
An Incremental Approach to Compiler Construction

Abdulaziz Ghuloum
Department of Computer Science, Indiana University, Bloomington, IN 47408

aghuloum@cs.indiana.edu

Abstract
Compilers are perceived to be magical artifacts, carefully crafted
by the wizards, and unfathomable by the mere mortals. Books on
compilers are better described as wizard-talk: written by and for
a clique of all-knowing practitioners. Real-life compilers are too
complex to serve as an educational tool. And the gap between
real-life compilers and the educational toy compilers is too wide.
The novice compiler writer stands puzzled facing an impenetrable
barrier, “better write an interpreter instead.”

The goal of this paper is to break that barrier. We show that
building a compiler can be as easy as building an interpreter. The
compiler we construct accepts a large subset of the Scheme pro-
gramming language and produces assembly code for the Intel-x86
architecture, the dominant architecture of personal computing. The
development of the compiler is broken into many small incremen-
tal steps. Every step yields a fully working compiler for a progres-
sively expanding subset of Scheme. Every compiler step produces
real assembly code that can be assembled then executed directly
by the hardware. We assume that the reader is familiar with the
basic computer architecture: its components and execution model.
Detailed knowledge of the Intel-x86 architecture is not required.

The development of the compiler is described in detail in an
extended tutorial. Supporting material for the tutorial such as an
automated testing facility coupled with a comprehensive test suite
are provided with the tutorial. It is our hope that current and future
implementors of Scheme find in this paper the motivation for de-
veloping high-performance compilers and the means for achieving
that goal.

Categories and Subject Descriptors D.3.4 [Processors]: Compil-
ers; K.3.2 [Computer and Information Science Education]: Com-
puter science education

Keywords Scheme, Compilers

1. Introduction
Compilers have traditionally been regarded as complex pieces of
software. The perception of complexity stems mainly from tradi-
tional methods of teaching compilers as well as the lack of available
examples of small and functional compilers for real languages.

Compiler books are polarized into two extremes. Some of them
focus on “educational” toy compilers while the others focus on
“industrial-strength” optimizing compilers. The toy compilers are

Proceedings of the 2006 Scheme and Functional Programming Workshop
University of Chicago Technical Report TR-2006-06

too simplistic and do not prepare the novice compiler writer to
construct a useful compiler. The source language of these compilers
often lacks depth and the target machine is often fictitious. Niklaus
Wirth states that “to keep both the resulting compiler reasonably
simple and the development clear of details that are of relevance
only for a specific machine and its idiosyncrasies, we postulate
an architecture according to our own choice”[20]. On the other
extreme, advanced books focus mainly on optimization techniques,
and thus target people who are already well-versed in the topic.
There is no gradual progress into the field of compiler writing.

The usual approach to introducing compilers is by describing
the structure and organization of a finalized and polished compiler.
The sequencing of the material as presented in these books mirrors
the passes of the compilers. Many of the issues that a compiler
writer has to be aware of are solved beforehand and only the final
solution is presented. The reader is not engaged in the process of
developing the compiler.

In these books, the sequential presentation of compiler imple-
mentation leads to loss of focus on the big picture. Too much focus
is placed on the individual passes of the compiler; thus the reader
is not actively aware of the relevance of a single pass to the other
passes and where it fits in the whole picture. Andrew Appel states
that “a student who implements all the phases described in Part I of
the book will have a working compiler”[2]. Part I of Appel’s book
concludes with a 6-page chapter on “Putting it all together” after
presenting 11 chapters on the different passes of Tiger.

Moreover, practical topics such as code generation for a real
machine, interfacing to the operating system or to other languages,
heap allocation and garbage collection, and the issues surround-
ing dynamic languages are either omitted completely or placed
in an appendix. Muchnick states that “most of the compiler ma-
terial in this book is devoted to languages that are well suited for
compilation: languages that have static, compile-time type systems,
that do not allow the user to incrementally change the code, and
that typically make much heavier use of stack storage than heap
storage”[13].

2. Preliminary Issues
To develop a compiler, there are a few decisions to be made.
The source language, the implementation language, and the target
architecture must be selected. The development time frame must
be set. The development methodology and the final goal must be
decided. For the purpose of our tutorial, we made the decisions
presented below.

2.1 Our Target Audience
We do not assume that the reader knows anything about assem-
bly language beyond the knowledge of the computer organization,
memory, and data structures. The reader is assumed to have very
limited or no experience in writing compilers. Some experience
with writing simple interpreters is helpful, but not required.

27

We assume that the reader has basic knowledge of C and the C
standard library (e.g. malloc, printf, etc.). Although our com-
piler will produce assembly code, some functionality is easier to
implement in C; implementing it directly as assembly routines dis-
tracts the reader from the more important tasks.

2.2 The Source Language
In our tutorial, we choose a subset of Scheme as the source pro-
gramming language. The simple and uniform syntax of Scheme
obviates the need for a lengthy discussion of scanners and parsers.
The execution model of Scheme, with strict call-by-value evalua-
tion, simplifies the implementation. Moreover, all of the Scheme
primitives in the subset can be implemented in short sequences of
assembly instructions. Although not all of Scheme is implemented
in the first compiler, all the major compiler-related issues are tack-
led. The implementation is a middle-ground between a full Scheme
compiler and a toy compiler.

In choosing a specific source language, we gain the advantage
that the presentation is more concrete and eliminates the burden
of making the connection from the abstract concepts to the actual
language.

2.3 The Implementation Language
Scheme is chosen as the implementation language of the compiler.
Scheme’s data structures are simple and most Scheme program-
mers are familiar with the basic tasks such as constructing and pro-
cessing lists and trees. The ability to manipulate Scheme programs
as Scheme data structures greatly simplifies the first steps of con-
structing a compiler, since the issue of reading the input program is
solved. Implementing a lexical-scanner and a parser are pushed to
the end of the tutorial.

Choosing Scheme as the implementation language also elimi-
nates the need for sophisticated and specialized tools. These tools
add a considerable overhead to the initial learning process and dis-
tracts the reader from acquiring the essential concepts.

2.4 Choosing The Target Architecture
We choose the Intel-x86 architecture as our target platform. The
x86 architecture is the dominant architecture on personal comput-
ers and thus is widely available.

Talking about compilers that are detached from a particular
architecture puts the burden on the reader to make the connection
from the abstract ideas to the concrete machine. Novice compiler
writers are unlikely to be able to derive the connection on their own.
Additionally, the compiler we develop is small enough to be easily
portable to other architectures, and the majority of the compiler
passes are platform independent.

2.5 Development Time Frame
The development of the compiler must proceed in small steps
where every step can be implemented and tested in one sitting. Fea-
tures that require many sittings to complete are broken down into
smaller steps. The result of completing every step is a fully working
compiler. The compiler writer, therefore, achieves progress in every
step in the development. This is in contrast with the traditional de-
velopment strategies that advocate developing the compiler as a se-
ries of passes only the last of which gives the sense of accomplish-
ment. With our approach of incremental development, where every
step results in a fully working compiler for some subset of Scheme,
the risk of not “completing” the compiler is minimized. This ap-
proach is useful for people learning about compilers on their own,
where the amount of time they can dedicate constantly changes. It
is also useful in time-limited settings such as an academic semester.

2.6 Development Methodology
We advocate the following iterative development methodology:

1. Choose a small subset of the source language that we can
compile directly to assembly.

2. Write as many test cases as necessary to cover the chosen subset
of the language.

3. Write a compiler that accepts an expression (in the chosen sub-
set of the source language) and outputs the equivalent sequence
of assembly instructions.

4. Ensure that the compiler is functional, i.e. it passes all the tests
that are written beforehand.

5. Refactor the compiler, if necessary, making sure that none of
the tests are broken due to incorrect refactoring.

6. Enlarge the subset of the language in a very small step and re-
peat the cycle by writing more tests and extending the compiler
to meet the newly-added requirements.

A fully working compiler for the given subset of the language
is available at every step in the development cycle starting from
the first day of development. The test cases are written to help en-
sure that the implementation meets the specifications and to guard
against bugs that may be introduced during the refactoring steps.
Knowledge of compilation techniques as well as the target machine
is built incrementally. The initial overhead of learning the assembly
instructions of the target machine is eliminated—instructions are
introduced only when they are needed. The compiler starts small
and is well focused on translating the source language to assembly,
and every incremental step reinforces that focus.

2.7 Testing Infrastructure
The interface to the compiler is defined by one Scheme procedure,
compile-program, that takes as input an s-expression represent-
ing a Scheme program. The output assembly is emitted using an
emit form that routes the output of the compiler to an assembly
file.

Defining the compiler as a Scheme procedure allows us to de-
velop and debug the compiler interactively by inspecting the output
assembly code. It also allows us to utilize an automated testing fa-
cility. There are two core components of the testing infrastructure:
the test-cases and the test-driver.

The test cases are made of sample programs and their expected
output. For example, the test cases for the primitive + may be
defined as follows:

(test-section "Simple Addition")
(test-case ’(+ 10 15) "25")
(test-case ’(+ -10 15) "5")
...

The test-driver iterates over the test cases performing the follow-
ing actions: (1) The input expression is passed to compile-program
to produce assembly code. (2) The assembly code and a minimal
run-time system (to support printing) are assembled and linked to
form an executable. (3) The executable is run and the output is
compared to the expected output string. An error is signaled if any
of the previous steps fails.

2.8 The End Goal
For the purpose of this paper, we define the end goal to be writing
a compiler powerful enough to compile an interactive evaluator.
Building such a compiler forces us to solve many interesting prob-
lems.

28 Scheme and Functional Programming, 2006

A large subset of Scheme’s core forms (lambda, quote, set!,
etc) and extended forms (cond, case, letrec, internal define
etc.) must be supported by the compiler. Although most of these
forms are not essential, their presence allows us to write our pro-
grams in a more natural way. In implementing the extended forms,
we show how a large number of syntactic forms can be added with-
out changing the core language that the compiler supports.

A large collection of primitives (cons, car, vector?, etc.)
and library procedures (map, apply, list->vector, etc.) need
to be implemented. Some of these library procedures can be im-
plemented directly, while others require some added support from
the compiler. For example, some of the primitives cannot be im-
plemented without supporting variable-arity procedures, and others
require the presence of apply. Implementing a writer and a reader
requires adding a way to communicate with an external run-time
system.

3. Writing a Compiler in 24 Small Steps
Now that we described the development methodology, we turn our
attention to the actual steps taken in constructing a compiler. This
section is a brief description of 24 incremental stages: the first is a
small language composed only of small integers, and the last covers
most of the requirements of R5RS. A more detailed presentation of
these stages is in the accompanying extended tutorial.

3.1 Integers
The simplest language that we can compile and test is composed
of the fixed-size integers, or fixnums. Let’s write a small compiler
that takes a fixnum as input and produces a program in assembly
that returns that fixnum. Since we don’t know yet how to do that,
we ask for some help from another compiler that does know: gcc.
Let’s write a small C function that returns an integer:

int scheme_entry(){
return 42;

}

Let’s compile it using gcc -O3 --omit-frame-pointer -S
test.c and see the output. The most relevant lines of the output
file are the following:

1. .text
2. .p2align 4,,15
3. .globl scheme_entry
4. .type scheme_entry, @function
5. scheme_entry:
6. movl $42, %eax
7. ret

Line 1 starts a text segment, where code is located. Line 2 aligns
the beginning of the procedure at 4-byte boundaries (not important
at this point). Line 3 informs the assembler that the scheme entry
label is global so that it becomes visible to the linker. Line 4
says that scheme entry is a function. Line 5 denotes the start of
the scheme entry procedure. Line 6 sets the value of the %eax
register to 42. Line 7 returns control to the caller, which expects
the received value to be in the %eax register.

Generating this file from Scheme is straightforward. Our com-
piler takes an integer as input and prints the given assembly with
the input substituted in for the value to be returned.

(define (compile-program x)
(emit "movl $~a, %eax" x)
(emit "ret"))

To test our implementation, we write a small C run-time system
that calls our scheme entry and prints the value it returns:

/* a simple driver for scheme_entry */
#include <stdio.h>
int main(int argc, char** argv){

printf("%d\n", scheme_entry());
return 0;

}

3.2 Immediate Constants
Values in Scheme are not limited to the fixnum integers. Booleans,
characters, and the empty list form a collection of immediate val-
ues. Immediate values are those that can be stored directly in
a machine word and therefore do not require additional storage.
The types of the immediate objects in Scheme are disjoint, conse-
quently, the implementation cannot use fixnums to denote booleans
or characters. The types must also be available at run time to al-
low the driver to print the values appropriately and to allow us to
provide the type predicates (discussed in the next step).

One way of encoding the type information is by dedicating some
of the lower bits of the machine word for type information and
using the rest of the machine word for storing the value. Every type
of value is defined by a mask and a tag. The mask defines which bits
of the integer are used for the type information and the tag defines
the value of these bits.

For fixnums, the lower two bits (mask = 11b) must be 0
(tag = 00b). This leaves 30 bits to hold the value of a fixnum.
Characters are tagged with 8 bits (tag = 00001111b) leaving 24
bits for the value (7 of which are actually used to encode the ASCII
characters). Booleans are given a 7-bit tag (tag = 0011111b), and
1-bit value. The empty list is given the value 00101111b.

We extend our compiler to handle the immediate types appro-
priately. The code generator must convert the different immediate
values to the corresponding machine integer values.

(define (compile-program x)
(define (immediate-rep x)

(cond
((integer? x) (shift x fixnum-shift))
...))

(emit "movl $~a, %eax" (immediate-rep x))
(emit "ret"))

The driver must also be extended to handle the newly-added
values. The following code illustrates the concept:

#include <stdio.h>
#define fixnum_mask 3
#define fixnum_tag 0
#define fixnum_shift 2

...
int main(int argc, char** argv){

int val = scheme_entry();
if((val & fixnum_mask) == fixnum_tag){

printf("%d\n", val >> fixnum_shift);
} else if(val == empty_list){

printf("()\n");
} ...
return 0;

}

3.3 Unary Primitives
We extend the language now to include calls to primitives that ac-
cept one argument. We start with the simplest of these primitives:
add1 and sub1. To compile an expression in the form (add1 e),
we first emit the code for e. That code would evaluate e placing its
value in the %eax register. What remains to be done is incrementing

Scheme and Functional Programming, 2006 29

the value of the %eax register by 4 (the shifted value of 1). The ma-
chine instruction that performs addition/subtraction is addl/subl.

(define (emit-expr x)
(cond

((immediate? x)
(emit "movl $~a, %eax" (immediate-rep x)))
((primcall? x)
(case (primcall-op x)

((add1)
(emit-expr (primcall-operand1 x))
(emit "addl $~a, %eax" (immediate-rep 1)))
...))

(else ...)))

The primitives integer->char and char->integer can be
added next. To convert an integer (assuming it’s in the proper
range) to a character, the integer (already shifted by 2 bits) is
shifted further 6 bits to make up a total of char-shift, the result is
then tagged with the char-tag. Converting a character to a fixnum
requires a shift to the right by 6 bits. The choice of tags for the
fixnums and characters is important for realizing this concise and
potentially fast conversion.

We implement the predicates null?, zero?, and not next.
There are many possible ways of implementing each of these pred-
icates. The following sequence works for zero? (assuming the
value of the operand is in %eax):

1. cmpl $0, %eax
2. movl $0, %eax
3. sete %al
4. sall $7, %eax
5. orl $63, %eax

Line 1 compares the value of %eax to 0. Line 2 zeros the value
of %eax. Line 3 sets %al, the low byte of %eax, to 1 if the two
compared values were equal, and to 0 otherwise. Lines 4 and 5
construct the appropriate boolean value from the one bit in %eax.

The predicates integer? and boolean? are handled similarly
with the exception that the tag of the value must be extracted (using
andl) before it is compared to the fixnum/boolean tag.

3.4 Binary Primitives
Calls to binary, and higher-arity, primitives cannot in general be
evaluated using a single register since evaluating one subexpression
may overwrite the value computed for the other subexpression. To
implement binary primitives (such as +, *, char<?, etc.), we use
a stack to save intermediate values of computations. For example,
generating the code for (+ e0 e1) is achieved by (1) emitting the
code for e1, (2) emitting an instruction to save the value of %eax on
the stack, (3) emitting the code for e0, and (4) adding the value of
%eax to the value saved on the stack.

The stack is arranged as a contiguous array of memory loca-
tions. A pointer to the base of the stack is in the %esp register. The
base of the stack, 0(%esp), contains the return-point. The return-
point is an address in memory where we return after computing the
value and therefore should not be modified. We are free to use the
memory locations above the return-point (-4(%esp), -8(%esp),
-12(%esp), etc.) to hold our intermediate values.

In order to guarantee never overwriting any value that will be
needed after the evaluation of an expression, we arrange the code
generator to maintain the value of the stack index. The stack index
is a negative number that points to the first stack location that
is free. The value of the stack index is initialized to −4 and is
decremented by 4 (the word-size, 4 bytes) every time a new value is
saved on the stack. The following segment of code illustrates how
the primitive + is implemented:

(define (emit-primitive-call x si)
(case (primcall-op x)

((add1) ...)
((+)
(emit-expr (primcall-operand2 x) si)
(emit "movl %eax, ~a(%esp)" si)
(emit-expr

(primcall-operand1 x)
(- si wordsize))

(emit "addl ~a(%esp), %eax" si))
...))

The other primitives (-, *, =, <, char=?, etc.) can be easily
implemented by what we know so far.

3.5 Local Variables
Now that we have a stack, implementing let and local variables
is straightforward. All local variables will be saved on the stack
and an environment mapping variables to stack locations is main-
tained. When the code generator encounters a let-expression, it
first evaluates the right-hand-side expressions, one by one, saving
the value of each in a specific stack location. Once all the right-
hand-sides are evaluated, the environment is extended to associate
the new variables with their locations, and code for the body of the
let is generated in the new extended environment. When a refer-
ence to a variable is encountered, the code generator locates the
variable in the environment, and emits a load from that location.

(define (emit-expr x si env)
(cond

((immediate? x) ...)
((variable? x)
(emit "movl ~a(%esp), %eax" (lookup x env)))
((let? x)
(emit-let (bindings x) (body x) si env))
((primcall? x) ...)
...))

(define (emit-let bindings body si env)
(let f ((b* bindings) (new-env env) (si si))

(cond
((null? b*) (emit-expr body si new-env))
(else
(let ((b (car b*)))

(emit-expr (rhs b) si env)
(emit "movl %eax, ~a(%esp)" si)
(f (cdr b*)

(extend-env (lhs b) si new-env)
(- si wordsize)))))))

3.6 Conditional Expressions
Conditional evaluation is simple at the assembly-level. The sim-
plest implementation of (if test conseq altern) is:

(define (emit-if test conseq altern si env)
(let ((L0 (unique-label)) (L1 (unique-label)))

(emit-expr test si env)
(emit-cmpl (immediate-rep #f) eax)
(emit-je L0)
(emit-expr conseq si env)
(emit-jmp L1)
(emit-label L0)
(emit-expr altern si env)
(emit-label L1)))

The code above first evaluates the test expression and compares
the result to the false value. Control is transferred to the alternate

30 Scheme and Functional Programming, 2006

ap

field3

field2

low address

high address

…

%esi+8

%esi+4
field1 %esi

free
heap
space

used
space

ap

low address

high address

… %esi+8

%esi+4
%esi

free
heap
space

used
space

(A) Before allocation (B) After allocation

Figure 1. Illustration of the heap. The allocation pointer (ap) is is
held in the %esi register and its value is always aligned on 8-byte
boundaries. Individual objects are allocated at address %esi and the
allocation pointer is bumped to the first boundary after the object.

code if the value of the test was false, otherwise, it falls through to
the consequent.

3.7 Heap Allocation
Scheme’s pairs, vector, strings, etc. do not fit in one machine word
and must be allocated in memory. We allocate all objects from
one contiguous area of memory. The heap is preallocated at the
start of the program and its size is chosen to be large enough to
accommodate our current needs. A pointer to the beginning of the
heap is passed to scheme entry to serve as the allocation pointer.
We dedicate one register, %esi, to hold the allocation pointer. Every
time an object is constructed, the value of %esi is incremented
according to the size of the object.

The types of the objects must also be distinguishable from
one another. We use a tagging scheme similar to the one used
for fixnums, booleans, and characters. Every pointer to a heap-
allocated object is tagged by a 3-bit tag (001b for pairs, 010b for
vectors, 011b for strings, 101b for symbols, and 110b for closures;
000b, 100b and 111b were already used for fixnums and the other
immediate objects). For this tagging scheme to work, we need to
guarantee that the lowest three bits of every heap-allocated object
is 000b so that the tag and the value of the pointer do not interfere.
This is achieved by always allocating objects at double-word (or
8-byte) boundaries.

Let’s consider how pairs are implemented first. A pair requires
two words of memory to hold its car and cdr fields. A call to
(cons 10 20) can be translated to:

movl $40, 0(%esi) # set the car
movl $80, 4(%esi) # set the cdr
movl %esi, %eax # eax = esi | 1
orl $1, %eax
addl $8, %esi # bump esi

The primitives car and cdr are simple; we only need to re-
member that the pointer to the pair is its address incremented by 1.
Consequently, the car and cdr fields are located at −1 and 3 from
the pointer. For example, the primitive caddr translates to:

movl 3(%eax), %eax # cdr
movl 3(%eax), %eax # cddr
movl -1(%eax), %eax # caddr

Vectors and strings are different from pairs in that they vary in
length. This has two implications: (1) we must reserve one extra

memory location in the vector/string to hold the length, and (2)
after allocating the object, the allocation pointer must be aligned to
the next double-word boundary (allocating pairs was fine because
their size is a multiple of 8). For example, a call to the primitive
make-vector translates to:

movl %eax, 0(%esi) # set the length
movl %eax, %ebx # save the length
movl %esi, %eax # eax = esi | 2
orl $2, %eax
addl $11, %ebx # align size to next
andl $-8, %ebx # object boundary
addl %ebx, %esi # advance alloc ptr

Strings are implemented similarly except that the size of a string
is smaller than the size of a vector of the same length. The primitive
string-ref (and string-set!) must also take care of converting
a byte value to a character (and vise versa).

3.8 Procedure Calls
The implementation of procedures and procedure calls are perhaps
the hardest aspect of constructing our compiler. The reason for its
difficulty is that Scheme’s lambda form performs more than one
task and the compiler must tease these tasks apart. First, a lambda
expression closes over the variables that occur free in its body so we
must perform some analysis to determine the set of variables that
are referenced, but not defined, in the body of a lambda. Second,
lambda constructs a closure object that can be passed around.
Third, the notion of procedure calls and parameter-passing must
be introduced at the same point. We’ll handle these issues one at a
time starting with procedure calls and forgetting all about the other
issues surrounding lambda.

We extend the language accepted by our code generator to con-
tain top-level labels (each bound to a code expression containing a
list of formal parameters and a body expression) and label calls.

<Prog> ::= (labels ((lvar <LExpr>) ...) <Expr>)
<LExpr> ::= (code (var ...) <Expr>)
<Expr> ::= immediate

| var
| (if <Expr> <Expr> <Expr>)
| (let ((var <Expr>) ...) <Expr>)
| (primcall prim-name <Expr> ...)
| (labelcall lvar <Expr> ...)

base

locals

outgoing
arguments

return point

local1

local2

local3

arg1

arg2

low address

high address

…

%esp

%esp-4

%esp-8

%esp-12

%esp-16

%esp-20

%esp-24

arg3 %esp-28

free
stack
space

base

incoming
arguments

return point

arg1

arg2

low address

high address

…

%esp

%esp-4

%esp-8

arg3 %esp-12

free
stack
space

(A) Caller’s View (B) Callee’s View

Figure 2. The view of the stack from (A) the Caller’s side before
making the procedure call, and (B) the Callee’s side on entry to the
procedure.

Scheme and Functional Programming, 2006 31

Code generation for the new forms is as follows:

• For the labels form, a new set of unique labels are created and
the initial environment is constructed to map each of the lvars
to its corresponding label.

• For each code expression, the label is first emitted, followed
by the code of the body. The environment used for the body
contains, in addition to the lvars, a mapping of each of the
formal parameters to the first set of stack locations (−4, −8,
etc.). The stack index used for evaluating the body starts above
the last index used for the formals.

• For a (labelcall lvar e ...), the arguments are evaluated
and their values are saved in consecutive stack locations, skip-
ping one location to be used for the return-point. Once all of the
arguments are evaluated, the value of the stack-pointer, %esp
is incremented to point to one word below the return-point. A
call to the label associated with the lvar is issued. A call
instruction decrements the value of %esp by 4 and saves the ad-
dress of the next instruction in the appropriate return-point slot.
Once the called procedure returns (with a value in %eax), the
stack pointer is adjusted back to its initial position.

Figure 2 illustrates the view of the stack from the caller and callee
perspective.

3.9 Closures
Implementing closures on top of what we have so far should be
straightforward. First, we modify the language accepted by our
code generator as follows:

• The form (closure lvar var ...) is added to the lan-
guage. This form is responsible for constructing closures. The
first cell of a closure contains the label of a procedure, and the
remaining cells contain the values of the free variables.

• The code form is extended to contain a list of the free variables
in addition to the existing formal parameters.

• The labelcall is replaced by a funcall form that takes an
arbitrary expression as a first argument instead of an lvar.

The closure form is similar to a call to vector. The label
associated with the lvar is stored at 0(%esi) and the values of
the variables are stored in the next locations. The value of %esi is
tagged to get the value of the closure, and %esi is bumped by the
required amount.

The code form, in addition to associating the formals with the
corresponding stack locations, associates each of the free variables
with their displacement form the closure pointer %edi.

The funcall evaluated all the arguments as before but skips
not one but two stack locations: one to be used to save the current
value of the closure pointer, and one for the return point. After the
arguments are evaluated and saved, the operator is evaluated, and
its value is moved to %edi (whose value must be saved to its stack
location). The value of %esp is adjusted and an indirect call through
the first cell of the closure pointer is issued. Upon return from the
call, the value of %esp is adjusted back and the value of %edi is
restored from the location at which it was saved.

One additional problem needs to be solved. The source lan-
guage that our compiler accepts has a lambda form, and none of
the labels, code, closure forms. So, Scheme input must be con-
verted to this form before our code generator can accept it. The
conversion is easy to do in two steps:

1. Free-variable analysis is performed. Every lambda expression
appearing in the source program is annotated with the set of
variables that are referenced but not defined in the body of the
lambda. For example,

base

locals

outgoing
arguments

return point

local1

local2

local3

arg1

arg2

arg3

low address

high address

…

%esp

%esp-4

%esp-8

%esp-12

%esp-16

%esp-20

%esp-24

arg4 %esp-28

free
stack
space

base

outgoing
arguments

return point

arg1

arg2

arg3

arg4

low address

high address

…

%esp

%esp-4

%esp-8

%esp-12

%esp-16

free
stack
space

(A) Before Tail Call (B) At Tail Call

Figure 3. One way of implementing proper tail calls is by collaps-
ing the tail frame. The figures show (A) the evaluation and place-
ment of the arguments on the stack above the local variables, then
(B) moving the arguments down to overwrite the current frame im-
mediately before making the tail jump.

(let ((x 5))
(lambda (y) (lambda () (+ x y))))

is transformed to:

(let ((x 5))
(lambda (y) (x) (lambda () (x y) (+ x y))))

2. The lambda forms are transformed into closure forms and the
codes are collected at the top. The previous example yields:

(labels ((f0 (code () (x y) (+ x y)))
(f1 (code (y) (x) (closure f0 x y))))

(let ((x 5)) (closure f1 x)))

3.10 Proper Tail Calls
The Scheme report requires that implementations be properly tail-
recursive. By treating tail-calls properly, we guarantee that an un-
bounded number of tail calls can be performed in constant space.

So far, our compiler would compile tail-calls as regular calls
followed by a return. A proper tail-call, on the other hand, must
perform a jmp to the target of the call, using the same stack position
of the caller itself.

A very simple way of implementing tail-calls is as follows
(illustrated in Figure 3):

1. All the arguments are evaluated and saved on the stack in the
same way arguments to nontail calls are evaluated.

2. The operator is evaluated and placed in the %edi register re-
placing the current closure pointer.

3. The arguments are copied from their current position of the
stack to the positions adjacent to the return-point at the base
of the stack.

4. An indirect jmp, not call, through the address in the closure
pointer is issued.

This treatment of tail calls is the simplest way of achieving
the objective of the requirement. Other methods for enhancing
performance by minimizing the excessive copying are discussed
later in Section 4.

32 Scheme and Functional Programming, 2006

3.11 Complex Constants
Scheme’s constants are not limited to the immediate objects. Using
the quote form, lists, vectors, and strings can be turned into con-
stants as well. The formal semantics of Scheme require that quoted
constants always evaluate to the same object. The following exam-
ple must always evaluate to true:

(let ((f (lambda () (quote (1 . "H")))))
(eq? (f) (f)))

So, in general, we cannot transform a quoted constant into an
unquoted series of constructions as the following incorrect trans-
formation demonstrates:

(let ((f (lambda () (cons 1 (string #\H)))))
(eq? (f) (f)))

One way of implementing complex constants is by lifting their
construction to the top of the program. The example program can
be transformed to an equivalent program containing no complex
constants as follows:

(let ((tmp0 (cons 1 (string #\H))))
(let ((f (lambda () tmp0)))

(eq? (f) (f))))

Performing this transformation before closure conversion makes
the introduced temporaries occur as free variables in the enclosing
lambdas. This increases the size of many closures, increasing heap
consumption and slowing down the compiled programs.

Another approach for implementing complex constants is by
introducing global memory locations to hold the values of these
constants. Every complex constant is assigned a label, denoting its
location. All the complex constants are initialized at the start of the
program. Our running example would be transformed to:

(labels ((f0 (code () () (constant-ref t1)))
(t1 (datum)))

(constant-init t1 (cons 1 (string #\H)))
(let ((f (closure f0)))
(eq? (f) (f))))

The code generator should now be modified to handle the
data labels as well as the two internal forms constant-ref and
constant-init.

3.12 Assignment
Let’s examine how our compiler treats variables. At the source
level, variables are introduced either by let or by lambda. By
the time we get to code generation, a third kind (free-variables) is
there as well. When a lambda closes over a reference to a variable,
we copied the value of the variable into a field in the closure. If
more than one closure references the variable, each gets its own
copy of the value. If the variable is assignable, then all references
and assignments occurring in the code must reference/assign to the
same location that holds the value of the the variable. Therefore,
every assignable variable must be given one unique location to hold
its value.

The way we treat assignment is by making the locations of
assignable variables explicit. These locations cannot in general be
stack-allocated due to the indefinite extent of Scheme’s closures.
So, for every assignable variable, we allocate space on the heap (a
vector of size 1) to hold its value. An assignment to a variable x is
rewritten as an assignment to the memory location holding x (via
vector-set!) and references to x are rewritten as references to
the location of x (via vector-ref).

The following example illustrates assignment conversion when
applied to a program containing one assignable variable c:

(let ((f (lambda (c)
(cons (lambda (v) (set! c v))

(lambda () c)))))
(let ((p (f 0)))

((car p) 12)
((cdr p))))

=>
(let ((f (lambda (t0)

(let ((c (vector t0)))
(cons (lambda (v) (vector-set! c 0 v))

(lambda () (vector-ref c 0)))))))
(let ((p (f 0)))

((car p) 12)
((cdr p))))

3.13 Extending the Syntax
With most of the core forms (lambda, let, quote, if, set!,
constants, variables, procedure calls, and primitive calls) in place,
we can turn to extending the syntax of the language. The input to
our compiler is preprocessed by a pass, a macro-expander, which
performs the following tasks:

• All the variables are renamed to new unique names through α-
conversion. This serves two purposes. First, making all vari-
ables unique eliminates the ambiguity between variables. This
makes the analysis passes required for closure and assignment
conversion simpler. Second, there is no fear of confusing the
core forms with procedure calls to local variables with the same
name (e.g. an occurrence of (lambda (x) x) where lambda
is a lexical variable).

• Additionally, this pass places explicit tags on all internal
forms including function calls (funcall) and primitive calls
(primcall).

• Extended forms are simplified to the code forms. The forms
let*, letrec, letrec*, cond, case, or, and, when, unless,
and internal define are rewritten in terms of the core forms.

3.14 Symbols, Libraries, and Separate Compilation
All of the primitives that we supported so far were simple enough to
be implemented directly in the compiler as a sequence of assembly
instructions. This is fine for the simple primitives, such as pair?
and vector-ref, but it will not be practical for implementing more
complex primitives such as length, map, display, etc..

Also, we restricted our language to allow primitives to occur
only in the operator position: passing the value of the primitive car
was not allowed because car has no value. One way of fixing this
is by performing an inverse-η transformation:

car⇒ (lambda (x) (car x)).

This approach has many disadvantages. First, the resulting assem-
bly code is bloated with too many closures that were not present
in the source program. Second, the primitives cannot be defined
recursively or defined by using common helpers.

Another approach for making an extended library available is
by wrapping the user code with a large letrec that defines all
the primitive libraries. This approach is discouraged because the
intermixing of user-code and library-code hinders our ability to
debug our compiler.

A better approach is to define the libraries in separate files, com-
piling them independently, and linking them directly with the user
code. The library primitives are initialized before control enters the
user program. Every primitive is given a global location, or a la-
bel, to hold its value. We modify our compiler to handle two addi-
tional forms: (primitive-ref x) and (primitive-set! x v)
which are analogous to constant-ref and constant-init that

Scheme and Functional Programming, 2006 33

we introduced in 3.11. The only difference is that global labels are
used to hold the values of the primitives.

The first library file initializes one primitive: string->symbol.
Our first implementation of string->symbol need not be ef-
ficient: a simple linked list of symbols suffices. The primitive
string->symbol, as its name suggests, takes a string as input and
returns a symbol. By adding the core primitives make-symbol1 and
symbol-string, the implementation of string->symbol simply
traverses the list of symbols looking for one having the same string.
A new symbol is constructed if one with the same name does not
exist. This new symbol is then added to the list before it is returned.

Once string->symbol is implemented, adding symbols to our
set of valid complex constants is straightforward by the following
transformation:

(labels ((f0 (code () () ’foo)))
(let ((f (closure f0)))

(eq? (funcall f) (funcall f))))
=>

(labels ((f0 (code () () (constant-ref t1)))
(t1 (datum)))

(constant-init t1
(funcall (primitive-ref string->symbol)

(string #\f #\o #\o)))
(let ((f (closure f0)))

(eq? (funcall f) (funcall f))))

3.15 Foreign Functions
Our Scheme implementation cannot exist in isolation. It needs
a way of interacting with the host operating system in order to
perform Input/Output and many other useful operations. We now
add a very simple way of calling to foreign C procedures.

We add one additional form to our compiler:

<Expr> ::= (foreign-call <string> <Expr> ...)

The foreign-call form takes a string literal as the first argu-
ment. The string denotes the name of the C procedure that we intend
to call. Each of the expressions are evaluated first and their values
are passed as arguments to the C procedure. The calling convention
for C differs from the calling convention that we have been using
for Scheme in that the arguments are placed below the return point
and in reverse order. Figure 4 illustrates the difference.

To accommodate the C calling conventions, we evaluate the
arguments to a foreign-call in reverse order, saving the values
on the stack, adjusting the value of %esp, issuing a call to the
named procedure, then adjusting the stack pointer back to its initial
position. We need not worry about the C procedure clobbering the
values of the allocation and closure pointer because the Application
Binary Interface (ABI) guarantees that the callee would preserve
the values of the %edi, %esi, %ebp and %esp registers[14].

Since the values we pass to the foreign procedure are tagged,
we would write wrapper procedures in our run-time file that take
care of converting from Scheme to C values and back.

We first implement and test calling the exit procedure. Call-
ing (foreign-call "exit" 0) should cause our program to
exit without performing any output. We also implement a wrapper
around write as follows:

ptr s_write(ptr fd, ptr str, ptr len){
int bytes = write(unshift(fd),

string_data(str),
unshift(len));

return shift(bytes);
}

1 Symbols are similar to pairs in having two fields: a string and a value

base

incoming
arguments

return point

arg1

arg2

low address

high address

…

%esp

%esp-4

%esp-8

arg3 %esp-12

free
stack
space

base

incoming
arguments

arg3

arg2

arg1

low address

high address

…

%esp+12

%esp+8

%esp+4

return point %esp

free
stack
space

(A) Parameter passing to Scheme (B) Parameter passing to C

Figure 4. The parameters to Scheme functions are placed on the
stack above the return point while the parameters to C functions are
placed below the return point.

3.16 Error Checking and Safe Primitives
Using our newly acquired ability to write and exit, we can define
a simple error procedure that takes two arguments: a symbol
(denoting the caller of error), and a string (describing the error).
The error procedure would write an error message to the console,
then causes the program to exit.

With error, we can secure some parts of our implementation
to provide better debugging facilities. Better debugging allows us
to progress with implementing the rest of the system more quickly
since we won’t have to hunt for the causes of segfaults.

There are three main causes of fatal errors:

1. Attempting to call non-procedures.

2. Passing an incorrect number of arguments to a procedure.

3. Calling primitives with invalid arguments. For example: per-
forming (car 5) causes an immediate segfault. Worse, per-
forming vector-set! with an index that’s out of range causes
other parts of the system to get corrupted, resulting in hard-to-
debug errors.

Calling nonprocedures can be handled by performing a proce-
dure check before making the procedure call. If the operator is not
a procedure, control is transferred to an error handler label that sets
up a call to a procedure that reports the error and exits.

Passing an incorrect number of arguments to a procedure can be
handled by a collaboration from the caller and the callee. The caller,
once it performs the procedure check, sets the value of the %eax
register to be the number of arguments passed. The callee checks
that the value of %eax is consistent with the number of arguments
it expects. Invalid arguments cause a jump to a label that calls a
procedure that reports the error and exits.

For primitive calls, we can modify the compiler to insert explicit
checks at every primitive call. For example, car translates to:

movl %eax, %ebx
andl $7, %ebx
cmpl $1, %ebx
jne L_car_error
movl -1(%eax), %eax
...

L_car_error:
movl car_err_proc, %edi # load handler
movl $0, %eax # set arg-count
jmp *-3(%edi) # call the handler
...

34 Scheme and Functional Programming, 2006

Another approach is to restrict the compiler to unsafe primitives.
Calls to safe primitives are not open-coded by the compiler, instead,
a procedure call to the safe primitive is issued. The safe primitives
are defined to perform the error checks themselves. Although this
strategy is less efficient than open-coding the safe primitives, the
implementation is much simpler and less error-prone.

3.17 Variable-arity Procedures
Scheme procedures that accept a variable number of arguments are
easy to implement in the architecture we defined so far. Suppose
a procedure is defined to accept two or more arguments as in the
following example:

(let ((f (lambda (a b . c) (vector a b c))))
(f 1 2 3 4))

The call to f passes four arguments in the stack locations
%esp-4, %esp-8, %esp-12, and %esp-16 in addition to the num-
ber of arguments in %eax. Upon entry of f, and after performing
the argument check, f enters a loop that constructs a list of the
arguments last to front.

Implementing variable-arity procedures allows us to define
many library procedures that accept any number of arguments
including +, -, *, =, <, . . . , char=?, char<?, . . . , string=?,
string<?, . . . , list, vector, string, and append.

Other variations of lambda such as case-lambda, which al-
lows us to dispatch different parts of the code depending on the
number of actual arguments, can be implemented easily and effi-
ciently by a series of comparisons and conditional jumps.

3.18 Apply
The implementation of the apply primitive is analogous to the
implementation of variable-arity procedures. Procedures accepting
variable number of arguments convert the extra arguments passed
on the stack to a list. Calling apply, on the other hand, splices a
list of arguments onto the stack.

When the code generator encounters an apply call, it generates
the code in the same manner as if it were a regular procedure call.
The operands are evaluated and saved in their appropriate stack
locations as usual. The operator is evaluated and checked. In case
of nontail calls, the current closure pointer is saved and the stack
pointer is adjusted. In case of tail calls, the operands are moved to
overwrite the current frame. The number of arguments is placed
in %eax as usual. The only difference is that instead of calling
the procedure directly, we call/jmp to the L apply label which
splices the last argument on the stack before transferring control to
the destination procedure.

Implementing apply makes it possible to define the library
procedures that take a function as well as an arbitrary number of
arguments such as map and for-each.

3.19 Output Ports
The functionality provided by our compiler so far allows us to
implement output ports easily in Scheme. We represent output ports
by vector containing the following fields:

0. A unique identifier that allows us to distinguish output ports
from ordinary vectors.

1. A string denoting the file name associated with the port.

2. A file-descriptor associated with the opened file.

3. A string that serves as an output buffer.

4. An index pointing to the next position in the buffer.

5. The size of the buffer.

The current-output-port is initialized at startup and its file
descriptor is 1 on Unix systems. The buffers are chosen to be
sufficiently large (4096 characters) in order to reduce the num-
ber of trips to the operating system. The procedure write-char
writes to the buffer, increments the index, and if the index of the
port reaches its size, the contents of the buffer are flushed us-
ing s write (from 3.15) and the index is reset. The procedures
output-port?, open-output-file, close-output-port, and
flush-output-port are also implemented.

3.20 Write and Display
Once write-char is implemented, implementing the procedures
write and display becomes straightforward by dispatching on
the type of the argument. The two procedures are identical except
for their treatment of strings and characters and therefore can be
implemented in terms of one common procedure. In order to write
the fixnums, the primitive quotient must be added to the com-
piler.

Implementing write in Scheme allows us to eliminate the now-
redundant writer that we implemented as part of the C run-time
system.

3.21 Input Ports
The representation of input ports is very similar to output ports.
The only difference is that we add one extra field to support “un-
reading” a character which adds very minor overhead to the prim-
itives read-char and peek-char, but greatly simplifies the im-
plementation of the tokenizer (next step). The primitives added
at this stage are input-port?, open-input-file, read-char,
unread-char, peek-char, and eof-object? (by adding a spe-
cial end-of-file object that is similar to the empty-list).

3.22 Tokenizer
In order to implement the read procedure, we first implement
read-token. The procedure read-token takes an input port as an
argument and using read-char, peek-char, and unread-char,
it returns the next token. Reading a token involves writing an de-
terministic finite-state automata that mimics the syntax of Scheme.
The return value of read-token is one of the following:

• A pair (datum . x) where x is a fixnum, boolean, character,
string, or symbol that was encountered next while scanning the
port.

• A pair (macro . x) where x denotes one of Scheme’s pre-
defined reader-macros: quote, quasiquote, unquote, or
unquote-splicing.

• A symbol left-paren, right-paren, vec-paren, or dot
denoting the corresponding non-datum token encountered.

• The end-of-file object if read-char returns the end-of-file ob-
ject before we find any other tokens.

3.23 Reader
The read procedure is built as a recursive-descent parser on top
of read-token. Because of the simplicity of the syntax (i.e. the
only possible output is the eof-object, data, lists, and vectors) the
entire implementation, including error checking, should not exceed
40 lines of direct Scheme code.

3.24 Interpreter
We have all the ingredients required for implementing an environment-
passing interpreter for core Scheme. Moreover, we can lift the first
pass of the compiler and make it the first pass to the interpreter as
well. We might want to add some restriction to the language of the
interpreter (i.e. disallowing primitive-set!) in order to prevent

Scheme and Functional Programming, 2006 35

the user code from interfering with the run-time system. We might
also like to add different binding modes that determine whether
references to primitive names refer to the actual primitives or to
the current top-level bindings and whether assignment to primitive
names are allowed or not.

4. Beyond the Basic Compiler
There are several axes along which one can enhance the basic
compiler. The two main axes of enhancements are the feature-axis
and the performance-axis.

4.1 Enhancing Features
The implementation presented in Section 3 featured many of the es-
sential requirements for Scheme including proper tail calls, variable
arity-procedures, and apply. It also featured a facility for perform-
ing foreign-calls that allows us to easily leverage the capabilities
provided by the host operating system and its libraries. With sepa-
rate compilation, we can implement an extended library of proce-
dures including those required by the R5RS or the various SRFIs.
The missing features that can be added directly without changing
the architecture of the compiler by much include:

• A full numeric tower can be added. The extended numerical
primitives can either be coded directly in Scheme or provided
by external libraries such as GNU MP.

• Multiple values are easy to implement efficiently using our
stack-based implementation with very little impact on the per-
formance of procedure calls that do not use multiple values [3].

• User-defined macros and a powerful module system can be
added simply by compiling and loading the freely-available
portable syntax-case implementation [7, 18].

• Our compiler does not handle heap overflows. Inserting over-
flow checks before allocation attempts should be simple and
fast by comparing the value of the allocation pointer to an al-
location limit pointer (held elsewhere) and jumping to an over-
flow handler label. A simple copying collector can be imple-
mented first before attempting more ambitious collectors such
as the ones used in Chez Scheme or The Glasgow Haskell Com-
piler [6, 12].

• Similarly, we did not handle stack overflows. A stack-based im-
plementation can perform fast stack overflow checks by com-
paring the stack pointer to an end of stack pointer (held else-
where) and then jumping to a stack-overflow handler. The han-
dler can allocate a new stack segment and wire up the two stacks
by utilizing an underflow handler. Implementing stack overflow
and underflow handlers simplifies implementing efficient con-
tinuations capture and reinstatement [9].

• Alternatively, we can transform the input program into continu-
ation passing style prior to performing closure conversion. This
transformation eliminates most of the stack overflow checks
and simplifies the implementation of call/cc. On the down-
side, more closures would be constructed at run-time causing
excessive copying of variables and more frequent garbage col-
lections. Shao et al. show how to optimize the representation of
such closures [15].

4.2 Enhancing Performance
The implementation of Scheme as presented in Section 3 is sim-
ple and straightforward. We avoided almost all optimizations by
performing only the essential analysis passes required for assign-
ment and closure conversion. On the other hand, we have chosen
a very compact and efficient representation for Scheme data struc-

tures. Such choice of representation makes error-checks faster and
reduces the memory requirements and cache exhaustion.

Although we did not implement any source-level or backend
optimizations, there is no reason why these optimization passes
cannot be added in the future. We mention some “easy” steps that
can be added to the compiler and are likely to yield high payoff:

• Our current treatment of letrec and letrec* is extremely
inefficient. Better letrec treatment as described in [19] would
allow us to (1) reduce the amount of heap allocation since most
letrec-bound variables won’t be assignable, (2) reduce the
size of many closures by eliminating closures with no free-
variables, (3) recognize calls to known procedures which allows
us to perform calls to known assembly labels instead of making
all calls indirect through the code pointers stored in closures,
(4) eliminate the procedure check at calls to statically-known
procedure, (5) recognize recursive calls which eliminates re-
evaluating the value of the closures, (6) skip the argument-count
check when the target of the call is known statically, and (7)
consing up the rest arguments for known calls to procedures
that accept a variable number of arguments.

• Our compiler introduces temporary stack locations for all com-
plex operands. For example, (+ e 4) can be compiled by eval-
uating e first and adding 16 to the result. Instead, we trans-
formed it to (let ((t0 e)) (+ t0 4)) which causes unnec-
essary saving and reloading of the value of e. Direct evaluation
is likely to yield better performance unless good register allo-
cation is performed.

• Our treatment of tail-calls can be improved greatly by recogniz-
ing cases where the arguments can be evaluated and stored in
place. The greedy-shuffling algorithm is a simple strategy that
eliminates most of the overhead that we currently introduce for
tail-calls[4].

• None of the safe primitives were implemented in the compiler.
Open-coding safe primitives reduces the number of procedure
calls performed.

• Simple copy propagation of constants and immutable variables
as well as constant-folding and strength-reduction would allow
us to write simpler code without fear of inefficiencies. For
example, with our current compiler, we might be discouraged
from giving names to constants because these names would
increase the size of any closure that contains a reference to
them.

More sophisticated optimizations such as register allocation
[5, 4, 16], inlining [17], elimination of run time type checks [10,
21], etc. could be targeted next once the simple optimizations are
performed.

5. Conclusion
Compiler construction is not as complex as it is commonly per-
ceived to be. In this paper, we showed that constructing a com-
piler for a large subset of Scheme that targets a real hardware is
simple. The basic compiler is achieved by concentrating on the es-
sential aspects of compilation and freeing the compiler from so-
phisticated analysis and optimization passes. This helps the novice
compiler writers build the intuition for the inner-workings of com-
pilers without being distracted by details. First-hand experience in
implementing a basic compiler gives the implementor a better feel
for the compiler’s shortcomings and thus provide the motivation
for enhancing it. Once the basic compiler is mastered, the novice
implementor is better equipped for tackling more ambitious tasks.

36 Scheme and Functional Programming, 2006

Acknowledgments
I extend my thanks to Will Byrd, R. Kent Dybvig, and the anony-
mous reviewers for their insightful comments.

Supporting Material
The extended tutorial and the accompanying test suite are available
for download from the author’s website:

http://www.cs.indiana.edu/~aghuloum

References
[1] AHO, A. V., SETHI, R., AND ULLMAN, J. D. Compilers: Principles,

Techniques, and Tools. 1986.

[2] APPEL, A. W. Modern Compiler Implementation in ML. Cambridge
University Press, Cambridge, UK, 1998.

[3] ASHLEY, J. M., AND DYBVIG, R. K. An efficient implementation
of multiple return values in scheme. In LISP and Functional
Programming (1994), pp. 140–149.

[4] BURGER, R. G., WADDELL, O., AND DYBVIG, R. K. Register
allocation using lazy saves, eager restores, and greedy shuffling.
In SIGPLAN Conference on Programming Language Design and
Implementation (1995), pp. 130–138.

[5] CHAITIN, G. J. Register allocation & spilling via graph coloring.
In SIGPLAN ’82: Proceedings of the 1982 SIGPLAN symposium on
Compiler construction (New York, NY, USA, 1982), ACM Press,
pp. 98–101.

[6] DYBVIG, R. K., EBY, D., AND BRUGGEMAN, C. Don’t stop the
BIBOP: Flexible and efficient storage management for dynamically-
typed languages. Tech. Rep. 400, Indiana University, 1994.

[7] DYBVIG, R. K., HIEB, R., AND BRUGGEMAN, C. Syntactic
abstraction in scheme. Lisp Symb. Comput. 5, 4 (1992), 295–326.

[8] DYBVIG, R. K., HIEB, R., AND BUTLER, T. Destination-driven
code generation. Tech. Rep. 302, Indiana University Computer
Science Department, February 1990.

[9] HIEB, R., DYBVIG, R. K., AND BRUGGERMAN, C. Representing
control in the presence of first-class continuations. In Proceedings
of the ACM SIGPLAN ’90 Conference on Programming Language
Design and Implementation (White Plains, NY, June 1990), vol. 25,
pp. 66–77.

[10] JAGANNATHAN, S., AND WRIGHT, A. K. Effective flow analysis
for avoiding runtime checks. In 2nd International Static Analysis
Symposium (September 1995), no. LNCS 983.

[11] KELSEY, R., CLINGER, W., AND (EDITORS), J. R. Revised5 report
on the algorithmic language Scheme. ACM SIGPLAN Notices 33, 9
(1998), 26–76.

[12] MARLOW, S., AND JONES, S. P. The new ghc/hugs runtime system.

[13] MUCHNICK, S. S. Advanced Compiler Design and Implementation.
Morgan Kaufmann Publishers, 1997.

[14] SCO. System V Application Binary Interface, Intel386TM Architec-
ture Processor Supplement Fourth Edition, 1997.

[15] SHAO, Z., AND APPEL, A. W. Space-efficient closure representa-
tions. In LISP and Functional Programming (1994), pp. 150–161.

[16] TRAUB, O., HOLLOWAY, G. H., AND SMITH, M. D. Quality and
speed in linear-scan register allocation. In SIGPLAN Conference on
Programming Language Design and Implementation (1998), pp. 142–
151.

[17] WADDELL, O., AND DYBVIG, R. K. Fast and effective procedure
inlining. In Proceedings of the Fourth International Symposium on
Static Analysis (SAS ’97) (September 1997), vol. 1302 of Springer-
Verlag Lecture Notes in Computer Science, pp. 35–52.

[18] WADDELL, O., AND DYBVIG, R. K. Extending the scope of
syntactic abstraction. In POPL ’99: Proceedings of the 26th
ACM SIGPLAN-SIGACT symposium on Principles of programming
languages (New York, NY, USA, 1999), ACM Press, pp. 203–215.

[19] WADDELL, O., SARKAR, D., AND DYBVIG, R. K. Fixing letrec:
A faithful yet efficient implementation of scheme’s recursive binding
construct. Higher Order Symbol. Comput. 18, 3-4 (2005), 299–326.

[20] WIRTH, N. Compiler Construction. Addison Wesley Longman
Limited, Essex, England, 1996.

[21] WRIGHT, A. K., AND CARTWRIGHT, R. A practical soft type system
for scheme. Transactions on Programming Languages and Systems
(1997).

Scheme and Functional Programming, 2006 37

