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About me & legal bits

e Principal Graphics engineer in Sony Interactive Entertainment.
e All the informations in this talk are publicly available.

e Disclaimer:
All views expressed on this talk are of my own and they do not represent the

opinion of Sony Interactive Entertainment.



Why we are here

e To understand the fundamentals on how a Gpu work
e Will help you to understand performance issues
e To shareideas



Overview

Quick review of the graphics pipeline

Mapping the graphics pipeline into the gpu blocks
How a shader core works

Some real gpu use cases

Mobile Gpus

Conclusions



Rasterization in six slides (I)

e Before we start we need to understand the problem we want to solve
e Turning triangle data into pixels

e Many steps involved
o Geometry processing
m Project triangles in screen space
e Rasterization
o  Find the the pixel covered by triangle
m  Ortriangle walking
e Pixel processing
o Actually assign a color to the pixel




Rasterization in six slides (Il)

e In the beginning we only have vertex data
e 3d point coordinates



Rasterization in six slides (lll)

e Vertex are transformed and projected in 2d space

e We call this “vertex shading” ° .



Rasterization in six slides (IV)

e They are then assembled into a primitive




Rasterization in six slides (V)

e Then we determine what pixels of the screen the primitive “touches”
e We call this “fragments”




Rasterization in six slides (V)

e Finally we need to assign a color to each one of them
e We call this “Fragment shading”
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Gpu to help

e A modern gpu can accelerate all of this
o Wasn’t always the case in the past, but that’s another story

e All of the previous operation map to several specific HW block
e Some functionality are programmable and performed by the shader cores
o le. fragment shader, vertex shader

e Other are fixed but parameterizable
o ie. Primitive assembly, blending.
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Graphics pipeline
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Programmable part

(executed by shader system)

e “Logical” pipeline described in OGL/DX specification

o It’s an abstraction

e At physical level things are very different
o Aslong as specs are met there’s no problem

e Today we will look at things from a slightly closer POV 12




Anatomy of a GPU

e Extremely Parallel machine
o Thousands of “threads” in flight
o But
m Limited flow control
m Some threads shares program counter
m  No Inter process communication
o Extremely good at doing lots of independent operations at the same time

e Memory bandwidth is very high
©  Hundreds of GB/s
o But
m  Very high latency
e Thousand of cycles
m Latency hidind mechanism necessary

e Graphics pipeline is organized to overcome those constraints 5



Before all that

e CPU issues commands to the GPU

o eg:
m Draw using those vertices and indices
m Set this viewport
m Changing states
m  May contain constants for shaders
m Blend everything over using this blending function

e Command are not executed immediately
o Typically the cpu prepare command for the next frame while the GPU is rendering the current
one
m Double buffering
o  The commands written into a command buffer
o The GPU parse them
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Introducing Command Buffer Parser

e Parse the command buffer
Send commands down the graphics pipeline

Synchronization point between cpu and gpu

o  Surface synch
m Eg: wait that all the draw command on that rt finished before

binding it as texture
e Cpu bound applications: command buffer is not filled

fast enough and Gpu is idle.
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Geometry stage

Lots of sub stages

e Input assembly
e Vertex shading
e Primitive assembly

Plus optional stuff:

Domain shader

Tessellation shader

Geometry shader

Stream out

For simplicity we are skipping those
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Input assembly Unit

e Fetches the indices / vertex from main memory

e Has a vertex reuse cache

o Triangles share vertices, so it is likely to have cache hit.
o Cache miss means the vertex need to be sent to the shader
system to transform

e When enough cache misses are accumulated a job is
sent to the shader core

e Usually there are more than one input assembly unit in
a GPU.

o Work distribution is usually done at drawcall level
m Eg, assign 128 indices to a different Al unit.




Vertex shading

e Done by shader Core
o Details later

First stage that is entirely programmable
Export position and vertex attribute to forward to pixel
shading

e Positions are stored in a positional cache, used in
primitive assembly/setup

e Attributes are stored in a separate cache, they are
needed only in pixel shaders
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Primitive assembly Unit

e So far we have only point (vertex) transformed

e Primitive assembly takes the position form the
position cache

e Use the connectivity information we gave in the API
(eg Trilist)

e And turn them in to triangles

e At this point triangles need to be discarded if
outside the view

e Clipped if partially in view

o  Clipping produces more triangle, expensive so guard band
used to minimize

viewport

l

:
i

Clipped
triangle

19




Primitive assembly Unit

e Surviving primitive are then perspective
projected (divided by w) and viewport
transformed

e Backfacing and zero area culling happens
here
Vertices are “snapped” into pixel
A CPU bounding box culling can avoid PA
Being overwhelmed
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Triangle rasterization Unit

e Find which pixel covers a triangle

e Done in an hierarchical fashion, at least 2 level

e There are many rasterizers in a GPU, each one
serving a portion of the screen

e perform hierarchical Z and early Z

e Assembles quad (2x2) pixels

e When enough quads are accumulated a job is sent to
the shader system




Coarse rasterization

e Screen is divided in “tiles” i\‘ \ /
e Triangle is first tested against those tile H

e If the triangle doesn't hit the tile then we saved
unnecessary tests

=8x8 pixel tiles

=Non processed
tiles




Hierarchical Z unit

New Triangle
cover tile X

Perform early rejection of the primitive
For each tile

o Keep track of the current min and max z in tiles

o Ifthe triangle min z is larger than tile max z
o Reject the triangle

o  Otherwise update the min max

Also handling fast z clears

Can skip fragment processing of entire
triangles

Remember : triangles are never sorted
anywhere they are processed in accépt reject
submission order!

Triangle Z
>

tile Z
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Early Z

Similar to Hiz

But Done at sample level

Compute the depth of the pixel before of its color
Pixel shader is not executed if the test don’t pass
Not always possible

le. Tralucent, discard
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Depth compression

e [f atriangle touches more pixels it’'s expensive to store its depth as a float
e Instead you can use 3 float to identify the whole plane of the triangles.
e Example: tile is 8x8 pixels x 4 bytes float is 256 bytes of uncompressed depth

o If we use plane compression best case is 12 bytes ( 1 triangles cover the whole tile)
o At some point in this case after 21 planes, it start to have the same footprint.

e Greatly reduce memory bandwidth for big triangles
o Small triangles -> more bandwidth
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Fragment shading

e Once the rasterize packed the enough quads, fragment
shader can be dispatched

o Thousands of pixel shading operation can be in flight at the same time
inagpu
e Depends on the architecture usually is 16 or 8 quads
dispatched together
e This task if performed by the shader system
e Quads are needed for calculation of the derivative

o Derivative are needed for selection the mip level
o Mips are needed for better visual quality and performance
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Pixel shading: a note about quads

Wasted pixel in a quad

e a quad may contain only one primitive. \ \
o In case the primitive does not touch 4 pixel , extra
“ghost” are created
o  Ghost pixel are created alongside of the edge
o  Ghost pixel are necessary for derivative calculations
o Ifthe triangles is big enough this ia not a problem Wasted pixel in a quad
m  We only have pixels across the edges
o Bottleneck : Small triangles will create tons of this \
threads, lots of overshading.
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Texture unit

Shaders usually need to access texture
Request are performed by a texture unit
A texture unit may serve more than 1 shader core.

If the requested textel is not in the cache
o It fetched from main memory

o Usually very long latency... thousands of cycles
o Imagine cooking something
o Butyou need to walk to a shop a mile away each time you need
an ingredient
e Perform texture interpolation

e Does Decompression
o Some arch have compressed cache, some other don’t




Output merger

Also called Raster ops

Export pixel color to render target(s)

Write to main memory

Also perform blend operations

Limited number of pixel operation per clock

Updates the Z buffer
o “LateZ”
o In Opengl/DirectX specs “Late Z” is the only stage for pixel
rejection
o Pixel needs to be exported in submission order (dx specs)
o Also Late Z is the only Z rejection system that works if the
pixel shader update z or using alpha mask
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Compute shaders

e Used for Generic computation
o Not bound to rasterization
o  So the command processor will send those command directly to
the shader system

e Support to read/write textures and buffer plus atomics

e Shared local and global limited storage

e Can be asynchronous and run in parallel with graphics
work




Shader Core

e The programmable part of the gpu

e There are many shadercore in a gpu
o Alot of work can be done in parallel
o Example: Geforce RTX 2080 has 2944 cuda cores

e Very simple unit compared to a CPU
In order execution

No speculation

No branch prediction

But very fast at context switching

Very good at latency hiding

e Multiple ALU shares program counter

o O O O O
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VLIW architecture

Very Long instruction word

o Example: vliw4 (4 pipe vliw) means each core could do 4 Viiw alu
independent instructions at the same time

Maps very well with simple per pixel operation (dot, etc) -
Doesn’t map well with general programming
Compiler need to statically schedule things to the ' ;

vector pipes.
Not always all the pipes can be used...not very efficient

o o
x <
+ +
o o
x <

Z’ g+ 2ze
Mg+ me
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Vliw example from Cayman architecture

Table 4.1 Instruction Slots in an Instruction Group

Slot Entry Bits Type

0 [Scalar instruction for ALU.X unit 64 |[src.X and dst.X vector-element slot
1 |Scalar instruction for ALU.Y unit 64 |src.Y and dst.Y vector-element slot
2 |[Scalar instruction for ALU.Z unit 64 |src.Z and dst.Z vector-element slot
3 [Scalar instruction for ALU.W unit 64 |[src.W and dst.W vector-element slot
4 |Scalar instruction for ALU.Trans unit 64 |Transcendental slot
5 |X, Y elements of literal constant (X is the first dword) 64 |Constant slot
6 |Z, W elements of literal constant (Z is the first dword) 64 [Constant slot

Given the nntinns descrihed ahnve the size nf an Al || instriiction arnilin can
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Moving to Scalar architecture

e Single instructions runs across a vector of data
e [t means you don’t need to vectorize your code

o The scheduler organizes vectors of data the instruction need to -
run

e Example :Sum 8 float is equivalent to sum 2 float4
e Concept similar to loop unrolling on CPU

scalar alu

[Lla +[1]e

[0]a + [0]e
[z]a + [Z]e
[€lg + [gle

34



Fictional Shader Core

e 16 scalar alus, 16 instruction in parallel
e FEach alu can do one 32 bit floating point instruction
in one cycle

® ONne program counter

o Same instruction is performed 16 times over 16 different data
streams

e Register file is big enough for the 16 alus to work in
parallel and perform context switching
e FEach register have 16 slots, one for each thread
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Fictional Shader Core -latency hiding-

e (Cores need to access data in memory

e Accessing memory requires several hundreds of
cycles
During this period the alus have nothing to do
However if the register file is big enough to contain
multiple context, alus can switch to another thread

e |[f there are enough context, alu will not be idle.
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Fictional Shader Core -latency hiding-

e Example
e Alus are processing the C1 group of threads
e At some point there is a dependency stall
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Fictional Shader Core -latency hiding-

Example

Alus are processing the C1 group of threads
At some point there is a dependency stall

It then switches to C2
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Fictional Shader Core -latency hiding-

Example

Alus are processing the C1 group of threads
At some point there is a dependency stall

It then switches to C2

Eventually C2 will stall too
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Fictional Shader Core -latency hiding-

Example

Alus are processing the C1 group of threads
At some point there is a dependency stall

It then switches to C2

Eventually C2 will stall too

Alus can switch to C3
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Fictional Shader Core - occupancy-

The register file is dynamically partitioned

“Big” shaders requires many registers

And it will affect the number of concurrent context
Space only for one context? No latency hiding (

Achieving maximum # of context is not fundamental
o Usually memory bottleneck first
o But need to be high enough to hide latency
e Example: A shader takes 100 registers, register file is 10kb

o 10240 bytes /(16 alus * 4bytes (32bit)) =160
o 160/100 = 1.6 context (
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Fictional Gpu

e 16 cores
Each core 16 alu
256 operations in parallel over 16 different
instruction stream
Clocked @1Ghz = 256 Gigaflop.
Gpu stages are executed in parallel

e Assoon as a triangle is transformed it is
rasterized

e FEach core can deal independently with pixel
shaders, vertex shaders, compute and so on

4
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Shader system use case : GCN

Figure 3: GCN Compute Unit
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Wavefronts

e The smallest unit of work in gcn is a wavefront
A wavefront is a group of 64 threads
A thread is a single “instance” of the shader that work across only one data
path/ lane

e Example:

void main()

gl FragColor = vec4(0.4, 0.4, 0.8, 1.09);

e A wavefront is 64 pixel worth of work
e Athreadis 1 pixel inside a wavefront
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VGPR / SGPR

e A vgpris aregister that has 64 32-bit entries
o Imagine them uint_32 vgpr[64];

e An operation that takes a vpgr operands will happen on all the 64 entries
simultaneously
e A SGPR instead is a register that is a single 32bit entries

o Useful for operation that are constant across all the wavefronts, wavefront status flags and so
on
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example

void main()

gl FragColor = vec4(0.4, 0.4, 0.8, 1.0);

v_mov_b32 ve, Ox36663666
v_mov_b32 vl, Ox3c@03abb
exp mrt@, ve, v, vl, vl done compr vm

Move 0.4 into vgpr vO
Move 0.8 into vgpr V1
Export the pixel as vO vO v1

All of this happens 64 times simultaneously inside the CU 16



CuU

e Smallest compitational unit
e A gpu contains many CUs
e A cu contains 4 simd unit
o Each simd can execute an instruction on 16 different data (simd16)
e A scalar unit
e A branch unit
e 256kb for vector registers
o 256kb /4 simd/ 64 lane = 256 vgpr

e 8kb for scalar registers
o 256kb /4 simd =512 sgpr
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CU simd

e FEach simd has its own program counter
o  Current instruction inside the wavefront

e FEach simd can process 16 32bit values in 1 cycle
o An entire wavefront takes 4 cycle to be processed by a simd
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CU simd

Each simd has an instruction buffer of 10 wavefronts

Maximum 40 wave in flight per CU

Depending on registry usage

Potentially coming from different kernel/shaders
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CU scalar unit

e Mainly for control flow across the wavefront

o Exif (constant_flag) then else
e Constants are taken from a read
Only cache
e Also handling interrupts/synch
e Scalar operands operations
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CU branch unit

e Handles vector branches
o Ex:ifvgpr>0 then else

e Handles floating point exception
e Send message to other units/host cpu
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LDS/GDS

A CU have also a shared read/write memory of 64kb (LocalDataShare)
Used by pixel shader as storage for interpolant

But fully accessed by the programmer
o Thread Group Memory

Needs to handle atomic operation and thread group synchronization
Example usage: caching texure data across a compute threadgroup
GDS is shared across all the CU
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Export

e When the program is finished it usually issue an export
e Always the case of a pixel shader
e |t marks the end of the programmable part and pass down the data to fixed

function block
o  Ex:exportin a pixel shader pass the control over the color block
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Vector memory

CU have an internal 16kb L1 cache for vector memory operation

o  Usually texture data

L2 is outside the CU

Figure 6: Cache Hierarchy
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Shader system use case: Nvidia Turing(TU102

PCI Express .0 Host Interface

NVLink - Two x8
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Streaming multiprocessor (SM)

e An SM contains 4 group of 32
cores
e FEach group have its own
Instruction buffer,warp scheduler
Register files
e 4 texture units /I1 cache and
64kb shader memory
e Each core have 16 floating point unit
16 integer unit and two tensor cores
e FEach SM have a dedicated Ray Tracing unit
For traversal / intersection

Warp Schaduler + Dispateh (32 threadiclhy

Register File (16,384 x 32-bit)

TENSOR

INT32 | FP32 e

SFU

Warp Scheduler ¢ Dispatch (32 threadich)

Register File (16,384 x 32-bit)

TENSOR

INT32 | FP32 e

Warp Scheciular + Dispatch (32 hvusdiclk)

Register File (16,384 x 32-bit)

TENSOR

INT32 FP32 CORES

SFU

Wirp Schadider « Oispatch (32 thewadiclh)

Register File (16,384 x 32-bit)

TENSOR
CORES

INT32 FP32




warps

A warp is a group of 32 threads and is the smallest unit of work
Each SM can hold 64 warps in flight

Each thread can access a maximum of 255 registry

Usage determine actual number of concurrent thread
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Graphics processing cluster (GPC)

e Each GPC has:
e A Rasterizer

GPC
o Turns triangles data into actual pixel Raster Engine
. “8 “=8 8- 8- “8- =8
o Ready to be dispatched as warp TPC TPC TPC TPC TPC TPC
. PolyMorph Engine  PolyMorph Engine  PolyMorph Engine  PolyMorph Engine  PolyMorph Engine  PolyMorph Engine
o Perform triangle and z culling Sm SM SM sm SM SM
® 06 Texture Processor Cluster
o 2 SM each

o A polymorph engine
o  Perform vertex fetching and assembles
Vertex warps
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GeForce RTX 2080

GeForce GeForce
GPU Features GTX 1080 RTX 2080
Architecture Pascal Turing
GPCs 4 6
TPCs 20 23
SMs 20 46
CUDA Cores / SM 128 64
CUDA Cores / GPU 2560 2944
Tensor Cores / SM NA 8
Tensor Cores / GPU NA 368
RT Cores NA 46
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Summary

A GPU is an extremely parallel machine

o Each of the stages are executed as soon as
there’s enough work to do.

o This is called immediate rendering

o Shader system can have any kind of work in
flight at a given time.

o  While the Rasterizers, PA, IA and output merger
are processing other things.

o Data dependency is a limiting factor.

Knowing what happens in each stage can
help spot the bottleneck.
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About mobile GPUs




Problem on mobile

e Battery consumption is king
e Very high bandwidth memory system is power demanding
e Low bandwidth is “slow”

o 10x slower than mobile
e Solution : Tiled based / Tile based deferred architectures
o TBR/TBDR for short
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Tile Based architecture ()

Use of a hi speed on chip cache.

Used as temporary storage during vertex/pixel shading.

Main Memory can be low bandwidth.
Only “invoked” when writing the final pixel data.
An for texture access.

LT

Tile Cache
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What we want on screen

Tile Based architecture (ll)

e To0 maximize cache usage screen is divided in
tiles

e Screen is renderender one tile at the time ;

e Tile cache is used at temporary store for the
framebuffer

e When finished the content of the tile is written
back to memory

ofale




Tile Based architecture (lll)

We need to sort all the triangles in tiles
We need to pre process all the geometry first
All vertex shaders runs first
Then we know triangles per tile

o  “Binning”
e Binning happens in main memory

o Based on principle that “normally” there are less triangles than pixel

e On a desktop GPU pixel and vertex runs in parallel
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Tile Based Deferred architecture

e Once all triangles are sorted in tiles pixel processing
can start
e Since we know all the primitive on tile we can pick

only the one that contribute to pixel color
o Example: nearest one

If this happen the architecture is said to be “deferred”
Great reduction of pixel shading work

Only runs shaders that actually write a pixel

On a desktop GPU this is possible with “Z prepass”

o But need to submit the geometry twice
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TBR pro and cons

Pro
o Frame buffer bandwidth reduces
o Zprepass “free”
o Tiled cache more efficient than cache lines
o Blending happens in the tile cache
m Programmable blending possibile
Cons
o Split rendering in two, lockstepped, stages
o Tile cache limits usage of frame buffer format and multiple render target
o Complex scene might slow down heavily the binning process
o Harder to read cross tile pixels
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Gpus- where are we now

e Mobile and desktop fundamentally different.

e Proprietary features to optimize the vertex pipeline
o Nvidia - mesh shaders
o Amd - primitive shaders
o VR rendering vertex optimization

e Proprietary features to optimize rasterization
o Native variable shading for foveated rendering
o Tile rendering similar to Mobile architecture
o Mentioned in vega white paper
o Nvidia experiment https:/github.com/nlguillemot/trianglebin

e Raytracing
o Really hard problem to solve
o Dynamic bhv creation
o  Gpu traversal
o Handling incoherent rays

68


https://github.com/nlguillemot/trianglebin

Conclusions

Basics of both Desktop and mobile architecture covered
Highlighted possible bottlenecks for each stage
We can use this knowledge to understand profiling

GPU evolved over the years
o Always know your target architecture!
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