention in the
last years due to the technical challenges associated with its deployment. Besides studying
transition mechanisms [6ne05], researchers have also focused on visualizing the growth of
some test networks. In [NSM99] the authors illustrate the design and implementation of a
tool for three-dimensional visualization of the topography of an IPv6 network and of the
hierarchy of its address space. The paper proposes sample drawings of an experimental
IPv6 network in Japan.

Wireless and sensor networks, due to their continuously changing topology, have also
caught the interest of the community interested in visualization. For example, in [GK05] the
authors describe a graph drawing algorithm that is based on inter-sensor communication
and exploits a force-directed layout. A visualization of the connectivity graph of simulated
sensor networks is proposed in [MBS08]. There are also collaborative projects aimed at
collecting information about the presence of wireless access points around the world: they
usually exploit contour-like maps to visualize network coverage rather than a graph of the
topology [oKIC02, com09a].

Another attractive field of research is the analysis of relationships between pages in the
World Wide Web. Lots of efforts have been put in analyzing the logical topology implied
by hyperlinks between web pages, also known as web graph. Even though most of the
literature aims at building a compact and efficient representation of the web graph, there are
contributions also on the visualization side. In [MB95] the authors used a custom web spider
to construct graphical representations of sections of the web graph in 3D hyperbolic space.
The structure of the web graph has also been graphically analyzed in a historical perspective
in [TK05]. The authors of [YDZ04] apply data mining and visualization techniques to
analyze large web data sets. The TouchGraph Google Browser available at [Tou09] offers
the user a visual representation of the results of web searches in the form of a clustered
graph, where pages are grouped by similarity.

A number of papers are devoted to the visualization of anomalies that are a symptom of
intrusion attempts into a networked system. A survey on techniques to visualize security-

794 CHAPTER 25. COMPUTER NETWORKS

related information as a graph is provided in [Tam08]. The three-dimensional visualization
tool Flamingo has been exploited as an engine to visualize network topologies [OKB06]
and to perform network monitoring [OGK06], and is also at the basis of anomaly detection
approaches [TJKMW04]. In [WJA05] the authors propose a visualization of BGP routing
that aids in detecting abnormal changes. The visualizations exploit the Graphviz [Res09]
library and can also be animated. VisFlowConnect [YYT04] is a tool that visualizes traffic
exchanges between hosts in order to detect interesting and potentially anomalous patterns.
Chapter 20 overviews related work on the visualization of network security aspects.

There also exist tools that provide drawing functionalities. Instead of automatically
laying out the topology of a network, these tools provide an environment with ready-to-use
symbols that users can exploit to draw networks on their own. An example of a commercial
tool that supports creating network diagrams is SmartDraw [Sma09]. Such contributions
are outside the scope of this chapter.

REFERENCES 795

References

[3Co09] 3Com. H3C intelligent management center, 2009.

[6ne05] 6net. Large-scale international IPv6 pilot network. http://www.

6net.org/, 2005.

[AGL+08] P. Abel, P. Gros, D. Loisel, C. R. Dos Santos, and J.P. Paris. Cy-
berNet: A framework for managing networks using 3D metaphoric
worlds. Annals of Telecommunications, 55(3–4), 2008.

[AGN99] J. Abello, E. R. Gansner, and S. C. North. Large-scale network
visualization. Computer Graphics, 33:13–15, 1999.

[AHDBV] I. Alvarez-Hamelin, L. Dall’Asta, A. Barrat, and A. Vespignani.
Large network visualization tool (LaNet-vi). http://xavier.

informatics.indiana.edu/lanet-vi/.

[AHDBV05a] I. Alvarez-Hamelin, L. Dall’Asta, A. Barrat, and A. Vespignani.
k-core decomposition: a tool for the visualization of large scale net-
works. ArXiv Computer Science e-prints, 2005.

[AHDBV05b] I. Alvarez-Hamelin, L. Dall’Asta, A. Barrat, and A. Vespignani.
Large scale networks fingerprinting and visualization using the k-
core decomposition. In Proc. NIPS 2005, 2005.

[AS06] S. Asafi and M. Sandler. DIMES4DVisualizer, 2006.

[Aug03] B. Augustsson. Xtraceroute. http://www.dtek.chalmers.se/

~d3august/xt/, 2003.

[BB07] M. Baur and U. Brandes. Multi-circular layout of micro/macro
graphs. In Proc. GD 2007, 2007.

[BBGW04] M. Baur, U. Brandes, M. Gaertler, and D. Wagner. Drawing the
AS Graph in 2.5 dimensions. In Proc. Graph Drawing 2004, pages
43–48, 2004.

[BBP07] K. Boitmanis, U. Brandes, and C. Pich. Visualizing Internet evo-
lution on the Autonomous System level. In Proc. Graph Drawing
2007, pages 364–376, 2007.

[BCD+04] G. Barbagallo, A. Carmignani, G. Di Battista, W. Didimo, and
M. Pizzonia. Polyphemus and Hermes – Exploration and visualiza-
tion of computer networks. In Graph Drawing Software, Mathemat-
ics and Visualization Series, pages 341–364. 2004.

[BdM06] S. Bender-deMoll and D. McFarland. The art and science of dy-
namic network visualization. Journal of Social Structure, 7(2), 2006.

[BEW95] R. A. Becker, S. G. Eick, and A. R. Wilks. Visualizing network data.
IEEE Trans. on Visualization and Computer Graphics, 1(1):16–28,
1995.

[BMB00] J. A. Brown, A. J. McGregor, and H. W. Braun. Network perfor-
mance visualization: Insight through animation. In Proc. PAM ’00,
pages 33–41, 2000.

[Bou02] P. Bourcier. Rootzmap - Mapping the Internet. http://sysctl.

org/rootzmap/, 2002.

[Bro01] J. Brown. Cichlid data visualization software. http://moat.nlanr.
net/Software/Cichlid/, 2001.

796 CHAPTER 25. COMPUTER NETWORKS

[CAI07] CAIDA. Archipelago measurement infrastructure. Network mea-
surement tool, 2007.

[CAI09] CAIDA. Visualizing IPv4 and IPv6 Internet topology at a
macroscopic scale. http://www.caida.org/research/topology/

as_core_network/, 2009.

[CBB00] B. Cheswick, H. Burch, and S. Branigan. Mapping and visualizing
the Internet. In Proc. USENIX ’00, pages 1–12, 2000.

[CDD+00] A. Carmignani, G. Di Battista, W. Didimo, F. Matera, and M. Piz-
zonia. Visualization of the Automous Systems interconnections with
HERMES. In Proc. Graph Drawing 2000, pages 150–163, 2000.

[CDM+05] L. Colitti, G. Di Battista, F. Mariani, M. Patrignani, and M. Pizzo-
nia. Visualizing interdomain routing with BGPlay. Journal of Graph
Algorithms and Applications, Special Issue on the 2003 Symposium
on Graph Drawing, GD ’03, 9(1):117–148, 2005.

[CDM+06] P. F. Cortese, G. Di Battista, A. Moneta, M. Patrignani, and
M. Pizzonia. Topographic visualization of prefix propagation in
the Internet. IEEE Transactions on Visualization and Computer
Graphics, 12(5):725–732, 2006.

[CE95] K. C. Cox and S. G. Eick. 3D displays of Internet traffic. In Proc.
INFOVIS ’95, page 129, 1995.

[CEH96] K. C. Cox, S. G. Eick, and T. He. 3D geographic network displays.
SIGMOD Record, 25(4):50–54, 1996.

[CFSD90] J. D. Case, M. Fedor, M. L. Schoffstall, and J. Davin. Simple Net-
work Management Protocol (SNMP). RFC 1157 (Historic), May
1990.

[Che07] B. Cheswick. Internet mapping project. http://www.cheswick.

com/ches/map/, 2007.

[Com] International Electrotechnical Commission. Web site. http://www.
iec.ch/.

[com09a] Mimezine community. Wigle – wireless geographic logging engine.
http://www.wigle.net/gps/gps/main, 2009.

[Com09b] Plixer International Systrax Community. Visualization of NetFlow
data, 2009.

[Cor] Lumeta Corporation. IPsonar MapViewer.

[Cor09] Renesys Corporation. Routing intelligence tools. http://www.

renesys.com/, 2009.

[CP] D. Cox and R. Patterson. NSFNET growth until 1995.
http://www.caida.org/projects/internetatlas/gallery/

nsfnet/data.xml.

[CRC+08] L. Cittadini, T. Refice, A. Campisano, G. Di Battista, and C. Sasso.
Measuring and visualizing interdomain routing dynamics with BG-
Path. In Proc. ISCC 2008, 2008.

[Dar09] LLC Dartware. Intermapper. http://www.intermapper.com/

products/intermapper/, 2009.

[Des09] Packet Design. Route explorer. http://www.packetdesign.com/,
2009.

REFERENCES 797

[DETT99] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph
Drawing. Prentice Hall, 1999.

[DH98] S. Deering and R. Hinden. Internet Protocol, Version 6 (IPv6)
Specification. RFC 2460 (Draft Standard), December 1998.

[Dit09] W. Dittmer. World-wide mapping of reverse traceroute and looking
glass servers, 2009.

[DLV97] G. Di Battista, R. Lillo, and F. Vernacotola. Ptolomaeus. http:

//www.dia.uniroma3.it/~ptolemy/, 1997.

[DSN12] G. Di Battista, C. Squarcella, and W. Nagele. How to visualize the
K-Root name server. Journal of Graph Algorithms and Applications,
Special Issue of GD 2011, 2012.

[ea05] B. Lyon et al. The Opte project. http://www.opte.org/, 2005.

[EHH+00] D. Estrin, M. Handley, J. Heidemann, S. McCanne, Y. Xu, and
H. Yu. Network visualization with the VINT network animator
Nam. IEEE Computer, 33(11):63–68, 2000.

[EHH+05] D. Estrin, M. Handley, J. Heidemann, S. McCanne, Y. Xu, and
H. Yu. Nam: Network Animator. http://isi.edu/nsnam/nam/,
2005.

[Ent09] Enterasys. NetSight Atlas Console, 2009.

[EW93] S. G. Eick and G. J. Wills. Navigating large networks with hierar-
chies. In Proc. Visualization ’93, pages 204–209, 1993.

[FHN+07] X. Fu, S. H. Hong, N. S. Nikolov, X. Shen, Y. Wu, and K. Xu.
Visualization and analysis of email networks. In Proc. IEEE Asia
Pacific Symposium on Visualization (APVIS ’07), pages 1–8, 2007.

[FNMT94] H. Fuji, S. Nakai, H. Matoba, and H. Takano. Real-time bifocal
network-visualization. In Proc. NOMS 1994, 1994.

[fS] International Organization for Standardization. Web site. http:

//www.iso.org/.

[GGW07] R. Görke, M. Gaertler, and D. Wagner. LunarVis – Analytic vi-
sualizations of large graphs. In Proc. Graph Drawing 2007, pages
352–364, 2007.

[GH02] J. Gallagher and B. Huffaker. PlotPaths. http://www.caida.org/
tools/visualization/plotpaths/, 2002.

[GK05] C. Gotsman and Y. Koren. Distributed graph layout for sensor
networks. Journal of Graph Algorithms and Applications, pages
1–15, 2005.

[GKN04] E. Gansner, Y. Koren, and S. North. Topological fisheye views for
visualizing large graphs. In Proc. INFOVIS ’04, pages 175–182,
2004.

[GMN03] E. R. Gansner, J. M. Mocenigo, and S. C. North. Visualizing soft-
ware for telecommunication services. In Proc. SOFTVIS 2003, pages
151–157, 2003.

[GMO+03] P. A. Aranda Gutiérrez, P. Malone, M. ÓFoghlú, S. Michaelis, and
J. Seger. Acquisition, modelling and visualisation of inter-domain
routing data. In Proc. IPS 2004, 2003.

798 CHAPTER 25. COMPUTER NETWORKS

[Gro00] Roma Tre University Computer Networks Research Group. Hermes.
http://tocai.dia.uniroma3.it/~hermes/, 2000.

[GT00] R. Govindan and H. Tangmunarunkit. Heuristics for Internet map
discovery. In Proc. INFOCOM 2000, 2000.

[Hew09] Hewlett-Packard. HP Operations Manager (formerly OpenView),
2009.

[Hir07] Hirschmann. Industrial HiVision, 2007.

[HJWkc98] B. Huffaker, J. Jung, D. Wessels, and kc claffy. Visualiza-
tion of the growth and topology of the NLANR caching hier-
archy. http://www.caida.org/tools/visualization/plankton/
Paper/plankton.xml, Mar 1998.

[HNkc97] B. Huffaker, E. Nemeth, and kc claffy. Otter: A general-
purpose network visualization tool. http://www.caida.org/

tools/visualization/otter/, 1997.

[HNkc99] B. Huffaker, E. Nemeth, and kc claffy. Tools to visualize the internet
multicast backbone. In Proc. INET 99, 1999.

[HPF07] B. Huffaker, J. Polterock, and M. Fomenkova. Cuttlefish
geographic visualization tool. http://www.caida.org/tools/

visualization/cuttlefish/, Jun 2007.

[Hyu05] Y. Hyun. Walrus – Graph visualization tool. http://www.caida.

org/tools/visualization/walrus/, 2005.

[IBM09] IBM. Tivoli network manager topology visualization, 2009.

[IEE09] IEEE. Working group for 802.11 WLAN standards, 2009.

[IMN84] H. Ishio, J. Minowa, and K. Nosu. Review and status of wavelength-
division-multiplexing technology and its application. Journal of
Lightwave Technology, 2(4), 1984.

[Ips09] Ipswitch, Inc. WhatsUpGold network mapping. http://www.

whatsupgold.com/, 209.

[ISO] ISO/IEC. Open Systems Interconnection – basic reference model.
ISO/IEC standard 7498.

[Jac99] V. Jacobson. Gtrace. http://www.caida.org/tools/

visualization/gtrace/, 1999.

[JD08] K. Juenemann and J. Dinger. Ovlvis: Visualization of peer-to-peer
networks in simulation and testbed environments. In Proc. Com-
munications and Networking Simulation Symposium (CNS 2008),
2008.

[Jon09] H. Jones. Network weathermap. http://www.

network-weathermap.com/, 2009.

[kc97] kc claffy. IETF presentation BGP MPEG animations. http://www.
caida.org/publications/presentations/Ietf199712/Movie/,
1997.

[kcH97] kc claffy and B. Huffaker. Mapnet, macroscopic Internet vi-
sualization and measurement. http://www.caida.org/tools/

visualization/mapnet/, 1997.

[KD01] R. Kitchin and M. Dodge. Atlas of Cyberspace. Addison-Wesley,
2001.

REFERENCES 799

[KGS07] H. Kang, L. Getoor, and L. Singh. Visual analysis of dynamic group
membership in temporal social networks. SIGKDD Explorations
Newsletter, 9(2), 2007.

[KMG88] G. Kar, B. Madden, and R. Gilbert. Heuristic layout algorithms for
network management presentation services. In Proc. IEEE Network
1988, 1988.

[KNK99] E. E. Koutsofios, S. C. North, and D. A. Keim. Visualizing large
telecommunication data sets. IEEE Computer Graphics and Appli-
cations, 19:16–19, 1999.

[KNTK99] E. E. Koutsofios, S. C. North, R. Truscott, and D. A. Keim. Visual-
izing large-scale telecommunication networks and services. In Proc.
Visualization ’99, pages 457–461, 1999.

[Kvi03] O. Kvittem. Scaling network management tools. In Proc. NANOG
2003, 2003.

[Lab09] UCLA Internet Research Lab. LinkRank visualization. http://

linkrank.cs.ucla.edu/, 2009.

[Lim09] M. Lima. VisualComplexity.com Internet visualizations. http:

//www.visualcomplexity.com/vc/index.cfm?domain=Internet,
2009.

[LMZ04] M. Lad, D. Massey, and L. Zhang. LinkRank: A graphical tool for
capturing BGP routing dynamics. In Proc. NOMS 2004, 2004.

[LMZ06] M. Lad, D. Massey, and L. Zhang. Visualizing Internet routing
changes. IEEE Transactions on Visualization and Computer Graph-
ics, Special Issue on Visual Analytics, 12(6), 2006.

[LUM] LUMETA. Internet mapping project. http://www.lumeta.com/

internetmapping/.

[Mai02] Clueless Mailers. Spamdemic map poster. http://www.

cluelessmailers.org/spamdemic/index.html, 2002.

[Map08] Peacock Maps. Internet posters. http://www.peacockmaps.com/,
2008.

[MB95] T. Munzner and P. Burchard. Visualizing the structure of the World
Wide Web in 3d hyperbolic space. In Proc. VRML 1995, pages 33–
38, 1995.

[MBd07] D. McFarland and S. Bender-deMoll. Sonia – social network image
animator, 2007.

[MBS08] C. Morrell, T. Babbitt, and B. K. Szymanski. Visualization in sensor
network simulator, sense and its use in protocol verification. Tech-
nical Report cs-08-13, Department of Computer Science, Rensselaer
Polytechnic Institute, 2008.

[McR99] D. W. McRobb. Skping. http://www.caida.org/tools/

measurement/skitter/skping/, 1999.

[Mei00] M. Meiss. Abilene weather map. http://www.caida.org/

projects/internetatlas/gallery/mping/, 2000.

[MFKN07] F. Mansmann, F. Fischer, D. A. Keim, and S. C. North. Visualizing
large-scale IP traffic flows. In Proc. International Workshop on
Vision, Modeling, and Visualization, 2007, 2007.

800 CHAPTER 25. COMPUTER NETWORKS

[MHkcF96] T. Munzner, E. Hoffman, kc claffy, and B. Fenner. Visualizing the
global topology of the MBone. In Proc. INFOVIS ’96, pages 85–92,
1996.

[Mic09] Microsoft. Windows VistaTM Full Map View, 2009.

[MKF+06] P. Mahadevan, D. Krioukov, M. Fomenkov, B. Huffaker, X. Dim-
itropoulos, kc claffy, and A. Vahdat. The internet as-level topology:
Three data sources and one definitive metric. ACM SIGCOMM
Computer Communication Review, Jan 2006.

[MKN+07] F. Mansmann, D. A. Keim, S. C. North, B. Rexroad, and D. Shele-
heda. Visual analysis of network traffic for resource planning, in-
teractive monitoring, and interpretation of security threats. IEEE
Trans. on Visualization and Computer Graphics, 13(6):1105–1112,
2007.

[Moy94] J. Moy. OSPF Version 2. RFC 1583 (Draft Standard), March 1994.

[MR91] K. McCloghrie and M. Rose. Management Information Base for Net-
work Management of TCP/IP-based internets:MIB-II. RFC 1213
(Standard), March 1991.

[Mun97] T. Munzner. H3: Laying out large directed graphs in 3D hyperbolic
space. In Proc. INFOVIS 1997, pages 2–10, Oct 1997.

[NCC] RIPE NCC. The Internet Routing Registry: History and Purpose.
http://www.ripe.net/db/irr.html.

[net09a] neteXpose. DNA network topology visualization, 2009.

[Net09b] Brocade (Foundry Networks). IronView network manager, 2009.

[Net09c] Juniper Networks. Network and security manager, 2009.

[Net09d] Ludios Networks. Nexus facebook graph. http://nexus.ludios.

net/, 2009.

[NoCSNCTUT09] Network and System Laboratory Dep.t of Computer Science Na-
tional Chiao Tung University Taiwan. NCTUns. http://nsl10.

csie.nctu.edu.tw/, 2009.

[Nor02] M. Norris. Gigabit Ethernet Technology and Applications. Artech
House Publishers, 2002.

[NSM99] S. Nakamae, Y. Sekiya, and J. Murai. A study into a visualization
of an ipv6 network. In Proc. INET 99, 99.

[oANTtE08] DANTE (Delivery of Advanced Network Technology to Europe).
Topology maps. http://www.dante.net/, 2008.

[OC07] R. Oliveira and Y. J. Chi. Visualizing Internet topology dynamics
with Cyclops. http://irl.cs.ucla.edu/cyclops/, 2007.

[OCLZ08] R. Oliveira, Y. J. Chi, M. Lad, and L. Zhang. Cyclops: the AS-Level
connectivity observatory. Presentation at NANOG 43, 2008.

[OCP+07] R. Oliveira, Y. J. Chi, I. Pefkianakis, M. Lad, and L. Zhang. Vi-
sualizing Internet topology dynamics with Cyclops. Poster at SIG-
COMM 2007, 2007.

[OGK06] J. Oberheide, M. Goff, and M. Karir. Flamingo: Visualizing internet
traffic. In Proc. NOMS 2006, pages 150–161, 2006.

REFERENCES 801

[OKB06] J. Oberheide, M. Karir, and D. Blazakis. Vast: Visualizing au-
tonomous system topology. In Proc. Workshop on Visualization for
Computer Security (VizSEC ’06), pages 71–80, 2006.

[oKIC02] University of Kansas Information and Telecommunication Tech-
nology Center. Wireless network visualization project. http:

//www.ittc.ku.edu/wlan/, 2002.

[Oli09] R. Oliveira. Cyclops: the AS-Level connectivity observatory. http:
//cyclops.cs.ucla.edu/, 2009.

[oO] University of Oregon. Route views project. http://www.

routeviews.org/.

[Ora90] D. Oran. OSI IS-IS Intra-domain Routing Protocol. RFC 1142
(Informational), February 1990.

[PH99] R. Periakaruppan and B. Huffaker. Geoplot. http://www.caida.

org/tools/visualization/geoplot/, 1999.

[PIP05] N. Patwari, A. O. Hero III, and A. Pacholski. Manifold learning
visualization of network traffic data. In Proc. SIGCOMM 2005,
2005.

[Piz07] M. Pizzonia. From BGPlay to iBGPlay: Graphical inspection of
your routing data. In 55th Re’seaux IP Europe’ens Meeting (RIPE
55), 2007.

[PN99] R. Periakaruppan and E. Nemeth. GTrace – A graphical traceroute
tool. In Proc. LISA ’99, Nov 1999.

[Pos81a] J. Postel. Internet Control Message Protocol. RFC 792 (Standard),
September 1981.

[Pos81b] J. Postel. Internet Protocol. RFC 791 (Standard), September 1981.

[Pro02] M. Prodanovic. Java Autonomous System Path Visualization In-
terface (JASPVI). http://lab.verat.net/Jaspvi/, 2002.

[Res09] AT&T Research. Graphviz graph visualization software. http:

//www.graphviz.org/, 2009.

[RIP] Réseaux IP Européens – RIPE. Routing information service. http:
//www.ripe.net/ris/.

[RIS09] RIPE RIS. BGPviz. http://www.ris.ripe.net/bgpviz/, 2009.

[Rom09] Roma Tre University, Computer Networks Research Group. BGPlay
@ Route Views. http://bgplay.routeviews.org/bgplay/, 2009.

[RTM08] M. Roughan, S. J. Tuke, and O. Maennel. Bigfoot, sasquatch, the
yeti and other missing links: What we don’t know about the as
graph. In Proc. ICM 2008, 2008.

[RTU09] Computer Networks Research Group Roma Tre University. iBG-
Play. http://www.ibgplay.org/, 2009.

[Sal00] T. Salo. Real-time visualization of IP over connection-oriented
WANs. In Proc. NANOG 2000, 2000.

[Sii01] K. Siil. Using topological mapping to manage and secure large
networks. In Proc. NANOG 2001, 2001.

[Sma09] SmartDraw. Network topology drawing software. http://www.

smartdraw.com/, 2009.

802 CHAPTER 25. COMPUTER NETWORKS

[SMW04] N. Spring, R. Mahajan, and D. Wetherall. Measuring ISP topologies
with RocketFuel. IEEE Trans. on Networking, 12(1):2–16, 2004.

[Sof09a] Inc. SoftConcept. SeeNet. http://www.softconcept-inc.com/

seenetweb/, 2009.

[Sof09b] Tulip Software. Tulip. http://www.tulip-software.org/, 2009.

[SS96] C. A. Siller and M. Shafi. SONET/SDH: A Sourcebook of Syn-
chronous Networking. Wiley – IEEE Press, 1996.

[Sta07] W. Stallings. Data and Computer Communications. Prentice Hall,
2007.

[Sys09a] Cisco Systems. NetFlow. http://www.cisco.com/go/netflow,
2009.

[Sys09b] Cisco Systems. Synchronous Data Link Control (SDLC) and deriva-
tives, 2009.

[Tam08] R. Tamassia. Graph drawing for security visualization. GD 2008,
2008.

[Tec05] BBN Technologies. BBN SpyGlass animation of application traf-
fic flow. http://www.dist-systems.bbn.com/tech/spyglass/,
2005.

[Tec09] OPNET Technologies. NetMapper. http://www.opnet.com/, 2009.

[Tel09] TeleGeography. Cartographic maps. http://www.telegeography.
com/maps/index.php, 2009.

[TJKMW04] S. T. Teoh, T. J. Jankun-Kelly, K.-L. Ma, and S. F. Wu. Visual
data analysis for detecting flaws and intruders in computer network
systems. Computer Graphics and Applications, Special Issue on
Visual Analytics, 24(5):27–35, 2004.

[TK05] M. Toyoda and M. Kitsuregawa. A system for visualizing and an-
alyzing the evolution of the web with a time series of graphs. In
Proc. ACM Conference on Hypertext and Hypermedia, pages 151–
160, 2005.

[Tou09] LLC TouchGraph. Touchgraph google browser. http://www.

touchgraph.com/TGGoogleBrowser.html, 2009.

[Tri06] M. Trier. Towards a social network intelligence tool for visual analy-
sis of virtual communication networks. In Virtuelle Organisationen
und Neue Medien, 2006.

[TvAG+06] J. Toledo, V. van Adrighem, R. Ghetta, E. Mann, and F. Peters.
EtherApe. http://etherape.sourceforge.net/, 2006.

[UNI09] UNINETT. Operations center network maps. http://drift.

uninett.no/index.en.html, 2009.

[Vis09] Visualware. Visualroute. http://visualroute.visualware.com/,
2009.

[Vol09] Y. Volokitin. Lantopolog physical network discovery software.
http://www.lantopolog.com/, 2009.

[VT06] G. Vandenberghe and J. Treurniet. Automating the presentation
of computer networks. Technical Report ADA477079, Defence Re-
search and Development, Canada, Ottawa, 2006.

REFERENCES 803

[WAN08] Wide Area Network Design Laboratory – WANDL. IP/MPLSView.
http://www.wandl.com/html/mplsview/, 2008.

[WCH+03] S. Y. Wang, C. L. Chou, C. H. Huang, C. C. Hwang, Z. M. Yang,
C. C. Chiou, and C. C. Lin. The design and implementation of the
NCTUns 1.0 network simulator. Computer Networks, 42(2):175–
197, 2003.

[web09] Facebook. http://www.facebook.com/, 2009.

[WH09] S.Y. Wang and Y.M. Huang. NCTUns Tool for Innovative Network
Emulations, chapter 13. Nova Science Publishers, 2009.

[wim09] WiMAX forum, 2009.

[WJA05] T. Wong, V. Jacobson, and C. Alaettinoglu. Internet routing
anomaly detection and visualization. In Proc. DSN 2005, 2005.

[WPP07] M. S. Withall, I. W. Phillips, and D. J. Parish. Network visual-
ization: A review. Loughborough University IET Communications,
1(3), 2007.

[WS04] A. Wool and G. Sagie. A clustering approach for exploring the
Internet structure. In Proc. IEEE Convention of Electrical and
Electronics Engineers in Israel (IEEEI ’04), pages 149–152, 2004.

[Wyv09] Wyvernsoft. Netpalpus. http://www.wyvernsoft.com/, 2009.

[YDZ04] A. H. Youssefi, D. J. Duke, and M. J. Zaki. Visual web mining. In
Proc. WWW 2004, 2004.

[YGM05] B. Yip, S. Goyette, and C. Madden. Visualising Internet traffic data
with three-dimensional spherical display. In Proc. APVIS 2005,
2005.

[YMMW09] H. Yan, D. Massey, E. McCracken, and L. Wang. BGPMon and
NetViews: Real-time BGP monitoring system. Demo at INFOCOM
2009, 2009.

[YSS05] Y. Shavitt and E. Shir. DIMES: Let the Internet measure itself.
Computer Communication Review, 35(5), 2005.

[YTS06] Y. Rekhter, T. Li, and S. Hares. A Border Gateway Protocol 4
(BGP-4). RFC 4271, Jan 2006.

[YYT04] X. Yin, W. Yurcik, and M. Treaster. Visflowconnect: Netflow visu-
alizations of link relationships for security situational awareness. In
Proc. Workshop on Visualization and Data Mining for Computer
Security (VizSEC/DMSEC ’04), pages 26–34, 2004.

[ZW92] J. A. Zinky and F. M. White. Visualizing packet traces. In Proc.
SIGCOMM 1992, 1992.

26
Social Networks

Ulrik Brandes
University of Konstanz

Linton C. Freeman
University of California, Irvine

Dorothea Wagner
Karlsruhe Institute of

Technology

26.1 Social Network Analysis . 805
26.2 Visualization Principles . 807

Illustrative Example • Substance, Design, Algorithm

26.3 Substance-Based Designs . 810
Prominence • Cohesion • Two-Mode Networks • Dynamics

26.4 Trends and Challenges. 827
References . 828

Social networks provide a rich source of graph drawing problems, because they appear in an
incredibly wide variety of forms and contexts. After sketching the scope of social network
analysis, we establish some general principles for social network visualization before finally
reviewing applications of, and challenges for, graph drawing methods in this area. Other
accounts more generally relating to the status of visualization in social network analysis are
given, e.g., in [Klo81, BKR+99, Fre00, Fre05, BKR06]. Surveys that are more comprehensive
on information visualization approaches, interaction, and network applications from social
media are given in [CM11, RF10, CY10].

26.1 Social Network Analysis

The fundamental assumption underlying social network theory is the idea that seemingly
autonomous individuals and organizations are in fact embedded in social relations and
interactions [BMBL09]. The term social network was coined to delineate the relational
perspective from other research traditions on social groups and social categories [Bar54].

In general, a social network consists of actors (e.g., persons, organizations) and some
form of (often, but not necessarily: social) relation among them. The network structure
is usually modeled as a graph, in which vertices represent actors, and edges represent ties,
i.e., the existence of a relation between two actors. Since traits of actors and ties may be
important, both vertices and edges can have a multitude of attributes. We will use graph
terminology for everything relating to the data model, and social network terminology when
referring to substantive aspects.

While attributed graph models are indeed at the heart of formal treatments, it is worth
noting that theoretically justified data models are not as obvious as it may seem [But09].
In fact, social network analysis is maturing into a paradigm of distinct structural theories
and associated relational methods. General introductions and methodological overviews
can be found in [WB88, WF94, Sco00, CSW05, BE05], a historic account in [Fre04a], and
a comprehensive collection of influential articles in [Fre08].

805

806 CHAPTER 26. SOCIAL NETWORKS

Figure 26.1 A sociogram from [Mor53, p. 422] showing a graph with fourteen highlighted
vertices and four clusters.

In social network reseach it is important to clarify whether the networks are considered
dependent or explanatory variables. In the former case the interest is in why and how
networks form the way they do, and in the latter case the interest is in why and how
networks influence other outcomes. For convenience, we will refer to the former as network
theory (studying network formation) and to the latter as network analysis (studying network
effects). A major distinction from non-network approaches is that the unit of analysis is
the dyad, i.e., a pair of actors (may they be linked or not) rather than a monad (a singleton
actor).

The methodological toolbox can be organized into the following main compartments.

Indexing The assignment of values to predetermined substructures of any size. Most
common are vertex, edge, and graph indices such as vertex centrality and graph
centralization [Fre79], but sometimes the interest is also in evaluating larger
substructures (e.g., group centrality) or the distribution of scores (e.g., degree
distribution).

Grouping The identification of substructures and membership in them. Most com-
mon are decomposition into relatively dense subgraphs, partitions into equivalent
positions [Ler05], and, more generally, blockmodeling [DBF05]. Other examples
include subgraph counts (e.g., triad census) and various forms of domination and
brokerage.

Modeling The use of statistical models for assessment and inference. Most common
are modeling attempts to reproduce networks statistics, parameter estimation,
and regression-type analyses.

Concrete examples of such methods are considered later in this chapter. Other important
types of variation arise from special types of data such as longitudinal (temporal), multi-
mode (multiple actor types), multiplex (multiple relation types), or multi-level (hierarchies
of actors) data.

26.2. VISUALIZATION PRINCIPLES 807

Figure 26.2 A notational system for sociograms [Mor53, p. 136].

Visualization has been instrumental in the study of social networks from the very begin-
ning, and some historical examples are based on surprisingly sophisticated designs. The
example in Figure 26.1 is from Moreno’s book [Mor53], which is a rich source in this regard.
In fact, he even specified a visual notation standard reproduced in Figure 26.2 (although
neither graphical notation nor labeling are applied fully consistently), and introduced the
terms sociogram (for a graphical representation of a social network) and sociomatrix (for a
matrix representation of a social network).

26.2 Visualization Principles

Let us first establish a frame of reference for social network visualization based on a few
organizing principles. We will then elaborate on various visualization approaches and the
graph drawing problems they pose in Section 26.3.

The utility of a diagram is dependent on purpose and context. The two main purposes of
network visualizations are exploration of data and communication of findings. The potential
of using diagrammatic representations in the research process itself was stressed already by
Moreno.

“A process of charting has been devised by the sociometrists, the sociogram,
which is more than merely a method of presentation. It is first of all a method
of exploration.” [Mor53, p. 95f]

A network diagram should therefore be designed to display the information relevant for an
analytic perspective. As a consequence, there cannot be a single best way of representing
social networks graphically, which in turn creates lots of opportunities for visualization and
algorithm design. For concreteness, we give one striking example.

808 CHAPTER 26. SOCIAL NETWORKS

26.2.1 Illustrative Example

The following social network study [Kra96] has been used for the same purpose several
times [BRW01, Bra08]. The study was conducted in an internal auditing unit of a large
industrial company when organizational changes introduced by the newly assigned manager
did not improve the unit’s performance.

The formal hierarchy is shown in Figure 26.3(a), where made-up names are used to
identify employees. To assess the internal functioning of the group, employees were asked
who they would turn to for work related questions. The data obtained is an asymmetric
advice network,

Manuel . 0 0 0 0 0 0 0 0 0 0 1 0 0 manager
Charles 1 . 0 1 0 0 0 0 0 0 0 1 0 0
Donna 1 0 . 0 0 0 0 0 0 0 0 1 0 0 supervisors
Stuart 1 1 0 . 0 0 0 0 0 0 0 1 0 0

Bob 0 0 0 1 . 0 1 0 1 0 0 0 0 0
Carol 0 1 0 0 0 . 0 0 0 0 0 0 0 0
Fred 0 0 0 1 0 0 . 0 0 0 0 0 0 0

Harold 0 1 0 0 0 0 0 . 0 0 0 0 0 0 auditors
Sharon 0 0 0 1 0 0 0 0 . 0 0 0 0 0
Wynn 0 1 0 0 0 0 0 0 0 . 0 0 0 0
Kathy 0 0 1 0 0 0 0 0 0 0 . 1 0 1
Nancy 0 0 1 0 0 0 0 0 0 0 0 . 0 0
Susan 0 0 1 0 0 0 0 0 0 0 1 0 . 1 secretaries
Tanya 0 0 1 0 0 0 0 0 0 0 1 1 0 .

and the resulting directed network is shown in Figure 26.3(b). While the data is represented
with clarity, there are no obvious implications. The situation becomes much more compre-
hensible when we understand that the rationale for looking at the advice network is the
identification of an informal work hierarchy. Rearranging the vertices such that a maximum
number of edges is directed upwards (and thus aligns with what can be assumed to be an
informal work hierarchy) as in Figure 26.3(c) yields a strikingly clear picture with a single
relation not in accordance with the informal hierarchy (but the formal): everyone, directly
or indirectly, and including the manager himself, is seeking advice from Nancy, a secretary
that was dismissive of the changes introduced. (Of course, after seeing a picture similar
to this, the manager sat down with her, discussed her reservations and made sure that she
understood his good intentions and the long-term benefits of his plans, thus turning the
situation around.)

26.2.2 Substance, Design, Algorithm

The example above illustrates the importance of considering three key aspects in social
network visualization [BKR+99].

Substance In general, the information to be conveyed in a network visualization is
more than just the underlying graph. The substantive interest of those who
collected network data typically necessitates the inclusion of attributes. More-
over, additional data may have been generated as the result of an analysis. In
the above example, the substance of interest is the informal hierarchy within a
business unit, and only by considering it in the design of the visualization, the
diagram becomes informative. Through the appreciation of relevant substance,
i.e., the application-specific contexts and interests, data visualizations are turned
into information visualizations.

26.2. VISUALIZATION PRINCIPLES 809

TanyaSusanNancy

Stuart Donna Charles

Fred SharonBobKathyCarol WynnHarold

Manuel

(a) organizational chart

Tanya

Susan

Nancy

 Stuart

 Donna

 Charles

Fred

Sharon
Bob

 Kathy

Carol

Wynn

 Harold

 Manuel

(b) data visualization (force-directed layout)

Tanya

Susan

Nancy

Stuart
Donna

Charles

Fred
Sharon

Bob

Kathy

Carol
Wynn Harold

Manuel

(c) information visualization (upward layout)

Figure 26.3 Organizational chart and advice network in a business unit (adapted
from [Kra96]).

810 CHAPTER 26. SOCIAL NETWORKS

Design Visualization design is the specification of a mapping from an information
space to its graphical representation. The core choices are in assigning graphical
elements such as points, lines, and areas to data objects, and in defining their
graphical attributes such as position, shape, size, color, and so on such that the
information is perceived correctly (effectiveness) and with low cognitive effort
(efficiency).
Many overlapping and contradicting criteria need to be considered. In particu-
lar, Tufte advocates general information design criteria such as parsimony and
accuracy [Tuf83, p. 51]. An important readability criterion is the avoidance of
crossings [PCJ97], although finer distinctions may require more research: in a
statement on the accurate representation of substance,

“The simplest, most efficient construction is one which presents the
fewest meaningless intersections, while preserving the groupings, op-
positions, or potential orders contained in the component . . . ” [Ber83,
p. 271],

Bertin acknowledges implicitly that crossings may also be meaningful. The effi-
ciency of information visualizations, and network visualizations in particular, is
a wide open field. A recent suggestion includes the assessment of cognitive load
in user studies [HEH09].

Algorithm Suitable design is not necessarily realizable. Locally plausible design
choices such as certain desired edge lengths may be interdependent and even
contradicting. In the advice network example, the goal to direct as many edges
upward as possible corresponds to an NP-hard problem (FEEDBACK ARC
SET) and may have multiple solutions of which a visualization will represent
only one. Approximate solutions and non-representative solutions are highly
problematic. If the advice network had been a directed cycle, all cyclic permuta-
tions represent equally good solutions to the upward drawing problem, because
only one edge is pointing downward. Since each time a different actor ends up on
top and only one such permutation is represented, the drawing provides a rather
selective perspective. This is of course not due to the computational complexity
of reversing the least number of edges; even if the advice network has an acyclic
underlying graph, the vertical order is not defined uniquely. Note that in Fig-
ure 26.3(c), all secretaries could have been placed higher than the supervisors of
the two auditing teams without reversing an edge.
Computational complexity as well as existence of solutions, their non-uniqueness,
and the possibility of artifacts therefore place major restrictions on possible de-
signs.

The richness of substantive interests and the need for substance-based designs thus creates
immense potential for graph layout algorithms tailored to social networks.

26.3 Substance-Based Designs

Depending on data, substantive interest, and presentation context, very different designs
are required for effective and efficient exploration and communication of social network
information. Depending on the point of view, this is either a major burden or a horn of
plenty for algorithmic and design challenges.

In this section, we review examples of substance-based designs and corresponding graph
drawing approaches to demonstrate the richness of both, existing approaches and open

26.3. SUBSTANCE-BASED DESIGNS 811

(a) Sympathy and antipathy among players in
an American football team. Layout according
to lineup, though slightly distorted to allow for
straight edges [Mor53]

(b) Passes among players during the FIFA World
Cup 2010 final. Layout according to (assumed)
tactical lineup [PNK10]

(c) Friendship choices among villagers. Layout
in 3D using indegree, outdegree, and a status
attribute as coordinates [Cha50]

(d) Peering among autonomous systems of the
Internet. Radial layout according to degree and
latitude [CAI]

Figure 26.4 Network visualizations in which coordinates are not defined by a graph
drawing algorithm.

812 CHAPTER 26. SOCIAL NETWORKS

problems. Our selection of examples is, of course, heavily biased by their algorithmic
interestingness. Figure 26.4 shows examples for designs we have excluded, because they do
not require graph layout algorithms (although labeling and edge routing may be an issue).

We concentrate on two important analytical concepts (prominence and cohesion), and
two data categories (two-mode and dynamic data). The designs we deal with are largely
based on intuition and plausibility rather than perceptual and cognitive theories and empir-
ical evidence. Among the few attempts to evaluate effectiveness and efficiency of network
visualization design are [Win94, PCJ97, MBK97, HHE07, HEH09].

26.3.1 Prominence

Prominence indices p : V → R≥0 are used to rank the vertices V according to their
structural importance [KB83]. Since there is no unanimity about their conceptual founda-
tions [Fre79, Fri91], numerous such indices exist, and their properties vary tremendously. Al-
though terminology is not well defined and more refined classifications exist [Bor05, BE06],
we distinguish only two groups based on geometric metaphors frequently invoked in their
interpretation.

Status

It is commonplace to differentiate status into “high” and “low,” so that it seems
almost mandatory to exploit this geometric interpretation for network visualizations. Not
surprisingly, the apparent correspondence between substantive and geometric intuition has
been used in the design of network diagrams already in times when no layout algorithms
were available to social scientists. Figure 26.5 shows two historic examples, one with an
extrinsic status attribute, and another with an intrinsic, structural one.

The advice network used for illustration above is an example in which a status hierarchy
is conceived as emerging from an informal advice-seeking relation. Indeed, status is often
analyzed in networks with directed edges, and because of how status indices are defined, the
direction of an edge is generally aligned with the difference in status between the endpoints.

The simplest example of a structural status index is indegree, which was generalized in
numerous ways. Katz [Kat53], for instance, defines status by taking into account all directed
walks ending at a vertex. The status of a vertex v ∈ V in a graph G = (V,E) is defined by
p(v) =

∑
u∈V

(∑∞
k=1(αA)k

)
uv

, where 1/α, 0 < α < 1, is an attenuation factor, and A the

adjacency matrix of G. Recall that the entries (Ak)uv give the number of walks of length k
from vertex u to vertex v. Clearly, we obtain the same ranking as with indegree for very
small α, and attentuation must be large enough to make sure that the sum converges.

A natural class of layout algorithms that can be adapted for status drawings is the
so-called Sugiyama framework, which is described in detail in Chapter 13. Its use was
proposed in [BRW01], where the instantiation employs one-dimensional clustering of status
scores for layer asignment and standard approaches for crossing reduction and horizontal
coordinate assignment. Clustering is necessary since vertical coordinates are fixed and
differences can be quite small, resulting in very close layers between which edges run almost
horizontally. However, clustering worsens another, more general, open problem, namely
how to accomodate intra-layer edges in layered layouts.

Two different approaches are less sensitive to this kind of problem and in addition more
scalable. The first and simpler one is to fix y-coordinates and to determine the x-coordinates
using a one-dimensional layout algorithm [BC03b], possibly taking the fixed dimension into
account [KH05]. The second, more flexible, and likely to be more effective one is based on
constrained optimization of stress using a gradient projection method [DKM09].

26.3. SUBSTANCE-BASED DESIGNS 813

(a) extrinsically defined status [Why43]

(b) structurally defined status [Nor54]

Figure 26.5 Two status diagrams using the high-low metaphor.

814 CHAPTER 26. SOCIAL NETWORKS

(a) Sociometric choice quar-
tiles [Nor40]

(b) Grant’s background
gradient emphasizing the
center [Nor52]

(c) McKenzie’s board for man-
ual layout [Nor52]

Figure 26.6 Target diagrams in which rings correspond to levels of importance.

Centrality

Similar to indices assessing status, centrality indices also have an immediate geometric
connotation. A large value usually indicates that a vertex is structurally central, and a low
value indicates that it is structurally peripheral. Just how strong, and sometimes confusing,
the relationship between spatial metaphors and formal concepts can be is illustrated by the
controversy of [Cha50, CJ51] about the structural status and location of prominent actors
in the network of Figure 26.4(c).

It is therefore not surprising that centrality-based designs were proposed already in the
1940s. See Figure 26.6 for some historic examples.

While the early designs were not based on an arbitrary index, but on indegree quartiles
(representing four levels of prominence in sociometric choice), they are easily generalized
to exact representation of any vertex centrality index c : V → R. The most frequently
used indices are degree, closeness, and betweenness centrality [Fre79] as well as eigenvector
centrality [Bon72].

Instead of placing vertices anywhere within one of four concentric rings, we can define
their distance from the center of the drawing based on their centrality score, for instance
using radii

r(v) = 1− c(v)−minx∈V c(x)

c0 + maxx,y∈V [c(x)− c(y)]
,

as layout constraints [BKW03], where c0 is an offset creating space in the center and may
depend on the number of highly central vertices. A constrained variant of the Kamada-
Kawai approach (see Chapter 12) using polar coordinates for radial drawings is described
in [Kam89]. In order to include crossings into the objective function, the method of [BKW03]
is based on simulated annealing and, in addition, divided into phases in which more weight
is placed on certain subconfigurations (related to confirmed and unconfirmed relationships).

Due to the radial coordinate constraints, crossings are not only a readability problem,
but also an indication of poor angular distribution. An extreme example of this kind is
presented in Figure 26.7(a), where a cutvertex and a separation pair are clearly visible by
virtue of a circular ordering with few crossings. A second class of radial drawing algorithms
is therefore based on combinatorial approaches that focus on crossing reduction in circular
layouts to determine the angular coordinate (see Chapter 9 and [BB04]). More generally,

26.3. SUBSTANCE-BASED DESIGNS 815

(a) circular [Mit94] (b) radial [BW04]

Figure 26.7 Circular and radial drawing.

approaches for layered layout can be adapted to radial levels (Chapter 13 and [Bac07]).
The most recent approach uses stress minimization with a penalty term [BP11] measuring

deviation from the assigned radii. By increasing the relative weight of the penalty term
during iterative stress reduction, vertices are gradually forced to lie on their respective circle.
While it appears that the less severe restrictions to which intermediate layouts are subjected
may provide an advantage over gradient-projection methods, thorough experimentation is
needed to determine which methods are most practical for centrality layouts.

To explore the differences between various centrality indices, methods extending the com-
parison based on scatterplot matrices [KS04] have been proposed in [DHK+06]. Among
them is a force-directed method for the joint layout of stacked radial drawings of the same
network with varying radial constraints. A visual variational approach to centrality within
a network is introduced in [CCM12].

26.3.2 Cohesion

Cohesion is broadly defined as strong interconnectedness of a group of actors, although the
formal structural definition of interconnectedness may vary according to type of relations
and substantive interest. In the extreme, cohesion is defined in terms of cliques [LP49], but
weaker definitions such as the degree-based cores [Sei83] or connectivity-based λ-sets [BES90]
exist.

In Gestalt Theory [Wer44], the law of proximity suggests that cohesive, and in fact all
types of groups can be represented effectively by placing their members closer to each other
than to other actors. The friendship network of pupils in the 4th grade shown in Figure 26.8,
for instance, is divided according to gender, and this striking correspondence between a ver-
tex attribute and structural cohesion is made evident by spatial separation. However, there
is little empirical evidence whether and which kind of cohesion is represented effectively by
spatial proximity or separation in graphical representations of networks [MBK97, HHE07].

While the clumping of densely connected subgraphs is an implicit objective of force-
directed and spectral layout algorithms (see Chapter 12), a layout algorithm should be
generic and suitable for a range of cohesion measures.

In the previous section we assumed that the result of an analysis, a vertex index c : V → R

representing prominence, is part of the input for a graph drawing algorithm. Similarly, let

816 CHAPTER 26. SOCIAL NETWORKS

Figure 26.8 Friendship network of a 4th grade school class [Mor53, p. 163]. For graphical
notation see Figure 26.2; note, though, the horizontal line delineating the class and the
missing tick on the edge between NS and MP. The strong homophily effect is conveyed
effectively through spatial separation.

us now assume that a cohesion analysis resulted in a decomposition that can be described
in the following way.

A (hierarchically) clustered graph (G,T) is a graph G = (V,E) together with a rooted
tree T , the cluster tree, such that the leaves of T correspond to a partition of V and each
inner node is the union of the vertex sets of its children. Consequently, the root corresponds
to the entire vertex set V . A clustered graph (G,T) is called flat, if T has height one, i.e.,
it is equivalent to a graph G = (V,E) together with a partition of V .

Note that cohesion analysis may result in other types of data. But one example is set
covers of the vertices, which can be viewed as flat clustered graphs with overlapping clusters.
They are equivalent to hypergraphs, which in turn are treated in Section 26.3.3.

Clustered drawings

In an inclusion drawing of a (cluster) tree, vertices are represented as areas, and the
parent-child relation is represented by area inclusion. A straightforward representation of
clustered graphs consists of an inclusion drawing of the cluster tree overlayed on a drawing
of the underlying graph such that vertices are inside their cluster boundaries and edges cross
cluster boundaries at most once. Such a representation is called a clustered drawing , and
at least topologically implements the idea that vertices of the same group belong together.
Figures 26.1 and 26.9 provide examples.

Often, especially when the notion of cohesion and the implicit criteria of general layout
algorithms coincide sufficiently well, clustered drawings are obtained by adding boundary
curves to a layout obtained without consideration of the cluster tree. A typical example
is the application of multidimensional scaling to a distance matrix with the addition of
hierarchical clusters based on connectedness as shown in Figure 26.9(b).

Multidimensional scaling based on stress minimization and, in fact, all force-directed ap-
proaches can be customized to clustered graphs by adding cluster vertices that are connected
to cluster members via short edges, and to other cluster vertices via long edges or even re-
pulsion (e.g., [WM96, PNR08]). Alternatively, cohesion-based proximity can be ensured by
a combination of space-filling and force-directed techniques that explictly consider a cluster

26.3. SUBSTANCE-BASED DESIGNS 817

(a) Multilevel representation of
a clustered graph [EF97]

(b) Clusters outlined in 2D per-
spective projection of 3D draw-
ing [LG66]

(c) 3D drawing of a clus-
tered graph with implicit sur-
faces [BD07]

Figure 26.9 Clustered graphs.

tree [IMMS09]. Edge bundling along the cluster tree has been proposed as a method to
reduce visual clutter [Hol06].

To avoid meaningless crossings, every edge should cross only boundaries of clusters on the
unique path in the cluster tree that connects the leaves containing its endvertices. These
crossings are called necessary. A clustered graph is called c-planar (cluster planar) if it
can be drawn such that, simultaneously, there are no edge-edge crossings (i.e., the graph
is planar) and there are no edge-region crossings (except those necessary) [EFN99]. The
graph in Figure 26.1 is c-planar, although the drawing is not. Whether c-planarity can be
tested efficiently is an interesting open problem [CDB05].

A conceptually different visualization approach is based on clustering via semantic sub-
strates [SA06], where regions are prescribed for vertices belonging to an extrinsically defined
cluster (most often by sharing selected attribute values), and layout is carried out using any
method respecting region boundaries.

Sociomatrices

In addition to the commonly used graph representation, there is also a tradition of
depicting social relations in matrices. To distinguish them from socigrams, Moreno uses the
term sociomatrix [Mor53]. Using the example in Figure 26.10 sociomatrices were advocated,
e.g., in [FK46] (see also the interesting discussion that followed [Mor46, Kat47]), because
they appear to be more effective at visualizing cohesion [GFC05]. Moreover, matrix cells
are well defined and compactly organized locations for information associated with the
edges [vHSD09].

The main degree of freedom is the ordering of rows and columns, and its effect on vi-
sualization is illustrated in Figure 26.11. While Bertin [Ber83] appears to have coined the
term reorderable matrix and reordering is already discussed in [FK46], the idea has been
introduced much earlier [Pet99, Cze09]. Most relevant ordering problems are NP-hard,
though. They have been researched extensively under various names including seriation
and linear layout [DPS02]. Often, the underlying ordering objectives aim at reducing the
span of edges so that well-clustered graphs lead to visible blocks along the diagonal. For a
clustered graph, an optimal ordering can be determined efficiently if the maximum degree
of the cluster tree is bounded by a constant (see, e.g., [BDW99, Bra07]).

818 CHAPTER 26. SOCIAL NETWORKS

(a) ordered sociomatrix of a signed graph [FK46]

3 2 8 0

4 9 17 2

7 11 31 6

4 13 23 147

13

6

9

10

6 4 5 1

I

II

III

IV

V

(b) blocked sociomatrix with edge counts [Lon48]

Figure 26.10 Sociomatrix and block partition.

Figure 26.11 Trade between countries reordered according to a hierachical clustering
(reproduced from [BM04]).

26.3. SUBSTANCE-BASED DESIGNS 819

Figure 26.12 Integration of sociogram with sociomatrices for cohesive subgroups (repro-
duced from [HFM07]).

A system offering coordinated sociogram and sociomatrix views is MatrixExplorer [HF06].
The integrated view exemplified in Figure 26.12 uses both representations simultaneously
and the decision about which representation is used for which subgraph is based on the ob-
servation that matrix representations are especially suitable for dense (sub)graphs [HFM07].
Other augmentations of matrix representations to ease the recognition of paths include [HF07,
SM07], and a matrix representation for layered graphs that has been applied to genealo-
gies [BDF+10].

An integrated representation that is not based on a matrix of adjacencies, but a grid
layout of vertex attribute levels, are PivotGraphs [Wat06]. They generalize attribute-defined
layouts (cf. Figure 26.4(d)) and are particularly suited for the interactive exploration of
associations between vertex attributes and edges.

26.3.3 Two-Mode Networks

The networks considered so far are actually one-mode networks, because their vertices
represent elements of the same mode or category such as persons. Quite frequently, however,
the relation of interest is between elements of different categories such as persons and
groups [Bre74]. Such networks can be represented in rectangular matrices with rows and
columns indexed by the respective categories, and they are referred to as two-mode networks.

Two-mode networks are often visualized like one-mode networks, with different appear-
ances for vertices from the two categories. However, their distinctive characteristic of being
bipartite with a prescribed bipartition of vertices can also guide a layout algorithm.

As a variant of spectral layout for one-mode networks, left and right singular vectors of the
rectangular adjacency matrix (or other matrices derived from it) can be used for coordinates.
An entire family of related techniques is reviewed in [dLM00]. See also [Bre09] for a closely
related analytic technique and [WG98] for a comparison with graphical representations
described in the following subsection.

More combinatorial approaches are those developed for bipartite graphs. These include,
in particular, drawings in which the vertices of the two modes are placed on different parallel

820 CHAPTER 26. SOCIAL NETWORKS

Figure 26.13 A two-mode network with straight-line edges drawn between attribute ta-
bles of the two node sets, and its one-mode projections drawn with curved edges on the
sides (reproduced from [SJUS08]).

lines (2-level drawings) or, more generally, in separable regions. As usual, graph drawing
research in this area has focused on conditions under which the resulting drawings can be
made planar [Bie98, BKM98, CSW04, DGGL08] and on the difficulty of crossing minimiza-
tion [ZSE05]. It would be interesting to identify criteria for informative visualization of
bipartite graphs.

An example of several methods combining ideas of spatial separation and relative place-
ment are the anchored maps of [Mis07]. While one set of the bipartition is arranged on a
circle, vertices in the other are placed relative to their neighbors. An interesting mixture of
2-layer drawing and tabular representation is exemplified in Figure 26.13.

Hypergraphs

If it makes sense to consider the elements of one of the two modes as subsets of the
other (as with groups and persons such as company boards and directors), a two-mode
network can be treated as a hypergraph. In addition to those associated with the above
bipartite graph model, several other graphical representations are available.

A straightforward variant is the edge standard, which is based on an ordinary layout of
the bipartite graph representation of the hypergraph, but with a different rendering of the
induced star subgraphs that represent hyperedges. This star may be substituted for a tree
to shorten the total length of the hyperedge. For directed hypergraphs, layout constraints
can be used to enable directed edges to be rendered confluently [Mäk90].

Subdivision drawings [KvKS09] are subdivisions of the plane such that each vertex cor-
responds to a region and the set of regions corresponding to a hyperedge is connected.
This requires that the hypergraph has a planar support, i.e., the existence of a planar
graph on the same vertices such that each of the hyperedges of the original hypergraph
induces a connected subgraph. Deciding whether a hypergraph has a planar support is
NP-complete [JP87]. Tree supports, on the other hand, are characterized by the existence
of an elimination ordering in which vertices contained in only one hyperedge, or in a subset
of the hyperedges containing some other vertex, are removed iteratively. The main open

26.3. SUBSTANCE-BASED DESIGNS 821

Figure 26.14 Post-hoc delineation of clusters with polygons (reproduced from [JK04]).

problem is whether the existence of an outerplanar support can be decided in polynomial
time [BvKM+10, BCPS11a]. Supports with more restrictive constraints on the subgraphs
induced by hyperedges are introduced in [BCPS11b].

The more general subset standard yields drawings also known as Euler diagrams [RZF08].
Each hyperedge is represented as a simple closed curve containing exactly the vertices
of that edge. Note that this is also the usual convention for cluster boundaries in flat
overlapping clustered graphs [DGL08]. For the example in Figure 26.14, cluster boundaries
were drawn as convex polygons simply after the underlying graph had been laid out [JK04].
A more comprehensive postprocessing approach is proposed in [CPC09], and a restricted
variant in which hyperedges are drawn as paths through already placed vertices is studied
in [ARRC11]. The resulting visualization looks similar to the familiar metro map designs,
and indeed layout algorithms for metro maps can be used to draw hypergraphs by first
ordering the vertices in each hyperedge [Wol07].

As is common for problems that are difficult on general instances, many variant force-
directed approaches have been devised [BE00, OS07, ST10, SAA09, KZ09]. While most
approaches are based on dummy vertices and/or additional forces for the hyperedges, the
approach of [SAA09] is based on the intersection graph, which is a line graph of the hyper-
graph. It is constructed by creating a vertex for each hyperedge and an edge between any
two of them, if the corresponding hyperedges overlap.

Lattices

Inspired by their use in formal concept analysis [GW98], Galois lattices have been
proposed as an alternative representation for two-mode networks [FW93]. An overview
of the potential of lattices in data analysis and a standard tool, GLAD, are provided by
Duquenne [Duq99].

Figure 26.15 shows an example of a two-mode network represented in a matrix, a bipartite
graph, and a Galois lattice. In the Galois lattice representation, a node simultaneously
represents a subset of women and a subset of events. The women are exactly those attending
all of the corresponding events, and the events are exactly those attended by all of the

822 CHAPTER 26. SOCIAL NETWORKS

(a) data matrix [DGG41]

1

A BCD E F G H I JK L M N

2 345 6 7 89 10 11 1213141516 17 18

(b) two-layer drawing of bipartite network

(c) lattice representation [FW93]

Figure 26.15 The Southern Women data of Davis, Gardner and Gardner [DGG41] is a
two-mode network of 18 women’s (labeled 1–18) attendance of 14 events (labeled A–N).

26.3. SUBSTANCE-BASED DESIGNS 823

corresponding women. Nodes are ordered by set-inclusion, i.e., for each node the set of
women consists of those encountered on downward paths to the bottom, and the set of
events consists of those encountered on upward paths to the top. A study essentially
concluded that users do understand such diagrams [EDB04].

Approaches for drawing lattices range from layer-constrained force-directed layout in
three dimensions [Fre04b] to enumeration and decomposition approaches [RCE06, BPS11].
See the review in [MH01] for relations with other combinatorial structures.

26.3.4 Dynamics

Temporal aspects are considered explicitly in longitudinal social network analysis. Mostly,
this is concerned with panel data, i.e., cross-sectional states of networks observed at discrete
time points. This is immediate when data is collected in waves. Even when the situation
is more accurately described in terms of relational events (such as phone calls), however,
these are often aggregated over time intervals into cross-sectional graph representations to
ensure applicability of the wide range of methods developed for (static) graphs.

In-between observations or aggregations, the sets of vertices and edges, as well as at-
tribute values may be subject to change. Typical research questions are: how do actor
characteristics affect structural change (social selection), and how do structural conditions
affect actor behavior (social influence)? In addition, the subject of interest may actually be
a process such as the diffusion of information taking place on a (possibly changing) network.

By combinatorial explosion, this leads to numerous problem variants. The variant most
extensively researched in graph drawing, however, focuses on dynamic graphs which consist
of a sequence of interrelated graphs G(1), . . . , G(T), called states. In social network analysis
these arise from panel data on social structure (network evolution). Research on a streaming
scenario in which a single graph becomes available one edge at a time was initiated only
recently [BBDB+10], but may soon become relevant for dyadic event data.

There are two main scenarios for visualizing dynamic graphs, online and offline dynamic
graph drawing. Layout approaches for these are considered in more detail below. In both
cases, a solution consists of a sequence of layouts, one for each G(t) with t = 1, . . . , T , and
two conflicting criteria are used to evaluate the quality of a solution.

On the one hand, each layout in the sequence should be acceptable with respect to the
criteria of a static graph drawing problem. We refer to this requirement as layout quality,
and assume that the related static layout problem is fixed. On the other hand, the degree
of change between consecutive layouts should be indicative of the degree of change between
the corresponding graphs. This criterion is referred to as layout stability and generally
motivated by preservation of a user’s mental map [MELS95].

Note that the stability requirement applies to the difference between consecutive layouts
and, depending on the visualization media, also to the transition from one layout to the next.
These two aspects are referred to as the logical and the physical update, respectively [Nor96].
Difference metrics for pairs of layouts are treated in [BT00], and animation between layouts
is the subject of [FE02]. The interpolation approach of [BFP07] implements the physical
update as a refinement of the logical update.

Online Scenario

In an online scenario, a dynamic graph is presented one state at a time, and the layout
of a state is to be determined before the next state is known. Stability can therefore only
be introduced with respect to layouts of previous states.

Since iterative layout algorithms are very common in applied graph drawing in gen-

824 CHAPTER 26. SOCIAL NETWORKS

eral, and social network visualization in particular, a simple approach to online drawing
is the initialization of the layout algorithm for a state with the layout of the previous
state [MMBd05, HEW98]. This is a convenient, though indirect, approach to address the
stability requirement. It does work fairly well when the iterations of the layout algorithm
are used for the physical updates of an animation.

Explicit consideration of stability by defining a layout objective that trades off quality
and stability using a static objective and a difference metric is proposed in the Bayesian
framework of [BW97]. A recent application of this is [FT08]. Since the employed difference
metric is penalizing vertex movement via (weighted) distances from previous positions, this
is a case of what is called anchoring [LMR98].

An unusual variant of online drawing is introduced in [DDBF+99], where drawings of
a state must keep the drawing of the previous state intact, and expectations (rather than
knowledge) about the additional subgraph to accomodate are available. However, this
situation has so far been considered only for descending traversals of trees.

Offline Scenario

In an offline scenario, the input given is a dynamic graph and the output sought
is a layout for each of its states. Except for streaming event data and some applications
involving social networking sites, the offline scenario is the typical scenario in empirical
social network analysis. Since the entire sequence of states is known before any layout
needs to be determined, the layout of a state may be determined with subsequent states in
mind. In other words, we may use knowledge about the future.

Note that methods for online scenarios can be applied in offline scenarios, although at
the possible expense of both quality and stability, but the reverse is generally not possible.

In a recent review [BIM12], three primary approaches to offline dynamic graph drawing
are distinguished:

Aggregation. All graphs in the sequence are aggregated into a single graph that
has one vertex for each actor. The position of each occurrence of vertex in a
state is fixed by the layout of the aggregated graph. Variants of this approach
are considered, e.g., in [BC03a, DG04, MMBd05], and it is referred to as the
flip-book approach in the last reference.

Anchoring. Using auxiliary edges, vertices are connected to immobile copies fixed
to a desired location which may be, for instance, the previous position as in an
online scenario, or a reference position determined from an aggregate layout in
an offline scenario. This approach is used, e.g., in [LMR98, BW97, FT08].

Linking. All graphs in the sequence are combined into a single graph that has one
vertex for each occurrence of an actor, and an edge is created between vertices
representing the same actor in consecutive graphs. A layout of this graph directly
yields positions for all vertex instances in the sequence. This approach is used,
e.g., in [DG04, EKLN04, DHK+06].

Algorithmic experimental evidence [BM12] suggests that, at least for methods based on
stress minimization [GKN04] and general conditions, linking dominates anchoring in terms
of stability and quality. On the other hand, anchoring is computionally cheaper and espe-
cially suited when a dynamic graph has rather persistent global structure. Evidence from
user experiments, on the other hand, is inconclusive about the actual value of stability in
dynamic graph animation [PS08], and even animation itself [APP11].

26.3. SUBSTANCE-BASED DESIGNS 825

week stable no stability compromise

1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17 1

2

3

4

5

6

7

89

10

11
12

13

14

15

16

17

4

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

1

2

3

4

5
6

7

8

9

10

11

12

13

14

15

16

17

7

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

1

2

3

4

5

6

7

89

10

11

12
13

14

15

16

17

12

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

1

2

3

4 5

6

7

8
9

10

11

12

13

14

15

16

17
1

2

3

4

5

6

7

8
9

10

11

12

13

14

15

16

17

16

1

2

3

4
5

6

7

8

9

10

11

12

13

14

15

16

17

1

2

3
4

5

6

7

8

9

10

11

12

13

14

15

16

17

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Figure 26.16 Five states of the dynamic graph obtained from top-3 choices in Newcomb’s
fraternity data. Layout obtained by stress minimization on an aggregate graph (stable),
initialized by previous layout (no stability), and with linking of consecutive layouts (com-
promise).

826 CHAPTER 26. SOCIAL NETWORKS

17

4

9

2

12

7

11

13

1

6

8

5

14

15

3

16

10

Figure 26.17 Gestaltmatrix of Newcomb’s fraternity data [BN11]. Matrix cells show
evolution of rank (length) and balance (angle) of pairwise nominations. Color on diagonal
indicates average deviation of received nominations from expected value.

Online and offline approaches can be compared using the small multiples in Figure 26.16.
The networks shown form a subset of the famous Newcomb fraternity data [New61]. The
full data are shown in Figure 26.17 using a static matrix-based representation for dynamic
directed graphs that have a numerical edge attribute [BN11].

26.4. TRENDS AND CHALLENGES 827

26.4 Trends and Challenges

While graphs arising from social networks across application domains exhibit some general
tendencies such as sparseness and local clustering, there is no formal characterization in
terms of structural requirements that delineates this class of graphs from others. Likewise,
the information to be conveyed in a social network visualization differs by available data,
interest, and domain.

Layout of social networks is therefore contingent on many factors, and comparison of
approaches is possible only if scope and purpose are defined precisely. Identification of
practically relevant and pragmatic tasks remains a challenge, though.

Despite the range of approaches presented in this chapter, force-directed methods – much
like in other areas of applied graph drawing – are most commonly used for social network
layout. This is likely because of their generality, simplicity, adaptability, and above all their
availability. While force-directed methods generally perform well in separating clusters in
graphs with varying local density, these methods are particularly troubled by small distances
and skewed degree distributions [BP09]. A fundamental challenge is therefore to identify
representations and layout criteria that allow to deal with such structures [ACL07].

Another very general challenge involves the interplay between methods for hierachical
clustering of graphs and clustered graph layout. Especially for large graphs, hierarchical
clustering is frequently used as a tool in multilevel layout algorithms, but the artifacts
resulting from the choice of clustering or filter methods are not yet understood well (see,
e.g., [JHGH08, vHW08, HN07]).

Two research directions that are more closely related to the type of data (rather than its
properties) encountered in social network analysis are the genuine treatment of two-mode
networks (Section 26.3.3) and visual means to support stochastic network modeling [BIM12].

Finally, there is also at least one example where artistic drawings of social networks
inspired a new graph drawing convention, namely Lombardi drawings [Hob03, DEG+12].

Many software packages are available already for the analysis and visualization of social
networks, and many more are in introduced for specific application domains. Among so-
cial scientists, UCINET [BEF99] is the most widely known. At the time of this writing,
Pajek [BM04] is likely to be the most widely used across all disciplines, and visone [BW04]
the social network analysis tool with the most sophisticated graph drawing features. Other
comprehensive and popular tools include Tulip [Aub04], NodeXL [HSS10], Gephi [BHJ09],
and ORA [CRSC11]. A recent software review can be found in [HvD11], and a comparative
evaluation of some tools is attempted in [XTT+10]. A comprehensive list of software for
social networks is maintained in Wikipedia.1

Very likely the most dominant force driving visualization research on social networks over
the next decade will be online social and other networks derived from social media [Fur10].
This is in part because they combine virtually all the current challenges of size and dynam-
ics with the more specific challenges that arise from multivariate complexity. Moreover,
such research can be of economic relevance, draw large audiences, and make use of easily
accessible data [LPA+09]. It will be exciting to witness whether graph drawing can make
significant contributions to this area and thus challenge currently reigning adaptations of
its oldest methods (see [HB05] for one solid example). An example in this direction is a
layout algorithm for digital social networks tailored to smartphone displays [DLDBI12].

1http://en.wikipedia.org/wiki/Social_network_analysis_software

828 CHAPTER 26. SOCIAL NETWORKS

References

[ACL07] Reid Andersen, Fan Chung, and Linyuan Lu. Drawing power law graphs
using a local/global decomposition. Algorithmica, 47(4):379–397, 2007.

[APP11] Daniel Archambault, Helen C. Purchase, and Bruno Pinaud. Animation,
small multiples, and the effect of mental map preservation in dynamic
graphs. IEEE Transactions on Visualization and Computer Graphics,
17(4):539–552, 2011.

[ARRC11] Basak Alper, Nathalie Riche, Gonzalo Ramos, and Mary Czerwinski. De-
sign study of linesets, a novel set visualization technique. IEEE Transac-
tions on Visualization and Computer Graphics, 17(12):2259–2267, 2011.

[Aub04] David Auber. Tulip – a huge graph visualisation framework. In Jünger
and Mutzel [JM04], pages 105–126.

[Bac07] Christian Bachmaier. A radial adaptation of the Sugiyama framework for
visualizing hierarchical information. IEEE Transactions on Visualization
and Computer Graphics, 13(3):583–594, 2007.

[Bar54] John A. Barnes. Class and committees in a Norwegian island parish.
Human Relations, 7:39–58, 1954.

[BB04] Michael Baur and Ulrik Brandes. Crossing reduction in circular layouts. In
Juraj Hromkovič, Manfred Nagl, and Bernhard Westfechtel, editors, Pro-
ceedings of the 30th International Workshop on Graph-Theoretical Con-
cepts in Computer Science (WG’04), volume 3353 of Lecture Notes in
Computer Science, pages 332–343. Springer-Verlag, 2004.

[BBDB+10] Carla Binucci, Ulrik Brandes, Giuseppe Di Battista, Walter Didimo,
Marco Gaertler, Pietro Palladino, Maurizio Patrignani, Antonios Symvo-
nis, and Katharina A. Zweig. Drawing trees in a streaming model.
In Proceedings of the 17th International Symposium on Graph Drawing
(GD’09), volume 5849 of Lecture Notes in Computer Science, pages 292–
303. Springer-Verlag, 2010.

[BC03a] Ulrik Brandes and Steven R. Corman. Visual unrolling of network evo-
lution and the analysis of dynamic discourse. Information Visualization,
2(1):40–50, 2003.

[BC03b] Ulrik Brandes and Sabine Cornelsen. Visual ranking of link structures.
Journal of Graph Algorithms and Applications, 7(2):181–201, 2003.

[BCPS11a] Ulrik Brandes, Sabine Cornelsen, Barbara Pampel, and Arnaud Sal-
laberry. Blocks of hypergraphs (applied to hypergraphs and outerpla-
narity). In Proceedings of the 21st International Workshop on Combi-
natorial Algorithms (IWOCA 2010), volume 6460 of Lecture Notes in
Computer Science, pages 201–211. Springer-Verlag, 2011.

[BCPS11b] Ulrik Brandes, Sabine Cornelsen, Barbara Pampel, and Arnaud Sal-
laberry. Path-based supports for hypergraphs. In Proceedings of the 21st
International Workshop on Combinatorial Algorithms (IWOCA 2010),
volume 6460 of Lecture Notes in Computer Science, pages 20–33. Springer-
Verlag, 2011.

[BD07] Michael Balzer and Oliver Deussen. Level-of-detail visualization of clus-
tered graph layouts. In Proceedings of the 6th International Asia-Pacific
Symposium on Visualisation (APVis ’07), pages 133–140. IEEE, 2007.

REFERENCES 829

[BDF+10] Anastasia Bezerianos, Pierre Dragicevic, Jean-Daniel Fekete, Juhee Bae,
and Ben Watson. GeneaQuilts: A system for exploring large genealogies.
IEEE Transactions on Visualization and Computer Graphics, 16(6):741–
748, 2010.

[BDW99] Rainer Burkhard, Vladimir G. Dĕıneko, and Gerhard Woeginger. The
travelling salesman and the PQ-tree. Mathematics of Operations Research,
24(1):262–272, 1999.

[BE00] François Bertault and Peter Eades. Drawing hypergraphs in the subset
standard. In Proceedings of the 8th International Symposium on Graph
Drawing (GD’00), volume 1984 of Lecture Notes in Computer Science,
pages 164–169. Springer-Verlag, 2000.

[BE05] Ulrik Brandes and Thomas Erlebach, editors. Network Analysis: Method-
ological Foundations, volume 3418 of Lecture Notes in Computer Science.
Springer-Verlag, 2005.

[BE06] Stephen P. Borgatti and Martin G. Everett. A graph-theoretic perspective
on centrality. Social Networks, 28:466–484, 2006.

[BEF99] Stephen P. Borgatti, Martin G. Everett, and Linton C. Freeman.
UCINET 6.0 Version 1.00. Analytic Technologies, 1999.

[Ber83] Jacques Bertin. Semiology of Graphics: Diagrams, Networks, Maps. Uni-
versity of Wisconsin Press, 1983.

[BES90] Stephen P. Borgatti, Martin G. Everett, and Paul R. Shirey. LS sets,
lambda sets and other cohesive subsets. Social Networks, 12(4):337–357,
1990.

[BFP07] Ulrik Brandes, Daniel Fleischer, and Thomas Puppe. Dynamic spectral
layout with an application to small worlds. Journal of Graph Algorithms
and Applications, 11(2):325–343, 2007.

[BHJ09] Mathieu Bastian, Sebastien Heymann, and Mathieu Jacomy. Gephi: an
open source software for exploring and manipulating networks. In Pro-
ceedings of the 3rd International AAAI Conference on Weblogs and Social
Media (ICWSM ’09), pages 361–362, 2009.

[Bie98] Therese C. Biedl. Drawing planar partitions I: LL-drawings and LH-
drawings. In Proceedings of the 14th Annual ACM Symposium on Com-
putational Geometry (SoCG’98), pages 287–296, 1998.

[BIM12] Ulrik Brandes, Natalie Indlekofer, and Martin Mader. Visualization meth-
ods for longitudinal social networks and stochastic actor-oriented model-
ing. Social Networks, 34(3):291–308, 2012.

[BKM98] Therese C. Biedl, Michael Kaufmann, and Petra Mutzel. Drawing planar
partitions II: HH-drawings. In Proceedings of the 24th International Work-
shop on Graph-Theoretical Concepts in Computer Science (WG’98), vol-
ume 1517 of Lecture Notes in Computer Science, pages 101–114. Springer-
Verlag, 1998.

[BKR+99] Ulrik Brandes, Patrick Kenis, Jörg Raab, Volker Schneider, and Dorothea
Wagner. Explorations into the visualization of policy networks. Journal
of Theoretical Politics, 11(1):75–106, 1999. Reprinted in Linton Freeman,
ed., Social Network Analysis, vol. I (Data, Mathematical Models, and
Graphics), Sage, 2007.

830 CHAPTER 26. SOCIAL NETWORKS

[BKR06] Ulrik Brandes, Patrick Kenis, and Jörg Raab. Explanation through net-
work visualization. Methodology, 2(1):16–23, 2006. Spanish translation in
REDES 9(6), 2005.

[BKW03] Ulrik Brandes, Patrick Kenis, and Dorothea Wagner. Communicating cen-
trality in policy network drawings. IEEE Transactions on Visualization
and Computer Graphics, 9(2):241–253, 2003.

[BM04] Vladimir Batagelj and Andrej Mrvar. Pajek – analysis and visualization
of large networks. In Jünger and Mutzel [JM04], pages 77–103.

[BM12] Ulrik Brandes and Martin Mader. A quantitative comparison of stress-
minimization approaches for offline dynamic graph drawing. In Proceed-
ings of the 19th International Symposium on Graph Drawing (GD 2011),
volume 7034 of Lecture Notes in Computer Science, pages 99–110.
Springer-Verlag, 2012.

[BMBL09] Stephen P. Borgatti, Ajay Mehra, Daniel J. Brass, and Giuseppe Labi-
anca. Network analysis in the social sciences. Science, 323(5916):892–895,
2009.

[BN11] Ulrik Brandes and Bobo Nick. Asymmetric relations in longitudinal social
networks. IEEE Transactions on Visualization and Computer Graphics,
17(12):2283–2290, 2011.

[Bon72] Phillip Bonacich. Factoring and weighting approaches to status scores
and clique identification. Journal of Mathematical Sociology, 2:113–120,
1972.

[Bor05] Stephen P. Borgatti. Centrality and network flow. Social Networks, 27:55–
71, 2005.

[BP09] Ulrik Brandes and Christian Pich. An experimental study on distance-
based graph drawing. In Proceedings of the 16th International Symposium
on Graph Drawing (GD’08), volume 5417 of Lecture Notes in Computer
Science, pages 218–229. Springer-Verlag, 2009.

[BP11] Ulrik Brandes and Christian Pich. More flexible radial layout. Journal of
Graph Algorithms and Applications, 15(1):157–173, 2011.

[BPS11] Anne Berry, Romain Pogorelcnik, and Alain Sigayret. Vertical decomposi-
tion of a lattice using clique separators. In Proceedings of the 8th Interna-
tional Conference on Concept Lattices and their Applications (CLA’11),
pages 15–29, 2011.

[Bra96] Franz J. Brandenburg, editor. Proceedings of the 3rd International Sym-
posium on Graph Drawing (GD ’95), volume 1027 of Lecture Notes in
Computer Science. Springer, 1996.

[Bra07] Ulrik Brandes. Optimal leaf ordering of complete binary trees. Journal
of Discrete Algorithms, 5(3):546–552, 2007.

[Bra08] Ulrik Brandes. Social network analysis and visualization. IEEE Signal
Processing Magazine, 25(6):147–151, 2008.

[Bre74] Ronald L. Breiger. The duality of persons and groups. Social Forces,
53(2):181–190, 1974.

[Bre09] Ronald L. Breiger. On the duality of cases and variables. In David Byrne
and Charles C. Ragin, editors, The SAGE Handbook of Case-Based Meth-
ods, pages 243–259. Sage, 2009.

REFERENCES 831

[BRW01] Ulrik Brandes, Jörg Raab, and Dorothea Wagner. Exploratory network
visualization: Simultaneous display of actor status and connections. Jour-
nal of Social Structure, 2(4), 2001.

[BT00] Stina S. Bridgeman and Roberto Tamassia. Difference metrics for interac-
tive orthogonal graph drawing algorithms. Journal of Graph Algorithms
and Applications, 4(3):47–74, 2000.

[But09] Carter T. Butts. Revisiting the foundations of network analysis. Science,
325(5939):414–416, 2009.

[BvKM+10] Kevin Buchin, Marc van Kreveld, Henk Meijer, Bettina Speckmann, and
Kevin Verbeek. On planar supports or hypergraphs. In Proceedings of the
17th International Symposium on Graph Drawing (GD’09), volume 5849
of Lecture Notes in Computer Science, pages 345–356. Springer-Verlag,
2010.

[BW97] Ulrik Brandes and Dorothea Wagner. A Bayesian paradigm for dynamic
graph layout. In Giuseppe Di Battista, editor, Proceedings of the 5th
International Symposium on Graph Drawing (GD ’97), volume 1353 of
Lecture Notes in Computer Science, pages 236–247. Springer, 1997.

[BW04] Ulrik Brandes and Dorothea Wagner. visone – analysis and visualization
of social networks. In Michael Jünger and Petra Mutzel, editors, Graph
Drawing Software, pages 321–340. Springer-Verlag, 2004.

[CAI] CAIDA. Cooperative association for internet data analysis. http://www.
caida.org/research/topology/as_core_network/.

[CCM12] Carlos D. Correa, Tarik Crnovrsanin, and Kwan-Liu Ma. Visual reasoning
about social networks using centrality sensitivity. IEEE Transactions on
Visualization and Computer Graphics, 18(1):106–120, 2012.

[CDB05] Pier Francesco Cortese and Giuseppe Di Battista. Clustered planarity.
In Proceedings of the 21st Annual ACM Symposium on Computational
Geometry (SoCG’05), pages 32–34, 2005.

[Cha50] F. Stuart Chapin. Sociometric stars as isolates. American Journal of
Sociology, 56(3):263–267, 1950.

[CJ51] Joan H. Criswell and Helen Hall Jennings. A critique of Chapin’s “Socio-
metric stars as isolates”. American Journal of Sociology, 57(3):260–264,
1951.

[CM11] Carlos D. Correa and Kwan-Liu Ma. Visualizing social networks. In
Charu C. Aggarwal, editor, Social Network Data Analytics, pages 307–
326. Springer-Verlag, 2011.

[CPC09] Christopher Collins, Gerald Penn, and Sheelagh Carpendale. Bubble sets:
revealing set relations with isocontours over existing visualizations. IEEE
Transactions on Visualization and Computer Graphics, 15(6):1009–1016,
2009.

[CRSC11] Kathleen M. Carley, Jeff Reminga, Jon Storrick, and Dave Columbus.
ORA user’s guide 2011. Technical Report CMU-ISR-11-107, Carnegie
Mellon University, Institute for Software Research, 2011.

[CSW04] Sabine Cornelsen, Thomas Schank, and Dorothea Wagner. Drawing
graphs on two and three lines. Journal of Graph Algorithms and Ap-
plications, 8(2):161–177, 2004.

832 CHAPTER 26. SOCIAL NETWORKS

[CSW05] Peter J. Carrington, John Scott, and Stanley Wasserman, editors. Models
and Methods in Social Network Analysis. Cambridge University Press,
2005.

[CY10] Ing-Xiang Chen and Cheng-Zen Yang. Visualization of social networks. In
Handbook of Social Network Technologies and Applications [Fur10], pages
585–610.

[Cze09] Jan Czekanowski. Zur Differentialdiagnose der Neandertalgruppe.
Korrespondenz-Blatt der Deutschen Gesellschaft für Anthropologie, Eth-
nologie and Urgeschichte, 40(6/7):44–47, 1909.

[DBF05] Patrick Doreian, Vladimir Batagelj, and Anuška Ferligoj. Generalized
Blockmodeling. Cambridge University Press, 2005.

[DDBF+99] Camil Demetrescu, Giuseppe Di Battista, Irene Finocchi, Giuseppe Li-
otta, Maurizio Patrignani, and Maurizio Pizzonia. Infinite trees and the
future. In Proceedings of the 7th International Symposium on Graph
Drawing (GD’99), volume 1731 of Lecture Notes in Computer Science,
pages 379–391. Springer-Verlag, 1999.

[DEG+12] Christian A. Duncan, David Eppstein, Michael T. Goodrich, Stephen G.
Kobourov, and Martin Nöllenburg. Lombardi drawings of graphs. Journal
of Graph Algorithms and Applications, 16(1):85–108, 2012.

[DG04] Tim Dwyer and David R. Gallagher. Visualising changes in fund man-
ager holdings in two and a half-dimensions. Information Visualization,
3(4):227–244, 2004.

[DGG41] Allison Davis, Burleigh B. Gardner, and Mary R. Gardner. Deep South:
A Social Anthropological Study of Caste and Class. University of Chicago
Press, 1941.

[DGGL08] Emilio Di Giacomo, Luca Grilli, and Giuseppe Liotta. Drawing bipartite
graphs on two parallel convex curves. Journal of Graph Algorithms and
Applications, 12(1):97–112, 2008.

[DGL08] Walter Didimo, Francesco Giordano, and Giuseppe Liotta. Overlap-
ping cluster planarity. Journal of Graph Algorithms and Applications,
12(3):267–291, 2008.

[DHK+06] Tim Dwyer, Seokhee Hong, Dirk Koschützki, Falk Schreiber, and Kai
Xu. Visual analysis of network centralities. In Proceedings of the 2006
Asia-Pacific Symposium on Information Visualisation (APVis ’06), pages
189–197. Australian Computer Society, 2006.

[DKM09] Tim Dwyer, Yehuda Koren, and Kim Marriott. Constrained graph layout
by stress majorization and gradient projection. Discrete Mathematics,
309(7):1895–1908, 2009.

[DLDBI12] Giordano Da Lozzo, Giuseppe Di Battista, and Francesco Ingrassia. Draw-
ing graphs on a smartphone. Journal of Graph Algorithms and Applica-
tions, 16(1):109–126, 2012.

[dLM00] Jan de Leeuw and George Michailides. Graph layout techniques and mul-
tivariate data analysis. In F. Thomas Bruss and Lucien Le Cam, editors,
Game theory, optimal stopping, probability and statistics: Papers in honor
of Thomas S. Ferguson, pages 219–248. Beachwood, 2000.

[DPS02] Josep Diaz, Jordi Petit, and Maria Serna. A survey of graph layout
problems. ACM Computing Surveys, 34:313–356, 2002.

REFERENCES 833

[Duq99] Vinvent Duquenne. Latticial structures in data analysis. Theoretical Com-
puter Science, 217:407–436, 1999.

[EDB04] Peter Eklund, Jon Ducrou, and Peter Brawn. Concept lattices for in-
formation visualization: Can novices read line-diagrams? In Proceed-
ings of the 2nd International Conference on Formal Concept Analysis
(ICFCA’04), volume 2961 of Lecture Notes in Computer Science, pages
235–236. Springer-Verlag, 2004.

[EF97] Peter Eades and Qing-Wen Feng. Multilevel visualization of clustered
graphs. In Proceedings of the 5th International Symposium on Graph
Drawing (GD’97), volume 1190 of Lecture Notes in Computer Science,
pages 101–112. Springer-Verlag, 1997.

[EFN99] Peter Eades, Qing-Wen Feng, and Hiroshi Nagamochi. Drawing clustered
graphs on an orthogonal grid. Journal of Graph Algorithms and Applica-
tions, 3(4):3–29, 1999.

[EKLN04] Cesim Erten, Stephen G. Kobourov, Vu Le, and Armand Navabi. Si-
multaneous graph drawing: Layout algorithms and visualization schemes.
In Proceedings of the 11th International Symposium on Graph Drawing
(GD’03), volume 2912 of Lecture Notes in Computer Science, pages 437–
449. Springer-Verlag, 2004.

[FE02] Carsten Friedrich and Peter Eades. Graph drawing in motion. Journal of
Graph Algorithms and Applications, 6(3):353–370, 2002.

[FK46] Elaine Forsyth and Leo Katz. A matrix approach to the analysis of so-
ciometric data: Preliminary report. Sociometry, 9:340–347, 1946.

[Fre79] Linton C. Freeman. Centrality in social networks: Conceptual clarifica-
tion I. Social Networks, 1:215–239, 1979.

[Fre00] Linton C. Freeman. Visualizing social networks. Journal of Social Struc-
ture, 1(1), 2000.

[Fre04a] Linton C. Freeman. The Development of Social Network Analysis: A
Study in the Sociology of Science. Empirical Press, 2004.

[Fre04b] Ralph Freese. Automated lattice drawing. In Proceedings of the 2nd
International Conference on Formal Concept Analysis (ICFCA’04), vol-
ume 2961 of Lecture Notes in Computer Science, pages 112–127. Springer-
Verlag, 2004.

[Fre05] Linton C. Freeman. Graphic techniques for exploring social network data.
In Carrington et al. [CSW05], pages 248–269.

[Fre08] Linton C. Freeman, editor. Social Network Analysis. Sage, 2008. Vol-
umes I–IV.

[Fri91] Noah E. Friedkin. Theoretical foundations for centrality measures. Amer-
ican Journal of Sociology, 96(6):1478–1504, May 1991.

[FT08] Yaniv Frishman and Ayellet Tal. Online dynamic graph drawing. IEEE
Transactions on Visualization and Computer Graphics, 14(4):727–740,
2008.

[Fur10] Borko Furht. Handbook of Social Network Technologies and Applications.
Springer-Verlag, 2010.

[FW93] Linton C. Freeman and Douglas R. White. Using Galois lattices to rep-
resent network data. Sociological Methodology, 23:127–146, 1993.

834 CHAPTER 26. SOCIAL NETWORKS

[GFC05] Mohammad Ghoniem, Jean-Daniel Fekete, and Philippe Castagliola. On
the readability of graphs using node-link and matrix-based representa-
tions: a controlled experiment and statistical analysis. Information Visu-
alization, 4(2):114–135, 2005.

[GKN04] Emden R. Gansner, Yehuda Koren, and Stephen C. North. Graph draw-
ing by stress majorization. In Proceedings of the 12th International Sym-
posium on Graph Drawing (GD’04), volume 3383 of Lecture Notes in
Computer Science, pages 239–250. Springer-Verlag, 2004.

[GW98] Bernhard Ganter and Rudolf Wille. Formal Concept Analyis: Mathemat-
ical Foundations. Springer-Verlag, 1998.

[HB05] Jeffrey Heer and Danah Boyd. Vizster: Visualizing online social net-
works. In Proceedings of IEEE Symposium of Information Visualization
(InfoVis’05), pages 32–39, 2005.

[HEH09] Weidong Huang, Peter Eades, and Seokhee Hong. Measuring effectiveness
of graph visualizations: A cognitive load approach. Information Visual-
ization, 8(3):139–152, 2009.

[HEW98] Mao Lin Huang, Peter Eades, and Junhu Wang. On-line animated visu-
alization of huge graphs using a modified spring algorithm. Journal of
Visual Languages and Computing, 9(6):623–645, 1998.

[HF06] Nathalie Henry and Jean-Daniel Fekete. MatrixExplorer: a dual-
representation system to explore social networks. IEEE Transactions on
Visualization and Computer Graphics, 12(5):677–684, 2006.

[HF07] Nathalie Henry and Jean-Daniel Fekete. MatLink: Enhanced matrix vi-
sualization for analyzing social networks. In Proceedings of the 11th IFIP
Conference on Human-Computer Interaction (INTERACT 2007), volume
4663 of Lecture Notes in Computer Science, pages 288–302. Springer-
Verlag, 2007.

[HFM07] Nathalie Henry, Jean-Daniel Fekete, and Michael J. McGuffin. NodeTrix:
a hybrid visualization of social networks. IEEE Transactions on Visual-
ization and Computer Graphics, 13(6):1302–1309, 2007.

[HHE07] Weidong Huang, Seokhee Hong, and Peter Eades. Effects of sociogram
drawing conventions and edge crossings in social network visualization.
Journal of Graph Algorithms and Applications, 11(2):397–429, 2007.

[HN07] Mao Lin Huang and Quang Vinh Nguyen. A space efficient clustered
visualization of large graphs. In Proceedings of the 4th International Con-
ference on Image and Graphics (ICIG ’07), pages 920–927, 2007.

[Hob03] Robert Hobbs. Mark Lombard: Global Networks. Independent Curators
International, New York, 2003.

[Hol06] Danny Holten. Hierarchical edge bundles: Visualization of adjacency
relations in hierarchical data. IEEE Transactions on Visualization and
Computer Graphics, 12(5):741–748, 2006.

[HSS10] Derek Hansen, Ben Shneiderman, and Marc A. Smith. Analyzing Social
Media Networks with NodeXL: Insights from a Connected World. Morgan
Kaufmann, 2010.

[HvD11] Mark Huisman and Marijtje A. J. van Duijn. A reader’s guide to SNA
software. In John Scott and Peter J. Carrington, editors, The SAGE
Handbook of Social Network Analysis, pages 578–600. Sage, 2011.

REFERENCES 835

[IMMS09] Takayuki Itoh, Chris Muelder, Kwan-Liu Ma, and Jun Sese. A hybrid
space-filling and force-directed layout method for visualizing multiple-
category graphs. In Proceedings of the IEEE Pacific Visualization Sym-
posium (PacificVis’09), pages 121–128, 2009.

[JHGH08] Yuntao Jia, Jared Hoberock, Michael Garland, and John C. Hart. On the
visualization of social and other scale-free networks. IEEE Transactions
on Visualization and Computer Graphics, 14(6):1285–1292, 2008.

[JK04] Jeffrey C. Johnson and Lothar Krempel. Network visualization: The
“Bush Team” in Reuters news ticker 9/11–11/15/01. Journal of Social
Structure, 5(1), 2004.

[JM04] Michael Jünger and Petra Mutzel, editors. Graph Drawing Software.
Springer-Verlag, 2004.

[JP87] David S. Johnson and Henry O. Pollak. Hypergraph planarity and
the complexity of drawing Venn diagrams. Journal of Graph Theory,
11(3):309–325, 1987.

[Kam89] Tomihisa Kamada. Visualizing Abstract Objects and Relations. World
Scientific, 1989.

[Kat47] Leo Katz. On the matric analysis of sociometric data. Sociometry, 10:233–
241, 1947.

[Kat53] Leo Katz. A new status index derived from sociometric analysis. Psy-
chometrika, 18(1):39–43, 1953.

[KB83] David Knoke and Ronald S. Burt. Prominence. In Ronald S. Burt and
Michael J. Minor, editors, Applied Network Analysis, pages 195–222. Sage
Publications, 1983.

[KH05] Yehuda Koren and David Harel. One-dimensional layout optimization,
with applications to graph drawing by axis separation. Computational
Geometry, 32(2):115–138, 2005.

[Klo81] Alden S. Klovdahl. A note on images of networks. Social Networks,
3:197–214, 1981.

[Kra96] David Krackhardt. Social networks and the liability of newness for man-
agers. In C. L. Cooper and D. M. Rousseau, editors, Trends in Organiza-
tional Behavior, volume 3, pages 159–173. John Wiley & Sons, 1996.

[KS04] Dirk Koschützki and Falk Schreiber. Comparison of centralities for bio-
logical networks. In Proceedings of the German Conference on Bioinfor-
matics 2004, volume P-53 of Lecture Notes in Informatics, pages 199–206.
Springer-Verlag, 2004.

[KvKS09] Michael Kaufmann, Marc van Kreveld, and Bettina Speckmann. Subdi-
vision drawings of hypergraphs. In Proceedings of the 16th International
Symposium on Graph Drawing (GD’08), volume 5417 of Lecture Notes in
Computer Science, pages 396–407. Springer-Verlag, 2009.

[KZ09] Pushpa Kumar and Kang Zhang. Node overlap removal in clustered
directed acyclic graphs. Journal of Visual Languages and Computing,
20(6):403–419, 2009.

[Ler05] Jürgen Lerner. Role assignments. In Brandes and Erlebach [BE05], pages
216–252.

836 CHAPTER 26. SOCIAL NETWORKS

[LG66] Edward O. Laumann and Louis Guttman. The relative associational con-
tiguity of occupations in an urban setting. American Sociological Review,
31:169–178, 1966.

[LMR98] Kelly A. Lyons, Henk Meijer, and David Rappaport. Algorithms for clus-
ter busting in anchored graph drawing. Journal of Graph Algorithms and
Applications, 2(1):1–24, 1998.

[Lon48] T.W̃ilson Longmore. A matrix approach to the analysis of rank and status
in a community in peru. Sociometry, 11(3):192–206, 1948.

[LP49] R. Duncan Luce and Albert Perry. A method of matrix analysis of group
structure. Psychometrika, 14:95–116, 1949.

[LPA+09] David Lazer, Alex Pentland, Lada Adamic, Sinan Aral, Albert-László
Barabási, Devon Brewer, Nicholas Christakisand Noshir Contractor,
James Fowler, Myron Gutmann, Tony Jebara, Gary King, Michael Macy,
Deb Roy, and Marshall Van Alstyne. Computational social science. Sci-
ence, 323(5915):721–723, 2009.

[Mäk90] Erkki Mäkinen. How to draw a hypergraph. International Journal of
Computer Mathematics, 34(3-4):177–185, 1990.

[MBK97] Cathleen McGrath, Jim Blythe, and David Krackhardt. The effect of
spatial arrangement on judgments and errors in interpreting graphs. Social
Networks, 19(3):223–242, 1997.

[MELS95] Kazuo Misue, Peter Eades, Wei Lai, and Kozo Sugiyama. Layout adjust-
ment and the mental map. Journal on Visual Languages and Computing,
6(2):183–210, 1995.

[MH01] Matthias Müller-Hannemann. Drawing trees, series-parallel digraphs, and
lattices. In Michael Kaufmann and Dorothea Wagner, editors, Drawing
Graphs: Methods and Models, volume 2025 of Lecture Notes in Computer
Science, pages 46–70. Springer, 2001.

[Mis07] Kazuo Misue. Anchored maps: Visualization techniques for drawing bi-
partite graphs. In The Human-Computer Interaction International Con-
ference Proceedings (HCII 2007), volume 4551 of Lecture Notes in Com-
puter Science, pages 106–114. Springer-Verlag, 2007.

[Mit94] J. Clyde Mitchell. Situational analysis and network analysis. Connections,
17(1):16–22, 1994.

[MMBd05] James Moody, Daniel A. McFarland, and Skye Bender-deMoll. Dynamic
network visualization. American Journal of Sociology, 110(4):1206–1241,
2005.

[Mor46] Jakob L. Moreno. Sociogram and sociomatrix: a note to the paper by
Forsyth and Katz. Sociometry, 9:348–349, 1946.

[Mor53] Jakob L. Moreno. Who Shall Survive? Foundations of Sociometry, Group
Psychotherapy, and Sociodrama. Beacon House, 1953. Originally pub-
lished in 1934.

[New61] Theodore M. Newcomb. The Acquaintance Process. Holt, Rinehart &
Winston, 1961.

[Nor40] Mary L. Northway. A method for depicting social relationships obtained
by sociometric testing. Sociometry, 3(2):144–150, 1940.

[Nor52] Mary L. Northway. A Primer of Sociometry. University of Toronto Press,
1952.

REFERENCES 837

[Nor54] Mary L. Northway. A plan for sociometric studies in a longitudinal pro-
gramme of research in child development. Sociometry, 17(3):272–281,
1954.

[Nor96] Stephen C. North. Incremental layout with DynaDag. In Brandenburg
[Bra96], pages 409–418.

[OS07] Hiroki Omote and Kozo Sugiyama. Method for visualizing complicated
structures based on unified simplification strategies. IEICE Transactions
on Information and Systems, E90-D(10):1649–1656, 2007.

[PCJ97] Helen C. Purchase, Robert F. Cohen, and Murray James. An experimen-
tal study of the basis for graph drawing algorithms. ACM Journal of
Experimental Algorithmics, 2(4), 1997.

[Pet99] W. M. Flinders Petrie. Sequences in prehistoric remains. Journal of the
Anthropological Institute of Great Britain and Ireland, 29(3/4):295–301,
1899.

[PNK10] Ruth Pfosser, Helmut Neundlinger, and Harald Katzmair. Die un-
verbrüchliche Solidarität in einer Extremsituation und die Fähigkeit, sich
zu befreien. Das ist Spanien. Der Standard, 13. Juli, 2010.

[PNR08] Christian Pich, Lev Nachmanson, and George G. Robertson. Visual anal-
ysis of importance and grouping in software dependency graphs. In Pro-
ceedings of the ACM 2008 Symposium on Software Visualization (SOFT-
VIS 2008), pages 29–32, 2008.

[PS08] Helen C. Purchase and Amanjit Samra. Extremes are better: Investigat-
ing mental map preservation in dynamic graphs. In Proceedings of the 5th
International Conference on Diagrammatic Representation and Inference
(Diagrams 2008), volume 5223 of Lecture Notes in Computer Science,
pages 60–73. Springer-Verlag, 2008.

[RCE06] Jon Ducrou Richard Cole and Peter Eklund. Automated layout of small
lattices using layer diagrams. In Proceedings of the 4th International Con-
ference on Formal Concept Analysis (ICFCA’06), volume 3874 of Lecture
Notes in Computer Science, pages 291–305. Springer-Verlag, 2006.

[RF10] Nathalie Riche and Jean-Daniel Fekete. Novel visualizations and inter-
actions for social networks exploration. In Handbook of Social Network
Technologies and Applications [Fur10], pages 611–636.

[RZF08] Peter Rodgers, Leishi Zhang, and Andrew Fish. General Euler diagram
generation. In Proceedings of the 5th International Conference on the The-
ory and Application of Diagrams (Diagrams’08), volume 5223 of Lecture
Notes in Artificial Intelligence, pages 13–27. Springer-Verlag, 2008.

[SA06] Ben Shneiderman and Aleks Aris. Network visualization by semantic
subtrates. IEEE Transactions on Visualization and Computer Graphics,
12(5):733–740, 2006.

[SAA09] Paolo Simonetto, David Auber, and Daniel Archambault. Fully automatic
visualisation of overlapping sets. Computer Graphics Forum, 28(3):967–
974, 2009.

[Sco00] John Scott. Social Network Analysis: A Handbook. Sage, 2nd edition,
2000.

[Sei83] Stephen B. Seidman. Network structure and minimum degree. Social
Networks, 5:269–287, 1983.

838 CHAPTER 26. SOCIAL NETWORKS

[SJUS08] Hans-Jörg Schulz, Mathias John, Andrea Unger, and Heidrun Schu-
mann. Visual analysis of bipartite biological networks. In Proceed-
ings of the Eurographics Workshop on Visual Computing for Biomedicine
(VCBM 2008), pages 135–142. Eurographics, 2008.

[SM07] Zeqian Shen and Kwan-Liu Ma. Path visualization for adjacency matri-
ces. In Proceedings of the 9th Eurographics/IEEE-VGTC Symposium on
Visualization (EuroVis ’07), pages 83–90. Eurographics, 2007.

[ST10] Rodrigo Santamaŕıa and Roberto Therón. Visualization of intersecting
groups based on hypergraphs. IEICE Transactions on Information and
Systems, E93-D(7):1957–1964, 2010.

[Tuf83] Edward R. Tufte. The Visual Display of Quantitative Information. Graph-
ics Press, 1983.

[vHSD09] Frank van Ham, Hans-Jörg Schulz, and Joan M. Dimicco. Honeycomb: Vi-
sual analysis of large scale social networks. In Proceedings of the 13th IFIP
Conference on Human-Computer Interaction (INTERACT 2009), volume
5727 of Lecture Notes in Computer Science, pages 429–442. Springer-
Verlag, 2009.

[vHW08] Frank van Ham and Martin Wattenberg. Centrality based visualization
of small world graphs. Computer Graphics Forum, 27(3):975–982, 2008.

[Wat06] Martin Wattenberg. Visual exploration of multivariate graphs. In Proceed-
ings of the SIGCHI Conference on Human Factors in Computing Systems
(CHI ‘06), pages 811–819, 2006.

[WB88] Barry Wellman and Stephen D. Berkowitz, editors. Social Structures: A
Network Approach. Cambridge University Press, 1988.

[Wer44] Max Wertheimer. Gestalt Theory. Hayer Barton Press, 1944.

[WF94] Stanley Wasserman and Katherine Faust. Social Network Analysis: Meth-
ods and Applications. Cambridge University Press, 1994.

[WG98] Karl Erich Wolff and Siefgried Gabler. Comparison of visualizations in for-
mal concept analysis and correspondence analysis. In Michael Greenacre
and Jörg Blasius, editors, Visualization of Categorical Data, pages 85–97.
Academic Press, 1998.

[Why43] William F. Whyte. Street Corner Society. University of Chicago Press,
1943.

[Win94] William D. Winn. Contributions of perceptual and cognitive processes to
the comprehension of graphics. In W. Schnotz and R.W. Kulhavy, editors,
Comprehension of Graphics, number 108 in Advances in Psychology, pages
3–27. Elsevier, 1994.

[WM96] Xiaobo Wang and Isao Miyamoto. Generating customized layouts. In
Brandenburg [Bra96], pages 504–515.

[Wol07] Alexander Wolff. Drawing subway maps: Asurvey. Informatik - Forschung
und Entwicklung, 22(1):23–44, 2007.

[XTT+10] Kaikuo Xu, Changjie Tang, Rong Tang, Ghulam Ali, and Jun Zhu. A
comparative study of six software packages for complex network research.
In Proceedings of the 2nd International Conference on Communication
Software and Networks (ICCSN ’10), pages 350–354, 2010.

[ZSE05] Lanbo Zheng, Le Song, and Peter Eades. Crossing minimization problems
of drawing bipartite graphs in two clusters. In Proceedings of the 2005

REFERENCES 839

Asia-Pacific Symposium on Information Visualisation (APVis ’05), pages
33–37. Australian Computer Society, 2005.

Index

(1 + ε)-EMST drawing, 139
(h, k)-proximity drawing, 117
1-outerplanar embedded graph, 263
2-claw, 266
Co(G)-component, 324
GP

E , 328
GP

W , 328
Gd, 321
Kn, 43, 44, 47, 48
Km,n, 46, 48
Kn,m, 43
NF3-graphs, 138
PE , 324
PN , 324
PS , 324
PW , 324
Qc(C), 327
∆, 318
∆-drawing, 675
Θ, 321
Θ(G), 49
α-complexes, 143
β-drawings, 119
γ-drawings, 120
γ-regions, 120
bw(G), 49
crs(G), 57
cr(G), 45
cr1(G), 45
crt(G), 46
cw(G), 49
ocr(G), 45
pcr(G), 45
sk(G), 48
ε1-shrunk disk of D, 140
ε2-expanded disk of D, 140
d-linear, 712
k-connected, 224
k-localized Delaunay triangulations, 143
k-outerplanar, 263
k-outerplanar embedded graph, 263
k-outerplanar embedding, 263
k-planar graphs, 225
k-relative neighborhood drawing, 118
nc(C), 327
st-graph, 225

t-track layout, 460
relative position, 711
Monotone3Sat, 700
MonotonePlanar3Sat, 700
Partition, 704
Planar3Sat, 713
1-tough, 126
3-cycle, 61
3D drawing, 665, 683
3D embedding, 606, 612
3D grid drawing, 457
3D hyperbolic space, 793
3D orthogonal drawing, 466
3D polyline drawing, 465

Qcc(C), 327
ncc(C), 327

ABACUS, 545, 563
access control, 668
accumulation tree, 435
Ackermann function, 68
acyclic, 224
acyclic subgraph, 547
adaptive tree drawing, 184
aesthetic criteria, 122
aesthetics, 157
AGD, 544, 563
AJAX, 694
algebraic pricing, 63
algorithm

Auslander-Parter, 12–14
Boyer-Myrvold, 27–31
Coffman-Graham, 421
de Fraysseix-Ossona de Mendez-Rosenstiehl,

15–17
Hopcroft-Tarjan, 14–15
k-means, 727
Lempel-Even-Cederbaum, 21–24
Rectangular-Draw, 332
Shih-Hsu, 24–27

algorithm animation, 738, 744
algorithm simulation, 740
almost planar graph, 77
amino acid, 625
angular resolution, 223, 225, 712

842 INDEX

animation, 627
apex graph, 77
approximation algorithm, 76
approximation factor, 68
architectural floorplanning, 319
area, 157
area of a grid drawing, 225
Artificial graphs, 73
aspect ratio, 157
assignment heuristic, 435
augmentation, 547, 606

biconnected, 547
fixed embedding, 547
planar biconnected, 547

Automatic label placement, 489
automorphism, 89
Autonomous Systems, 665
autonomous systems, 779
averaging, 435
Axial Geometric Automorphism Problem,

96

B-node, 67
bad cycle, 324
barycenter, 435, 747
barycenter heuristic, 555
barycenter method, 197
barycentric representation, 216
barycentric representations, 383
BC-tree, 3, 67, 68, 547

dynamic, 548
bend, 156, 248
bend minimization, 238
BGP, 665, 779, 794
biconnected, 197, 224, 288
biconnected component, 3
biconnected components, 197, 547
binary tree, 163
biological network, 621
bipartite, 54
bipartite drawing, 79
bipartite crossing minimization problem, 54
bipartite crossing number problem, 50
bipartite drawing, 50
bisection width, 49, 77
block, 3
block tree, 547
block-cutvertex tree, 3, 67
block-nesting depth, 548
blocks, 197

book embedding, 251
Border Gateway Protocol, 665
botanical tree, 184
boundary face, 328
boundary path, 328
bounding box, 458
box-drawings, 470
box-rectangular drawing, 319, 337
branch-and-bound tree, 62
branch-and-cut, 55, 66, 437
branch-and-cut approach, 62
branching variable, 62
branding, 682
bridge, 3, 714
brin, 601
bush, 22
bush form, 22

c-connected, 561
C-node, 67
c-planarity, 561
canonical order, 550
canonical ordering, 199–202, 240, 260
canonical ordering , 227
capacity, 231
caterpillar, 266
CCMP, 68
cellular compartment, 624
centrality, 814
characteristic matrix, 635
checkers, 144
chordal, 369
chromatic number, 457, 459, 461
circle, 631
circle layout, 640
circle packing, 368
circular crossing minimization problem, 54
circular drawing, 285
cladistic methods, 635
cladogram, 640
class-cover catch digraphs, 143
clockwise leg, 327
closed proximity drawing, 117
closed strip drawings, 119
cloud computing, 673, 693
cluster tree, 561
clustered drawing, 656, 816
clustered graph, 31, 561
clustered planarity, 31
cohesion, 815

INDEX 843

COIN-OR, 545, 563
colored simultaneous embedding, 365
column generation, 62
combinatorial column generation, 63
combinatorial map, 601
compaction, 552, 580
comparability graph, 369
compartment, 624
complete bipartite graph, 43, 49
complete graph, 49
complex biological network, 623
component

biconnected, 3
connected, 3
triconnected, 3

compound, 621
compound graph, 562
compressed-scanning, 674
computer games, 682
computer network, 683
computer networks, 763
cone trees, 162
connected, 197, 224
connected component, 3
connectivity, 605
constrained edge insertion, 68
constrained visibility representation, 234
constraint graph, 552
constraints, 55, 573, 585, 745, 753

hard, 715
soft, 715

contact representation
contacts of segments, 612
contacts of T, 612

contraction
edge, 714

convex, 196
convex drawing, 196, 212, 220, 609
convex faces, 550
convex hull, 55
coordinates assignment, 555
counterclockwise leg, 327
country map, 663
cover tree, 200
critical cycle, 327
crossing, 45, 460
crossing minimization, 548

2-layer, 555
k-layer, 555
upward, 557, 564

crossing minimization problem, 43, 63
fixed linear, 46

crossing number, 43, 45, 288
crossing number matrix, 434
crossing number problem, 50, 563
crossing reduction, 288, 292
crossing shadow, 61
crossing-reduction, 747
curve

Bézier, 718
cubic, 701

Bézier
cubic, 725

Catmull–Rom spline, 709
curve embedding, 260
curvogram, 640
cutvertex, 3, 67, 71
cutwidth, 49
cycle

attached, 326
clockwise, 327
closed, 631
counterclockwise, 327
definition, 3
fundamental, 15
length, 3
open, 631

cycle space, 439

DAG, 224, 675
dart, see brin
data analytics, 682
data privacy, 673
data reduction, 699
data-oblivious, 674
decision graph, 320, 321
degree, 178
degree of a face, 236
degree of a vertex, 224
Delaunay drawing of order h, 121
Delaunay triangulation, 121
dendrogram, 639
depth first search, 10, 288

highpoint, 11
index, 11
lowpoint, 11
tree, 11

depth of a graph, 8
Depth-First Search, see DFS
design patterns, 687

844 INDEX

destination, 224
details on demand, 687
DFS, see depth first search, 603
DFS cotree-critical graph, 603
diagram

Voronoi, 727
digraph, 224
directed acyclic graph, 224, 675
directed edge, 224
directed graph, 224
directed local minimum spanning trees, 143
directed path, 224
directed relative neighborhood graphs, 143
direction

octilinear, 714
directions

octilinear, 712, 713, 715, 716
disconnected graph, 104
discrete curve evolution, 713
distance matrix, 635
DNA, 621, 622
document type definition, 519
dominance drawing, 675
dominance drawings, 557
drawing, 2, 45

c-planar, 31
orthogonal, 712
outerplanar, 2
planar, 2

drawing style
curvilinear, 718

drawing convention, 156
drawing style

octilinear, 712–714
dual edge, 196
dual face, 195
dual graph, 6, 195, 256
dual vertex, 195
dual-like, 319
dummy vertex, 64
dynamic graph, 401
dynamic graph drawing, 369, 752
dynamic graphs, 823

edge
adjacent, 2
bundling, 711
dummy, 724
incident, 2
minimal, 725

self-loop, 2
subdivision, 2
transitive, 725
virtual

of a bush, 22
of a skeleton, 3

edge insertion, 550
fixed embedding, 70, 550
general framework, 68
permutation, 69
postprocessing, 69
upward, 557
variable embedding, 71, 550

edge insertion problem, 64
education, 737
EIP, 64
ELP (Edge Label Placement) problem, 497
email, 793
embedded planar graph, 248
embedding, 3, 195, 225, 248

simultaneous, 31
embedding circle, 285
empty region graphs, 120
empty tree, 156
enclosing rectangle, 156
enzyme, 628

network, 630
Euler inequalities, 66
Euler tour, 675
Euler’s formula, 47, 197
evolution, 623
evolutionary tree, 636
executive dashboards, 684
exercise systems, 740
exploration systems, 741
extended dual graph, 70
Extensible Stylesheet Language Transfor-

mations, 534

face, 2
external, 2
outer, 2

faces, 195
facet, 57
fan triplet, 271
fast multipole multilevel embedder, 559
fast multipole multilevel method (FM3), 559
feasible solution, 55
feedback arc set, 547
file permissions, 668

INDEX 845

filled triangle, 138
filter, 687
Fixed Point Free Automorphism Problem,

96
fixed-parameter tractable, 54
fixed-parameter tractable, 434
flag, see brin
flow, 231
flow network, 231
flow value, 231
force directed, 97
force-directed, 370, 383, 656, 657, 659, 666,

744, 753
format conversion, 536
frame graph, 138
fundamental cycle, 15

Gabriel drawing, 117
Gabriel graph, 115
Gabriel region, 117
Galois lattice representation, 821
GDToolkit, 571
GEM algorithm, 559
gene regulation, 623
gene regulatory

network, 622, 623
pathway, 623

generalization, 697
continuous, 700

genus, 78
geographic information system (GIS), 697
geometric automorphism, 91
Geometric Automorphism Drawing Prob-

lem, 95
geometric automorphism group, 91
geometric network, 697
geometric simultaneous embedding, 31
geospatial map, 684
GFLP (Graphical Feature Label Placement)

problem, 493
global proximity, 116
GMap, 727
gml2pic, 546
good cycle, 324
good drawing, 46
graph

k colorable, 6
biconnected, 3
bipartite, 6
clustered, 31

co-authorship, 728
complete, 6
connected, 3
definition, 2
depth, 8
directed, 2
induced by a vertex set, 2
induced by an edge set, 2
intersection, 2
near-plane, 698, 711
outerplanar, 2
outerplanarity, 8
planar, 2
plane, 3, 699
simple, 2
simply connected, 3
subdivision, 2
subgraph, 2
triconnected, 3
undirected, 2
union, 2
width, 8

graph drawing
box-rectangular drawing, 319, 337
rectangular drawing, 317

graph theoretic distance, 388
GraphML, 517
greedy insert heuristic, 555
greedy insertion, 435
greedy switch heuristic, 555
greedy switching, 435
grid

integer, 714
grid drawing, 156, 197, 225
grid-variant, 559

half-edge, see brin
Hamiltonian, 249
Hamiltonian cycle, 249
Hamiltonicity, 274
head vertex, 327
hexagonal tree drawing, 185
hierarchical index, 410
hierarchical layout, 744, 753
hierarchy, 411
higher order Delaunay triangulation, 121
hill climbing, 714
hull

convex, 724
hyperbolic space, 397

846 INDEX

hyperbolic tree, 183, 397
hypercube, 49
hyperedge, 76
hypergraph, 76, 527, 820
hypervertex, 76
hypothetical taxonomic units, 636

inclusion drawing, 816
incoming edge, 224
incremental planarity testing, 67, 68
indegree, 224
information visualization, 687
information-seeking mantra, 687
inner angle, 320
inner triangulated plane graphs, 138
integer linear program, 55
interconnection technologies, 764
Internet service provider, 785
Internet structure, 765
Internet visualization, 779
intersection drawings, 122
interval representation, 369
intrusion detection, 656, 793
IPv6, 793
isomorphism, 89
ISP network visualization, 785

k-layered drawing, 248
k-radial drawing, 249
k-spine drawing, 249
Kandinsky, 576
Kandinsky layout, 553
kissing number, 124
knowledge discovery, 687
Kuratowski subdivision, 603
Kuratowski inequalities, 66
Kuratowski subdivision, 57, 563
Kuratowski’s theorem, 55

Label placement, 489
label quality

rules for the MLP problem, 504
basic rules, 490

LabelHints, 714
Labeling algorithms, 489

for the ELP problem, 497
for the GFLP problem, 493
for the MLP problem, 504
for the NLP problem, 502

Labeling Problem, 489

definition, 492
Large Parsimony, 638
lattice representation, 821
layer-by-layer sweep, 438
layered drawing, 184, 247, 248, 666, 670,

672
layered planar graph, 272
layering, 633

proper, 633
layout method

force-directed
Fruchterman-Reingold, 725

left-right partition, 15
level graph, 411
life science, 621
linear crossing minimization problem, 54
linear crossing number, 46
linear drawing, 46
linear ordering, 436
linear ordering problem, 60
linear program, 55
LineDrive, 699
linked bar charts, 687
linkless, 479
local minimum spanning trees, 143
local network, 789
Lombardi drawing, 400
lower bound, 236
LP, 55
LR-partition, 15
lune, 118
lune-based, 119

Manhattan distance, 197
map, see combinatorial map

mental, 698
metro, 711, 712
schematic, 711, 712
street, 711, 720

matched drawings, 367
matching, 322

maximum, 322
perfect, 322

maximal planar graph, 195, 225
maximal planar subgraph, 67, 68
maximum degree of a graph, 224
Maximum Likelihood, 638
maximum matching, 322
Maximum Parsimony, 637
maximum planar subgraph, 66

INDEX 847

maximum planar subgraph problem, 48, 64,
549

maximum weight planar subgraph, 66
maximum weight triangulations, 143
MCM, 319
median, 435
median heuristic, 555
mental map, 402, 701, 752
metabolic

network, 623, 628
path, 628
pathway, 628, 630
reaction, 628
simplified network, 630

metabolite, 628
network, 630

metaphor
metro-map, 718
political map, 727

min-cost flow formulation, 724
minimal energy state, 385
minimum spanning tree, 122
minimum weight drawable (for C), 122
minimum weight drawing of G with respect

to P , 122
minimum weight triangulation, 123
minor, 457
minor crossing number, 76
minor-closed, 457
MIP solver

Cplex, 716
Gurobi, 716

mixed integer linear program, 55
mixed-model layouts, 551
MLP (Multiple Label Placement) problem,

504
modified Gabriel drawing, 117
modified Gabriel region, 117
Modified Optimal Linear Arrangement, 288
module options, 545
module types, 545
modules, 317, 545
molecular biology

central dogma, 621
moment curve M, 458
morphing, 371

polygonal line, 700
MPSP, 64
multi-dimensional scaling, 727
multi-scale method, 391

multichip module, 319
multidimensional scaling, 97, 396
multigraph, 224
multilevel algorithms, 559

near-planar graph, 77
Nearest Neighbor Interchange, 638
nearest neighbor drawing, 121
negative witness proximity drawing, 134
Neighbor-Joining, 637
neighbors, 224
nested graphs, 525
network

biological, 621
complex biological, 623
enzyme, 630
gene regulatory, 622, 623
metabolic, 622, 628
metabolite, 630
protein-protein interaction, 622
signal transduction, 622, 623
simplified metabolic, 630

network model, 764
network monitoring, 656
network scans, 659
network traffic, 657
NLP (Node Label Placement) problem, 502
non-planar core, 563
non-upward drawing, 156
nonbiconnected, 296, 297
NP-complete, 50, 55
NP-hard, 44, 48–50
NS-path, 328

objective function, 55
octopus map, 663
odd-crossing number, 45
OGDF, 543–564
OGML, 546
open proximity drawing, 117
Open Graph Drawing Framework, 543
Open Graph Markup Language, 546
Open Problems Project, 699
open strip drawings, 119
operational taxonomical units, 636
optimal linear arrangement problem, 50
optimal solution, 55
optimization

multicriteria, 714
order dimension, 212

848 INDEX

ordered tree, 155
orientation, 60
origin, 224
orthogonal box drawings, 456
orthogonal drawing, 156, 225, 234, 580
orthogonal layouts, 552

bend minimization, 552
orthogonal representation, 576
orthogonal shape, 236, 574
outdegree, 224
outer angle, 320
outer vertex, 19
outerplanar, 291
outerplanar embedded graph, 263
outerplanar graph, 195
outerplanarity, 9, 263

measure, 8
outgoing edge , 224
overview, 687
overview first, zoom and filter, then details

on demand, 687

P-node, 67
pagenumber, 251
pages, 251
pairwise crossing number, 45
palm tree, see depth first search, tree
parsimony

large, 638
maximum, 637
small, 637
weighted small, 637

partial Delaunay triangulations, 143
partial tree, 166
partition

aligned, 16
left-right, 15
LR-partition, 15

partition-pair, 330
partitioning path, 328
path

addition, see algorithm, Hopcroft and
Tarjan

definition, 3
length, 3

PC-tree, 24
peer-to-peer networks, 793
peptide bonds, 625
perfect matching, 322
permutation, 434

permutation graphs, 369
phenetic methods, 635
phylogenetic tree, 636
phylogram, 639
PIGALE, 599

geometric graph, 603
graph, 603
graph properties, 602
map, 601

acir, 602
cir, 602
pbrin, 602
vin, 602

supported platforms, 599
topological graph, 603

plan
cable, 712, 724

planar, 195, 248
planar st-graph, 225
planar augmentation problem, 547
planar automorphism, 98
planar automorphism group, 98
planar drawing, 156, 225
planar drawing algorithm, 44
planar embedding, 225, 574

maximal external face, 548
minimal block-nesting depth, 548

planar graph, 225, 459, 675
planar layout, 550

straight-line, 550
planar orthogonal drawing, 238
planar polyline drawing, 239
planar straight-line drawing, 193–220
planar subgraph, 44, 64, 66
planar subgraph polytope, 66
planar subgraphs, 549
planarity

clustered, 31
constrained, 8
simultaneous, 31
testing, 603
upward, 9

planarity test, 57, 67
planarity testing, 548, 576
planarization, 711
planarization approach, 44, 63, 552, 563

clustered graphs, 561
planarized representation, 64
plane dual, 6
plane graph, 225

INDEX 849

dual, 6
podevsnef, 576
point

characteristic, 701
point-drawings, 466
point-set embeddability, 276
point-set embedding, 253, 276
Polrec drawing, 610
polygon, 196
polygonal line simplification, 699, 712, 713
polyhedral combinatorics, 55
polyline drawing, 156, 225, 248, 580
ports, 528
positive witness proximity drawing, 134
PQ-tree, 68
PQ-trees, 548
PrEd, 714
privacy settings, 671
product, 628
program visualization, 741
projective graph, 78
prominence, 812
proper layered drawings, 267
protein, 622, 625
protein-protein interaction, 625

network, 622, 625
proximity drawing checker, 144
proximity graph, 115
proximity region, 116
Public Implementation of a Graph Algo-

rithm Library and Editor, see PI-
GALE

Q-node, 67
quasi-orthogonal layouts, 552
quasi-static graph, 601
quasi-upward, 578
quasi-upward planar representation, 579
queue layout, 463
quicksort, 435

R-node, 67
radial drawing, 260, 269, 666
radial drawings, 159, 247
random field layout, 725
random map, 609
rank assignment, 554
ranking

Coffman-Graham, 554
longest paths, 554

optimal, 554
reactant, 628
real-time visual reports, 685
realizability problem, 57
realizable, 58, 59
realizer, 212
realizer method, 199, 212–220
rectangle of influence, 120
rectangle of influence drawing, 120
rectangle visibility, 478
rectangular drawing, 317
rectangular dual, 344
rectilinear crossing number, 45
rectilinear drawing, 610
recurrent hierarchies, 444
region of influence, 116
regular labeling, 321
relative neighborhood drawing, 118
relative neighborhood region, 118
relative position, 714
relatively closest drawing, 118
relatively closest region, 118
returning edge, 11
ringed circular layout, 165, 178, 180
RNA, 622
Rome graphs, 56, 73, 563
root

of connected component, 24
route map, 699
route planner, 699
routing protocols, 765

S-node, 67
SBGN, 645
SCHEMAP, 724
SeeNet3D, 726
semantic constraints, 247
sensor networks, 793
separating k-set, 196
separating edge, 197
separation pair, 3, 71
separation pairs, 196
separation problem, 62
separator edge, 162, 166
series-parallel graph, 675
shelling order, 550
shift method, 199, 202–212
shifting set, 227
sifting, 438
sifting heuristic, 555

850 INDEX

signal transduction, 623
network, 622, 623
pathway, 623

simple, 58
simple drawing, 57, 58
simulated annealing, 386, 559
simultaneous embedding, 31, 351, 364

geometric, 31
with fixed edges, 31

simultaneous embedding with fixed edges,
350, 357

simultaneous geometric embedding, 350, 352
simultaneous planarity, 31
single edge insertion, 68
sink, 224, 231
skeleton, 124, 548
sketch, 724
skewness, 48
Small Parsimony, 637
social networks, 671, 793, 805
sociomatrix, 817
software visualization, 743
source, 224, 231
space tree, 184
spanning tree, see tree, spanning a graph,

67, 68
spectral analysis, 606
sphere of influence, 122
sphere-of-attraction graphs, 143
spine, 171, 251
spine drawing, 251, 266, 268
spine drawings, 247, 249
spiral, 631
split, 435

component, 3
operation, 3

split heuristic, 555
SPQR tree, 101
SPQR-tree, 4, 67, 68, 547, 563, 576

dynamic, 548
spring, 385
spring embedder, 610
spring embedder, 385, 559, 656, 714
square drawings, 134
st-numbering, 22
s-t-planar digraph, 558
star insertion, 74
star triangulation, 99
status, 812
stochastic heuristic, 435

straight-line, 157
Straight-line drawing, 609
straight-line drawing, 195, 225, 248
streaming, 823
stress majorization, 396
strictly convex, 196
strictly convex drawing, 196
strong visibility drawing, 136
sub-Hamiltonian, 249
subdivision, 57
substance, 628

co-, 628
main, 628

substance-based designs, 810
subtree, 156
subtree-separation, 158
Sugiyama framework, 410
Sugiyama method, 410
Sugiyama’s framework, 554, 562, 564
survivable telecommunication networks, 287
symmetric lens, 118
symmetry, 87, 91, 385, 480, 606, 675

t-polygonal crossing number, 46
t-polygonal drawing, 45
tail vertex, 327
task-specific visualizations, 688
taxon, 634
taxonomical units

hypotetical taxonomic, 636
operational taxonomic, 636

template region, 120
tessellation representation, 368
theorem

four-color, 728
thickness, 49, 473
three-dimensional straight-line grid draw-

ing, 457
timetable graph, 725
topological book embedding, 255
topological ordering, 225
topology-shape-metrics approach, 552, 561,

573
toroidal graph, 78
track-number, 460
trajectory, 701
transitive

closure, 421
edge, 421
reduction, 421

INDEX 851

tree, 675
BC-tree, 3
PC-tree, 24
PQ-tree, 24
spanning a graph, 2
SPQR tree, 4

tree layouts, 554
treemap, 662, 670, 672, 675
trees, 752
triangulated plane graphs, 138
triconnected, 197, 224
triconnected component, 3
triconnected components, 67, 197, 547, 563
Tutte, 197
Tutte drawing, 610
Tutte’s barycenter method, 559
two-mode network, 819

unit distance graph, 143
Unweighted Pair Group Method with Arith-

metic Mean, 636
upward, 464
upward drawing, 76, 156, 578, 670, 675
upward planar representation, 557, 578
upward planar subgraphs

feasible, 557
upward planarity, 9
upward planarity testing

sT -digraphs, 549, 564
upward planarization, 557
upward representation, 578
user interface, 682
user-grouped circular drawings, 303

vertex
adjacent, 2
outer, 19
virtual, 22

vertex filtration, 393
vertex insertion, 74
virtual edge

of a bush, 22
of a skeleton, 3

virtual vertex, 22
visibility drawing, 610
visibility representation, 230, 234, 478, 557,

580
visual design patterns, 687
visual discovery, 686
visual presentation, 682

visual searching, 687
visualization principles, 807
VLSI, 43
volume, 458
Voronoi diagram, 121
Voronoi drawing, 121

wall, 65
weak proximity drawings, 135
weak visibility drawing, 136
web, 793
web applications, 694
Weighted Small Parsimony, 637
width

of a graph, 8
window, 438
wireless networks, 793
witness Delaunay drawings, 134
Witness proximity, 133
Witness proximity drawings, 133

X-crossing, 460
XML, 517
XML schema, 519
XPath, 534
XSLT, 534

zoom, 687

